9. Scientific Computing

roduction to Compter Scien Sel

Floating Point

IEEE 754 representation.

- Used by all modern computers.
- Scientific notation, but in binary.
- Single precision: float $=32$ bits.
- Double precision: double $=64$ bits.

Ex. Single precision representation of -0.453125

Science and engineering challenges

- Fluid dynamics.
- Seismic surveys.
- Plasma dynamics.
- Ocean circulation
- Electronics design
- Pharmaceutical design
- Human genome project.
- Vehicle crash simulation
- Global climate simulation
- Nuclear weapons simulation.
- Molecular dynamics simulation.

Common features.

- Problems tend to be continuous instead of discrete.
- Algorithms must scale to handle huge problems.

Floating Point

Remark. Most real numbers are not representable, including π and $1 / 10$.

Roundoff error. When result of calculation is not representable. Consequence. Non-intuitive behavior for uninitiated.

```
if (0.1+0.2== 0.3) { // NO }
if (0.1 + 0.3 == 0.4) { // YES }
```

Financial computing. Calculate 9% sales tax on a $50 \$$ phone call. Banker's rounding. Round to nearest integer, to even integer if tie.

```
double a1 = 1.14 * 75; // 85.49999999999999
double a2 = Math.round(a1); // 85 - you lost 14
double b1 = 1.09 * 50; // 54.5000000000000
double b2 = Math.round(b1); // 55
```

A simple function. $\quad f(x)=\frac{1-\cos x}{x^{2}}$
Goal. Plot $f(x)$ for $-4 \cdot 10^{-8} \leq x \leq 4 \cdot 10^{-8}$.

Catastrophic Cancellation

```
public static double fl(double x) {
    return (1.0 - Math.cos(x)) / (x * x)
}
```

Ex. Evaluate $\mathrm{fl}(\mathrm{x})$ for $\mathrm{x}=1.1 \mathrm{e}-8$.

- Math. $\cos (x)=0.99999999999999988897769753748434595763683319091796875$
nearest floating point value agrees with exact answer to 16 decimal places.
- (1.0 - Math. $\cos (x))=1.1102 \mathrm{e}-1$
inaccurate estimate of exact answer $\left(6.05 \cdot 10^{-17}\right)$
- (1.0 - Math. $\cos (x)) /(x * x)=0.9175$

80\% larger than exact answer (about 0.5)

Catastrophic cancellation. Devastating loss of precision when small numbers are computed from large numbers, which themselves are subject to roundoff error.

$$
\begin{aligned}
& \text { A simple function. } \quad f(x)=\frac{1-\cos x}{x^{2}} \\
& \text { Goal. Plot } f(x) \text { for }-4 \cdot 10^{-8} \leq x \leq 4 \cdot 10^{-8} \text {. }
\end{aligned}
$$

IEEE 754 double precision answer

Numerical Catastrophes

Ariane 5 rocket. [June 4, 1996]

- 10 year, $\$ 7$ billion ESA project exploded after launch.
- 64-bit float converted to 16 bit signed int.
- Unanticipated overflow.

Vancouver stock exchange. [November, 1983]

- Index undervalued by 44%.
- Recalculated index after each trade by adding change in price.
- 22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]

- Failed to track scud; hit Army barracks, killed 28.
- Inaccuracy in measuring time in $1 / 20$ of a second since using 24 bit binary floating point.

Gaussian Elimination

Chemical Equilibrium

Ex. Combustion of propane.

```
x0 C3 H H + x }\mp@subsup{x}{1}{}\mp@subsup{O}{2}{}=>\mp@subsup{x}{2}{}\mp@subsup{C}{2}{2}+\mp@subsup{x}{3}{}\mp@subsup{H}{2}{}
```

Stoichiometric constraints.

- Carbon: $3 x_{0}=x_{2}$.
- Hydrogen: $8 x_{0}=2 x_{3}$
- Oxygen: $2 x_{1}=2 x_{2}+x_{3}$
- Normalize: $x_{0}=1$.

$$
\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \Rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Remark. Stoichiometric coefficients tend to be small integers; among first hints suggesting the atomic nature of matter.

Linear system of equations. N linear equations in N unknowns.
$0 x_{0}+1 x_{1}+1 x_{2}=4$
$2 x_{0}+4 x_{1}-2 x_{2}=2$
$0 x_{0}+3 x_{1}+15 x_{2}=36$

matrix notation: find x such that $A x=b$

Fundamental problems in science and engineering.

- Chemical equilibrium.
- Linear and nonlinear optimization.
- Kirchoff's current and voltage laws.
- Hooke's law for finite element methods.
- Leontief's model of economic equilibrium.
- Numerical solutions to differential equations.
- ...

Kirchoff's Current Law

Ex. Find current flowing in each branch of a circuit.

Kirchoff's current law.

- $10=1 x_{0}+25\left(x_{0}-x_{1}\right)+50\left(x_{0}-x_{2}\right)$.
- $0=25\left(x_{1}-x_{0}\right)+30 x_{1}+1\left(x_{1}-x_{2}\right)$.
- $0=50\left(x_{2}-x_{0}\right)+1\left(x_{2}-x_{1}\right)+55 x_{2}$.

Solution. $x_{0}=0.2449, x_{1}=0.1114, x_{2}=0.1166$.

Upper triangular system. $\mathrm{a}_{\mathrm{ij}}=0$ for $\mathrm{i}>\mathrm{j}$.

$$
\begin{aligned}
& 2 x_{0}+4 x_{1}-2 x_{2}=2 \\
& 0 x_{0}+1 x_{1}+1 x_{2}=4 \\
& 0 x_{0}+0 x_{1}+12 x_{2}=24
\end{aligned}
$$

Back substitution. Solve by examining equations in reverse order.

- Equation 2: $x_{2}=24 / 12=2$
- Equation 1: $x_{1}=4-x_{2}=2$.

Equation 0: $x_{0}=\left(2-4 x_{1}+2 x_{2}\right) / 2=-1$

```
for (int i = N-1; i >= 0; i--)
    double sum = 0.0
    for (int j = i+1; j < N; j++
        sum += A[i][j] * x[j]
    x[i] = (b[i] - sum) / A[i][i];
```

\}

Gaussian elimination.

- Among oldest and most widely used solutions.
- Repeatedly apply row operations to make system upper triangular
- Solve upper triangular system by back substitution.

Elementary row operations.

- Exchange row p and row q.
- Add a multiple α of row p to row q.

Key invariant. Row operations preserve solutions.

Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot $a_{p p}$.

```
aij}=\mp@subsup{a}{ij}{}-\frac{\mp@subsup{a}{ip}{}}{\mp@subsup{a}{pp}{}}\mp@subsup{a}{pj}{
bi}=\mp@subsup{b}{i}{}-\frac{\mp@subsup{a}{ip}{}}{\mp@subsup{a}{pp}{}}\mp@subsup{b}{p}{
```

```
for (int i = p + 1; i < N; i++) {
    double alpha = A[i][p] / A[p][p]
    b[i] -= alpha * b[p]
    for (int j = p; j < N; j++)
            A[i][j] -= alpha * A[p][j]
}
```


Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot $a_{p p}$.

$$
\left[\begin{array}{lllll}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right] \Rightarrow\left[\begin{array}{ccccc}
* & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & *
\end{array}\right] \Rightarrow\left[\begin{array}{lllll}
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & * & * & *
\end{array}\right] \Rightarrow\left[\begin{array}{lllll}
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & * & *
\end{array}\right] \Rightarrow\left[\begin{array}{lllll}
* & * & * & * & * \\
0 & * & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & *
\end{array}\right]
$$

$1 x_{0}+0 x_{1}+1 x_{2}+4 x_{3}=1$
$2 x_{0}+-1 x_{1}+1 x_{2}+7 x_{3}=2$
$-2 x_{0}+1 x_{1}+0 x_{2}+-6 x_{3}=3$
$1 x_{0}+1 x_{1}+1 x_{2}+9 x_{3}=4$

```
for (int \(\mathrm{p}=0 ; \mathrm{p}<\mathbf{N} ; \mathrm{p}++\) )
P1 double alpha \(=A[i][p] / A[p][p]\) b[i] -= alpha * b[p]; for (int j = p; j < N; j++)
\[
\mathrm{A}[i][j]-=\text { alpha * A[p][j] }
\]
\}
```

Gaussian Elimination Example
Gaussian Elimination Example
$1 x_{0}+0 x_{1}+1 x_{2}+4 x_{3}=1$
$0 x_{0}+-1 x_{1}+-1 x_{2}+-1 x_{3}=0$
$0 x_{0}+0 x_{1}+1 x_{2}+1 x_{3}=5$
$0 x_{0}+0 x_{1}+-1 x_{2}+4 x_{3}=3$
$1 x_{0}+0 x_{1}+1 x_{2}+4 x_{3}=1$
$0 x_{0}+-1 x_{1}+-1 x_{2}+-1 x_{3}=0$
$0 x_{0}+0 x_{1}+1 x_{2}+1 x_{3}=5$
$0 x_{0}+0 x_{1}+0 x_{2}+5 x_{3}=8$

$$
\begin{array}{ll}
x_{3} & =8 / 5 \\
x_{2}=5-x_{3} & =17 / 5 \\
x_{1}=0-x_{2}-x_{3} & =-25 / 5 \\
x_{0}=1-x_{2}-4 x_{3} & =-44 / 5
\end{array}
$$

Gaussian Elimination: Partial Pivoting

Partial pivoting. Swap row p with the row that has largest entry in column p among rows i below the diagonal.

```
// find pivot row
int max = p;
for (int i = p + 1; i<N; i++)
if (Math.abs(A[i][p]) > Math.abs(A [max][p]))
    max = i
// swap rows p and max
double[] T = A[p]; A[p] = A[max]; A[max] = T;
double t = b[p]; b[p] = b[max];b[max] = t;
```

$1 x_{0}+1 x_{1}+0 x_{3}=1$
$0 x_{0}+0 x_{1}+-2 x_{3}=-4$
$0 x_{0}+\operatorname{Nan} x_{1}+\operatorname{Inf} x_{3}=\operatorname{Inf}$

Remark. Previous code fails spectacularly if pivot $a_{p p}=0$.

```
1x0}+1\mp@subsup{x}{1}{}+0\mp@subsup{x}{3}{}=
2x
0x0 + 3x ( 
```

$1 x_{0}+1 x_{1}+0 x_{3}=1$
$0 x_{0}+0 x_{1}+-2 x_{3}=$
$0 x_{0}+3 x_{1}+15 x_{3}=33$

Q. What if pivot $a_{p p}=0$ while partial pivoting?
A. System has no solutions or infinitely many solutions.

Gaussian Elimination with Partial Pivoting

```
public static double[] lsolve(double[][] A, double[] b) {
    int N = b.length;
    // Gaussian elimination
        for (int p=0; p< N; p++) {
            // partial
            int max =p
                (int i=p+1; i < N;i++)
                if (Math.abs (A[i][p])}>\mathrm{ Math.abs (A[max][p]))
            max = i; ;
        double[] T=A[P];A[P]=A[max];A[max] = T
        // zero out entries of A and b using pivot A[p][p
            for (int i = p+1; i<N; i++) i
                double alpha =A[i][p]/A[p][p]
            b[i] -= alpha * b[p];
            for (int j=p; j<N; j++)
            A[i][j] == alpha * A[p][j];
        }
    }
    // back substitution
    double[] x m new double [N]
        for (int i i = new double[N]; ; i >=0; i--) i
            louble sum = 0.0; j < N ; j++)
            sum +=A[i][j] * x[j];
            x[i]=(b[i]-sum)/A[i][i]
    }
}
return x
```


$f(x)=\frac{2 \sin ^{2}(x / 2)}{x^{2}}$

a numerically stable formula
$\sim N^{3} / 3$ additions, $\sim N^{3} / 3$ multiplications
$\sim N^{2} / 2$ additions, $\sim N^{2} / 2$ multiplications

Numerically Unstable Algorithms

Stability. Algorithm $f 1(x)$ for computing $f(x)$ is numerically stable if $f 1$ $(x) \approx f(x+\varepsilon)$ for some small perturbation ε.

Nearly the right answer to nearly the right problem.

Ex 1. Numerically unstable way to compute $f(x)=\frac{1-\cos x}{x^{2}}$

```
public static double fl(double x) {
    return (1.0 - Math.cos(x)) / (x * x);
}
\}
```

- $\mathrm{fl}(1.1 \mathrm{e}-8)=0.9175$.

[^0]
Stability and Conditioning

Numerically Unstable Algorithms

Stability. Algorithm $f 1(x)$ for computing $f(x)$ is numerically stable if $f 1$ $(x) \approx f(x+\varepsilon)$ for some small perturbation ε.

Nearly the right answer to nearly the right problem.

Ex 2. Gaussian elimination (w/o partial pivoting) can fail spectacularly.

```
a=1\mp@subsup{0}{}{-17}}\\begin{array}{l}{a\mp@subsup{x}{0}{}+1\mp@subsup{x}{1}{}=1}\\{1\mp@subsup{x}{0}{}+2\mp@subsup{x}{1}{}=3}
```

Algorithm	x_{0}	x_{1}
no pivoting	0.0	1.0
partial pivoting	1.0	1.0
exact	$\frac{1}{1-2 a} \approx 1$	$\frac{1-3 a}{1-2 a} \approx 1$

[^1]Conditioning. Problem is well-conditioned if $f(x) \approx f(x+\varepsilon)$ for all small perturbation ε.

Solution varies gradually as problem varies.

Ex. Hilbert matrix.

- Tiny perturbation to H_{n} makes it singular.
- Cannot solve $H_{12} x=b$ using floating point.

Matrix condition number. [Turing, 1948] Widely-used concept for detecting ill-conditioned linear systems.

Euler's Method

Euler's method. [to numerically solve initial value ODE]

- Choose Δt sufficiently small.
- Approximate function at time \dagger by tangent line at \dagger.
- Estimate value of function at time $\dagger+\Delta t$ according to tangent line.
- Increment time to $\dagger+\Delta t$
- Repeat.

$$
\begin{aligned}
& x_{t+\Delta t}=x_{t}+\Delta t \frac{d x}{d t}\left(x_{t}, y_{t}, z_{t}\right) \\
& y_{t+\Delta t}=y_{t}+\Delta t \frac{d y}{d t}\left(x_{t}, y_{t}, z_{t}\right) \\
& z_{t+\Delta t}=z_{t}+\Delta t \frac{d z}{d t}\left(x_{t}, y_{t}, z_{t}\right)
\end{aligned}
$$

Advanced methods. Use less computation to achieve desired accuracy

- $4^{\text {th }}$ order Runge-Kutta: evaluate slope four times per step.
- Variable time step: automatically adjust timescale Δt.
- See COS 323.

Lorenz attractor.

- Idealized atmospheric model to describe turbulent flow.
- Convective rolls: warm fluid at bottom, rises to top, cools off, and falls down.

```
dx}dt=-10(x+y
dy}=-xz+28x-
dz
```

x = fluid flow velocity
$y=\nabla$ temperature between ascending and descending currents
$z=$ distortion of vertical temperature profile from linearity

Solution. No closed form solution for $x(t), y(t), z(\dagger)$. Approach. Numerically solve ODE.

Lorenz Attractor: Java Implementation

```
public class Lorenz {
    public static double dx(double x, double y, double z)
    { return -10*(x - y); }
    public static double dy(double x, double y, double z)
    { return -x*z + 28*\mathbf{x}-\mathbf{y; }}
    public static double dz(double x, double y, double z)
    { return x*y - 8*z/3; }
    public static void main(String[] args) {
        double }\mathbf{x}=0.0,\mathbf{y}=20.0,\mathbf{z}=25.0
        double dt = 0.001;
        Stabraw setXscale(-25, 25)
        StdDraw.setYscale
        while (true)
            double xnew = x + dt * dx(x,y,z}); Euler's method
            double ynew = y + dt * dy(x,y,z)
            double znew = z + dt * dz(x,y,z)
            x = xnew; y = ynew; z = znew
            StdDraw.point(x, z);
        lot x vs.z
    }
}
```

\% java Lorenz

Butterfly Effect

Experiment.

- Initialize $y=20.01$ instead of $y=20$.
- Plot original trajectory in blue, perturbed one in magenta.
- What happens?

Ill-conditioning.

- Sensitive dependence on initial conditions.
- Property of system, not of numerical solution approach. a Tornado in Texas? - Title of 1972 talk by Edward Lorenz

Stability and Conditioning

Accuracy depends on both stability and conditioning.

- Danger: apply unstable algorithm to well-conditioned problem.
- Danger: apply stable algorithm to ill-conditioned problem.
- Safe: apply stable algorithm to well-conditioned problem.

Numerical analysis. Art and science of designing numerically stable algorithms for well-conditioned problems.

Lesson 1. Some algorithms are unsuitable for floating point solutions. Lesson 2. Some problems are unsuitable to floating point solutions.

[^0]: true answer $\sim 1 / 2$.

[^1]: Theorem. Partial pivoting improves numerical stability.

