Applications of Scientific Computing

Commercial applications.

Financial modeling.

Computer graphics.

Digital audio and video.

Natural language processing.

Architecture walk-throughs.

Medical diagnostics (MRI, CAT).

Web search.

9. Scientific Computing

Science and engineering challenges.

- Fluid dynamics.
- Seismic surveys.
- Plasma dynamics.
- Ocean circulation. •
- Electronics design. •
- Pharmaceutical design.
- Human genome project.
- Vehicle crash simulation.
- Global climate simulation.
- Nuclear weapons simulation.
- Molecular dynamics simulation.

Common features.

- Problems tend to be continuous instead of discrete.
- Algorithms must scale to handle huge problems.

Introduction to Computer Science · Sedgewick and Wayne · Copyright © 2007 · http://www.cs.Princeton.EDU/IntroCS

Floating Point

IEEE 754 representation.

- Used by all modern computers.
- Scientific notation, but in binary.
- Single precision: float = 32 bits.
- Double precision: double = 64 bits.

Ex. Single precision representation of -0.453125.

sign bit J			exp	oone I	nt														si	gnif Į	icar	nd								
1 0) 1	1	1	1	1	0	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-1			12	25									1/	2	+ 1	L/4	+	1/	16	=	0.	812	25							

Floating Point

Remark. Most real numbers are not representable, including π and 1/10.

Roundoff error. When result of calculation is not representable. Consequence. Non-intuitive behavior for uninitiated.

if (0.1 + 0.2 == 0.3) { // NO } if (0.1 + 0.3 == 0.4) { // YES }

Financial computing. Calculate 9% sales tax on a 50¢ phone call. Banker's rounding. Round to nearest integer, to even integer if tie.

A simple function.
$$f(x) = \frac{1 - \cos x}{x^2}$$

Goal. Plot f(x) for $-4 \cdot 10^{-8} \le x \le 4 \cdot 10^{-8}$.

Catastrophic Cancellation

Ex. Evaluate fl(x) for x = 1.1e-8.

inaccurate estimate of exact answer (6.05 \cdot 10⁻¹⁷)

(1.0 - Math.cos(x)) / (x * x) = 0.9175
 80% larger than exact answer (about 0.5)

Catastrophic cancellation. Devastating loss of precision when small numbers are computed from large numbers, which themselves are subject to roundoff error. Catastrophic Cancellation

A simple function.
$$f(x) = \frac{1 - \cos x}{x^2}$$

Goal. Plot f(x) for $-4 \cdot 10^{-8} \le x \le 4 \cdot 10^{-8}$.

IEEE 754 double precision answer

Ariane 5 rocket. [June 4, 1996]

- 10 year, \$7 billion ESA project exploded after launch.
- 64-bit float converted to 16 bit signed int.
- Unanticipated overflow.

Vancouver stock exchange. [November, 1983]

- Index undervalued by 44%.
- Recalculated index after each trade by adding change in price.
- 22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]

- Failed to track scud; hit Army barracks, killed 28.
- Inaccuracy in measuring time in 1/20 of a second since using 24 bit binary floating point.

Gaussian Elimination

Linear system of equations. N linear equations in N unknowns.

$0 x_0 + 1 x_1 + 1 x_2$	=	4	[0 1 1]	[4]
$2 x_0 + 4 x_1 - 2 x_2$			$A = \begin{bmatrix} 0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15 \end{bmatrix}, b$	= 2
$0 x_0 + 3 x_1 + 15 x_2$	=	36	[0 3 15]	[36]

matrix notation: find x such that Ax = b

Fundamental problems in science and engineering.

- Chemical equilibrium.
- Linear and nonlinear optimization.
- Kirchoff's current and voltage laws.
- Hooke's law for finite element methods.
- Leontief's model of economic equilibrium.
- Numerical solutions to differential equations.
- ...

Chemical Equilibrium

conservation of mass

Ex. Combustion of propane.

 $x_0C_3H_8 + x_1O_2 \implies x_2CO_2 + x_3H_2O$

Stoichiometric constraints.

- Carbon: 3x₀ = x₂.
 Hydrogen: 8x₀ = 2x₃.
- Oxygen: $2x_1 = 2x_2 + x_3$.
- Normalize: x₀ = 1.

$$C_3H_8 + 5O_2 \implies 3CO_2 + 4H_2O$$

Remark. Stoichiometric coefficients tend to be small integers; among first hints suggesting the atomic nature of matter.

Kirchoff's Current Law

Ex. Find current flowing in each branch of a circuit.

Kirchoff's current law.

- 10 = $1x_0 + 25(x_0 x_1) + 50(x_0 x_2)$. 0 = $25(x_1 x_0) + 30x_1 + 1(x_1 x_2)$. 0 = $50(x_2 x_0) + 1(x_2 x_1) + 55x_2$.

conservation of electrical charge

Solution. $x_0 = 0.2449$, $x_1 = 0.1114$, $x_2 = 0.1166$.

Upper triangular system. $a_{ij} = 0$ for i > j.

Back substitution. Solve by examining equations in reverse order.

- Equation 2: x₂ = 24/12 = 2.
- Equation 1: x₁ = 4 x₂ = 2.

fc

}

Equation 0: x₀ = (2 - 4x₁ + 2x₂) / 2 = -1.

or (int i = N-1; i >= 0; i--) {
double sum = 0.0;
for (int j = i+1; j < N; j++)
sum += A[i][j] * x[j];
x[i] = (b[i] - sum) / A[i][i];

$$x_{i} = \frac{1}{a_{ii}} \left[b_{i} - \sum_{j=i}^{N-1} b_{j} - \sum_{j=i}^{N-1} b_{i} - \sum_{$$

a_{ij} x_j

Gaussian Elimination

Gaussian elimination.

- Among oldest and most widely used solutions.
- Repeatedly apply row operations to make system upper triangular.
- Solve upper triangular system by back substitution.

Elementary row operations.

- Exchange row p and row q.
- Add a multiple α of row p to row q.

Gaussian Elimination: Row Operations

Elementary row operations.

2 x ₀ +	$1 x_1 + 1 x_2 4 x_1 - 2 x_2 3 x_1 + 15 x_2$	= 2
	(interch	nange row 0 and 1)
0 x ₀ +	$4x_1 - 2x_2$ $1x_1 + 1x_2$	= 4
0 x ₀ +	3 x ₁ + 15 x ₂ (subtro	= 36 act 3x row 1 from row 2
2 x ₀ +	4 x ₁ - 2 x ₂	= 2
	$1 x_1 + 1 x_2$ $0 x_1 + 12 x_2$	
0		

Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot a_{DD}.

```
for (int i = p + 1; i < N; i++) {
    double alpha = A[i][p] / A[p][p];
    b[i] -= alpha * b[p];
    for (int j = p; j < N; j++)
        A[i][j] -= alpha * A[p][j];
}</pre>
```

Gaussian Elimination: Forward Elimination

Gaussian Elimination Example

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot app.

- 1				*			[*	*	*	*	*]		*	*	*	*	*]		[*	*	*	*	*]		*	*	*	*	*]
	*	*	*	*	*		0	*	*	*	*		0	*	*	*	*		0	*	*	*	*		0	*	*	*	*
	*	*	*	*	*	⇒	0	*	*	*	*	⇒	0	0	*	*	*	⇒	0	0	*	*	*	⇒	0	0	*	*	*
	*	*	*	*	*		0	*	*	*	*		0	0	*	*	*		0	0	0	*	*		0	0	0	*	*
	*	*	*	*	*		0	*	*	*	*		0	0	*	*	*		0	0	0	*	*		0	0	0	0	*

1 × ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
2 x ₀	+	-1 × ₁	+	1 x ₂	+	7 x ₃	=	2
-		-		_		-6 x ₃		3
1 × ₀	+	1 x ₁	+	1 x ₂	+	9 x ₃	=	4

Gaussian Elimination Example

		0 × ₁		_		•		1
0 × ₀		-1 × ₁		-1 x ₂		-1 × ₃		0
0 x ₀		$1 \times_1$		2 x ₂		2 x ₃		5
0 × ₀	+	$1 \times_1$	+	0 x ₂	+	5 x ₃	=	3

Gaussian Elimination Example

1 × ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
-		-1 x ₁		-		-		0
		0 x ₁						5
0 x ₀		0 x ₁		-1 x ₂		4 x ₃		3

Gaussian Elimination Example

1 × ₀	+	0 x ₁	+	1 x ₂	+	4 x ₃	=	1
0 × ₀	+	-1 × ₁	+	-1 x ₂	+	-1 x ₃	=	0
0 x ₀	+	0 x ₁	+ (1 x ₂	+	1 x ₃	=	5
0 x ₀		0 × ₁		0 x ₂		5 x ₃		8

1 x ₀	+	0 × ₁	+	1 x ₂	+	4 x ₃	=	1
0 x ₀	+	-1 × ₁	+	-1 x ₂	+	-1 x ₃	=	0
0 x ₀	+	0 x ₁	+	1 x ₂	+	1 x ₃	=	5
0 x ₀	+	0 x ₁	+	0 x ₂	+	5 x ₃	=	8

x ₃	= 8/5
$x_2 = 5 - x_3$	= 17/5
$x_1 = 0 - x_2 - x_3$	3 = -25/5
$x_0 = 1 - x_2 - 4x$	k₃ = −44/5

Gaussian Elimination: Partial Pivoting

Remark. Previous code fails spectacularly if pivot $a_{pp} = 0$.

1 × ₀	+	1 × ₁	+	0 x ₃	=	1
2 × ₀	+	2 x ₁	+	-2 x ₃	=	-2
0 × ₀	+	3 x ₁	+	15 x ₃	=	33
1 × ₀	+	1 × ₁	+	0 x ₃	=	1
0 × ₀	+	0 x ₁	+	-2 x ₃	=	-4
0 × ₀	+	3 × ₁	+	15 x ₃	=	33
1 × ₀	+	1 × ₁	+	0 x ₃	=	1
0 x ₀	+	0 ×1	+	-2 x ₃	=	-4
0 x ₀	+	Nan X1	+	$Inf x_3$	=	Inf

Gaussian Elimination: Partial Pivoting

Partial pivoting. Swap row p with the row that has largest entry in column p among rows i below the diagonal.

- Q. What if pivot a_{pp} = 0 while partial pivoting?
- A. System has no solutions or infinitely many solutions.

Gaussian Elimination with Partial Pivoting

Numerically Unstable Algorithms

Stability. Algorithm fl(x) for computing f(x) is numerically stable if fl (x) \approx f(x+ ϵ) for some small perturbation ϵ .

Nearly the right answer to nearly the right problem.

Ex 1. Numerically unstable way to compute
$$f(x) = \frac{1 - \cos x}{x^2}$$

public static double fl(double x) {
return (1.0 - Math.cos(x)) / (x * x);
}
• fl(1.1e-8) = 0.9175.
 $f(x) = \frac{2\sin^2(x/2)}{x^2}$

a numerically stable formula

Stability and Conditioning

Numerically Unstable Algorithms

Stability. Algorithm fl(x) for computing f(x) is numerically stable if fl (x) \approx f(x+ ε) for some small perturbation ε .

Nearly the right answer to nearly the right problem.

Ex 2. Gaussian elimination (w/o partial pivoting) can fail spectacularly.

Theorem. Partial pivoting improves numerical stability.

Ill-Conditioned Problems

 $H_{4} =$

Hilbert matrix

Conditioning. Problem is well-conditioned if $f(x) \approx f(x+\epsilon)$ for all small perturbation ϵ .

Solution varies gradually as problem varies.

Ex. Hilbert matrix.

- Tiny perturbation to H_n makes it singular.
- Cannot solve $H_{12} x = b$ using floating point.

Matrix condition number. [Turing, 1948] Widely-used concept for detecting ill-conditioned linear systems.

Numerically Solving an Initial Value ODE

Lorenz attractor.

- Idealized atmospheric model to describe turbulent flow.
- Convective rolls: warm fluid at bottom, rises to top, cools off, and falls down.

Edward Lorenz

x = fluid flow velocity

y = ∇ temperature between ascending and descending currents

z = distortion of vertical temperature profile from linearity

Solution. No closed form solution for x(t), y(t), z(t). Approach. Numerically solve ODE.

Euler's Method

Euler's method. [to numerically solve initial value ODE]

- Choose Δt sufficiently small.
- Approximate function at time t by tangent line at t.
- Estimate value of function at time t + ∆t according to tangent line.
- Increment time to $t + \Delta t$.
- • Repeat.

$x_{t+\Delta t}$	=	$x_t + \Delta t \ \frac{dx}{dt}(x_t, y_t, z_t)$
$y_{t+\Delta t}$	=	$y_t + \Delta t \frac{dy}{dt}(x_t, y_t, z_t)$
$Z_{t+\Delta t}$	=	$z_t + \Delta t \ \tfrac{dz}{dt}(x_t, y_t, z_t)$

Advanced methods. Use less computation to achieve desired accuracy.

- 4th order Runge-Kutta: evaluate slope four times per step.
- Variable time step: automatically adjust timescale ∆t.
- See COS 323.

Lorenz Attractor: Java Implementation

```
public class Lorenz {
   public static double dx(double x, double y, double z)
   { return -10*(x - y);
   public static double dy(double x, double y, double z)
   { return -x*z + 28*x - y; }
   public static double dz (double x, double y, double z)
   { return x*y - 8*z/3; }
   public static void main(String[] args) {
      double x = 0.0, y = 20.0, z = 25.0;
      double dt = 0.001;
      StdDraw.setXscale(-25, 25);
      StdDraw.setYscale( 0, 50);
      while (true) {
         double xnew = x + dt * dx(x, y, z);
                                                  Euler's method
         double ynew = y + dt * dy(x, y, z);
         double znew = z + dt * dz(x, y, z);
         x = xnew; y = ynew; z = znew;
         StdDraw.point(x, z);
                                                  plot x vs. z
      }
   }
}
```

The Lorenz Attractor

The Lorenz Attractor

Butterfly Effect

Experiment.

- Initialize y = 20.01 instead of y = 20.
- Plot original trajectory in blue, perturbed one in magenta.
- What happens?

Ill-conditioning.

- Sensitive dependence on initial conditions.
- Property of system, not of numerical solution approach.

Predictability: Does the Flap of a Butterfly's Wings in Brazil set off a Tornado in Texas? - Title of 1972 talk by Edward Lorenz

Stability and Conditioning

Accuracy depends on both stability and conditioning.

- Danger: apply unstable algorithm to well-conditioned problem.
- Danger: apply stable algorithm to ill-conditioned problem.
- Safe: apply stable algorithm to well-conditioned problem.

Numerical analysis. Art and science of designing numerically stable algorithms for well-conditioned problems.

Lesson 1. Some algorithms are unsuitable for floating point solutions. Lesson 2. Some problems are unsuitable to floating point solutions.