6.1 Combinational Circuits

Claude Shannon (1916 - 2001)

Logic Gates

Logical gates.

Fundamental building blocks.

Signals and Wires

Digital signals

Binary (or "logical") values: 1 or 0, on or off, high or low voltage

Wires

- Propagate logical values from place to place.
- Signals "flow" from left to right.
 - A drawing convention, sometimes violated
 - Actually: flow from producer to consumer(s) of signal

Input Output

Multiway AND Gates

$AND(x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7).$

- 1 if all inputs are 1.
- 0 otherwise.

Multiway OR Gates

$OR(x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7).$

- 1 if at least one input is 1.
- 0 otherwise.

Truth Table

Truth table.

- Systematic method to describe Boolean function.
- One row for each possible input combination.
- N inputs \Rightarrow 2^N rows.

AN	D Trut	th Table
х	у	AND(x, y)
0	0	0
0	1	0
1	0	0
1	1	1

Boolean Algebra

History.

- Developed by Boole to solve mathematical logic problems (1847).
- Shannon master's thesis applied it to digital circuits (1937).

"possibly the most important, and also the most famous, master's thesis of the [20th] century" --Howard Gardner

Basics.

- Boolean variable: value is 0 or 1.
- Boolean function: function whose inputs and outputs are 0, 1.

Relationship to circuits.

Boolean variables: signals.Boolean functions: circuits.

Truth Table for Functions of 2 Variables

Truth table.

- 16 Boolean functions of 2 variables.
 - every 4-bit value represents one

	Tr	oth Tal	ble for	All Boo	lean Fu	nctions	of 2 Vo	riables	
×	у	ZERO	AND		×		у	XOR	OR
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

	Tr	oth Ta	ble for	All Boo	lean Fui	nctions	of 2 Vo	ariables	
X	у	NOR	EQ	y'		x ⁱ		NAND	ONE
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Truth Table for Functions of 3 Variables

Truth table.

- 16 Boolean functions of 2 variables.
 - every 4-bit value represents one
- 256 Boolean functions of 3 variables.
 - every 8-bit value represents one
- 2^(2^N) Boolean functions of N variables!

	Soi	ne Fi	unctions	of 3 V	'ariable	S
×	У	z	AND	OR	MAJ	ODD
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	1	0
1	0	0	0	1	0	1
1	0	1	0	1	1	0
1	1	0	0	1	1	0
1	1	1	1	1	1	1
					1	

Sum-of-Products

Any Boolean function can be expressed using AND, OR, NOT.

- Sum-of-products is systematic procedure.
 - form AND term for each 1 in truth table of Boolean function
 - OR terms together

			E>	pressir	ng MAJ	Using S	Sum-of	-Products
×	у	Z	MAJ	x'yz	xy'z	xyz'	xyz	x'yz + xy'z + xyz' + xyz
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0	1
1	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	1
1	1	0	1	0	0	1	0	1
1	1	1	1	0	0	0	1	1

Universality of AND, OR, NOT

Any Boolean function can be expressed using AND, OR, NOT.

- "Universal."
- XOR(x,y) = xy' + x'y

	E	xpress	ing XOF	R Using	AND, (OR, NOT	
×	У	x'	y'	x'y	xy'	x'y + xy'	XOR
0	0	1	1	0	0	0	0
0	1	1	0	1	0	1	1
1	0	0	1	0	1	1	1

0 0 0

Notation	Meaning
x'	NOT x
×у	x AND y
x + y	x OR y

Exercise. Show $\{AND, NOT\}, \{OR, NOT\}, \{NAND\}, \{AND, XOR\}$ are universal. Hint. Use DeMorgan's Law: (xy)' = (x' + y') and (x + y)' = (x'y')

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.

XOR(x, y) = xy' + x'y.

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.

■ MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz.

Expressing a Boolean Function Using AND, OR, NOT

Ingredients.

- AND gates.
- OR gates.
- NOT gates.
- Wire.

Instructions.

- Step 1: represent input and output signals with Boolean variables.
- Step 2: construct truth table to carry out computation.
- Step 3: derive (simplified) Boolean expression using sum-of products.
- Step 4: transform Boolean expression into circuit.

Simplification Using Boolean Algebra

Many possible circuits for each Boolean function.

- Sum-of-products not necessarily optimal in:
 - number of gates (space)
 - depth of circuit (time)
- MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz = xy + yz + xz.

ODD Parity Circuit

ODD(x, y, z).

- 1 if odd number of inputs are 1.
- 0 otherwise.

			E	kpressir	ng ODD	Using S	Sum-of	-Products
×	У	z	ODD	x'y'z	x'yz'	xy'z'	xyz	x'y'z + x'yz' + xy'z' + xyz
0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	1
0	1	0	1	0	1	0	0	1
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

ODD(x, y, z).

- 1 if odd number of inputs are 1.
- 0 otherwise.

Goal: x + y = z for 4-bit integers.

- We build 4-bit adder: 9 inputs, 4 outputs.
- Same idea scales to 128-bit adder.
- Key computer component.

1 1 1 0 2 4 8 7 + 3 5 7 9 6 0 6 6

Step 1.

• Represent input and output in binary.

	1	1	0	0
	0	0	1	0
+	0	1	1	1
	1	0	0	1

	x ₃	X ₂	x_1	x ₀
+	y ₃	y ₂	y ₁	y 0
	Z٥	Ζa	Z ₁	z _o

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 2. (first attempt)

Build truth table.

• Why is this a bad idea?

- 128-bit adder: 2²⁵⁶⁺¹ rows > # electrons in universe!

x ₃	X ₂	x_1	x ₀
у з	y ₂	y ₁	y 0
	z ₂	z_1	z _o
	y ₃	y ₃ y ₂ z ₃ z ₂	x ₃ x ₂ x ₁ y ₃ y ₂ y ₁ z ₃ z ₂ z ₁

21

	4-Bit Adder Truth Table											
	4-BIT Adder Truth Table											
c ₀	x ₃	X ₂	x_1	× ₀	Уз	y ₂	y ₁	Υo	z ₃	Z ₂	z_1	z ₀
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	1	1	0	0	1	1
0	0	0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	0	1	0	1	0	1	0	1
1	1	1	1	1	1	1	1	1	1	1	1	1

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 2. (do one bit at a time)

- Build truth table for carry bit.
- Build truth table for summand bit.

(c ₃	c ₂	c ₁	c ₀ = (
:	x ₃	X ₂	X ₁	x ₀
+ '	y 3	y ₂	y ₁	y 0
	z ₃	Z ₂	z ₁	z ₀

Carry Bit					
xi	y _i c _i c _{i+1}				
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	1		

Summand Bit				
×i	y _i	c _i z _i		
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 3.

Derive (simplified) Boolean expression.

	c ₃	c ₂	c ₁	c ₀ = (
	x ₃	X ₂	× ₁	x ₀
+	y ₃	y ₂	y ₁	y 0
	z ₃	Z ₂	Z ₁	z ₀

Carry Bit				
x _i	Уi	c _i	c _{i+1}	MAJ
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Summand Bit				
x_{i}	y _i	c _i	z _i	ODD
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 4.

- Transform Boolean expression into circuit.
- Chain together 1-bit adders.

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 4.

- Transform Boolean expression into circuit.
- Chain together 1-bit adders.

Subtractor

Subtractor circuit: z = x - y.

- One approach: new design, like adder circuit.
- Better idea: reuse adder circuit.
 - 2's complement: to negate an integer, flip bits, then add 1

4-Bit Subtractor Interface

4-Bit Subtractor Implementation

-Bit Subtractor Implementation

--

TOY Arithmetic Logic Unit: Interface

ALU Interface.

- Add, subtract, bitwise and, bitwise xor, shift left, shift right, copy.
- Associate 3-bit integer with 5 primary ALU operations.
 - ALU performs operations in parallel
 - control wires select which result ALU outputs

ор	2	1	0
+, -	0	0	0
&	0	0	1
^	0	1	0
«,»	0	1	1
input 2	1	0	0

2n-to-1 Multiplexer

n = 8 for main memory

2n-to-1 multiplexer.

- n select inputs, 2ⁿ data inputs, 1 output.
- Copies "selected" data input bit to output.

8-to-1 Mux Interface

8-to-1 Mux Implementation

TOY Arithmetic Logic Unit: Implementation

6.2: Sequential Circuits

COS 126: General Computer Science • http://www.Princeton.EDU/~cos126

Sequential vs. Combinational Circuits

SR Flip-Flop

Flip-Flop

Combinational circuits.

- Output determined solely by inputs.
- Can draw solely with left-to-right signal paths.

Sequential circuits.

- Output determined by inputs AND previous outputs.
- Feedback loop.

Flip-flop.

- A small and useful sequential circuit.
- Abstraction that "remembers" one bit.
- Basis of important computer components:
 - memory
 - counter

We will consider several flavors.

SR Flip-Flop

What is the value of Q if:

S = 1 and R = 0? \Rightarrow Q is surely 1

What is the value of Q if:

S = 1 and R = 0? \Rightarrow Q is surely 1.

S = 0 and R = 1? \Rightarrow Q is surely 0

SR Flip-Flop

SR Flip-Flop

What is the value of Q if:

• S = 1 and R = 0? \Rightarrow Q is surely 1. • S = 0 and R = 1? \Rightarrow Q is surely 0. • S = 0 and R = 0? \Rightarrow Q is possibly 0

What is the value of Q if:

- S = 1 and R = 0? \Rightarrow Q is surely 1. ■ S = 0 and R = 1? \Rightarrow Q is surely 0.
- S = 0 and R = 0? \Rightarrow Q is possibly $0 \dots$ or possibly 1!

35

SR Flip-Flop

What is the value of Q if:

- S = 1 and R = 0? \Rightarrow Q is surely 1. ■ S = 0 and R = 1? \Rightarrow Q is surely 0.
- S = 0 and R = 0? \Rightarrow Q is possibly $0 \dots$ or possibly 1.

While S = R = 0, Q remembers what it was the last time S or R was 1.

SR Flip-Flop

SR Flip-Flop.

■ S = 1, R = 0 (set) ⇒ "Flips" bit on.
■ S = 0, R = 1 (reset) ⇒ "Flops" bit off.
■ S = R = 0 ⇒ Status quo.
■ S = R = 1 ⇒ Not allowed.

Clock

Clock.

- Fundamental abstraction.
 - regular on-off pulse
- External analog device.
- Synchronizes operations of different circuit elements.
- 1 GHz clock means 1 billion pulses per second.

39

How much does it Hert?

Frequency is inverse of cycle time.

- Expressed in hertz.
- Frequency of 1 Hz means that there is 1 cycle per second.
- Hence:
 - 1 kilohertz (kHz) means 1000 cycles/sec.
 - 1 megahertz (MHz) means 1 million cycles/sec.
 - 1 gigahertz (GHz) means 1 billion cycles/sec.
 - 1 terahertz (THz) means 1 trillion cycles/sec.

By the way, no such thing as 1 "hert"!

Heinrich Rudolf Hertz (1857-1894)

Clocked SR Flip-Flop

Clocked SR Flip-Flop.

• Same as SR flip-flop except S and R only active when clock is 1.

Clocked D Flip-Flop

Clocked D Flip-Flop.

- Output follows D input while clock is 1.
- Output is remembered while clock is 0.

Summary

Combinational circuits implement Boolean functions

Gates and wires Fundamental building blocks. Truth tables. Describe Boolean functions.

Sum-of-products. Systematic method to implement functions.

Sequential circuits add "state" to digital hardware.

• Flip-flop. Represents 1 bit. ■ TOY register. 16 D flip-flops. ■ TOY main memory. 256 registers.

Next time: we build a complete TOY computer (oh yes).

Claude Shannon (1916 - 2001)