6.1 Combinational Circuits

George Boole (1815-1864)

Claude Shannon (1916-2001)

Digital signals

- Binary (or "logical") values: 1 or 0 , on or off, high or low voltage

Wires.

- Propagate logical values from place to place.
- Signals "flow" from left to right.
- A drawing convention, sometimes violated
- Actually: flow from producer to consumer(s) of signal

Input
Output

Multiway AND Gates

$\operatorname{AND}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$.

- 1 if all inputs are 1 .
- 0 otherwise.

$O R\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)$.
- 1 if at least one input is 1 .
- 0 otherwise.

History.

- Developed by Boole to solve mathematical logic problems (1847)
- Shannon master's thesis applied it to digital circuits (1937).
"possibly the most important, and also the most famous,
master's thesis of the [20th] century" --Howard Gardner master's thesis of the [20th] century" --Howard Gardner
Basics.
Boolean variable: value is 0 or 1 .
- Boolean function: function whose inputs and outputs are 0,1.

Relationship to circuits.

- Boolean variables: signals.
- Boolean functions: circuits.

Truth Table for Functions of 2 Variables

Truth table.

- 16 Boolean functions of 2 variables.

Truth Table for All Boolean Functions of 2 Variables									
\times	y	NOR	EQ	y^{\prime}		χ^{\prime}		NAND	ONE
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

- every 4-bit value represents one

Truth Table for All Boolean Functions of 2 Variables									
\times	y	ZERO	AND		\times		y	XOR	OR
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Systematic method to describe Boolean function.

- One row for each possible input combination.
- N inputs $\Rightarrow 2^{N}$ rows

AND Truth Table		
x	y	AND (x, y)
0	0	0
0	1	0
1	0	0
1	1	1

Truth table

- 16 Boolean functions of 2 variables.
- every 4-bit value represents one
- 256 Boolean functions of 3 variables.
- every 8-bit value represents one
- $2^{\wedge}\left(2^{\wedge} N\right)$ Boolean functions of N variables!

Some Functions of 3 Variables							
x	y	z	AND	OR	MAJ	ODD	
0	0	0	0	0	0	0	
0	0	1	0	1	0	1	
0	1	0	0	1	0	1	
0	1	1	0	1	1	0	
1	0	0	0	1	0	1	
1	0	1	0	1	1	0	
1	1	0	0	1	1	0	
1	1	1	1	1	1	1	
\uparrow							

Sum-of-Products

Any Boolean function can be expressed using AND, OR, NOT.

- Sum-of-products is systematic procedure.
- form AND term for each 1 in truth table of Boolean function
- OR terms together

Expressing MAJ Using Sum-of-Products								
x	y	z	MAJ	$x^{\prime} y z$	$x y^{\prime} z$	$x y z z^{\prime}$	$x y z$	$x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z$
0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	1	1	1	0	0	0	1
1	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	1
1	1	0	1	0	0	1	0	1
1	1	1	1	0	0	0	1	1

Any Boolean function can be expressed using AND, OR, NOT.
. "Universal."

- $\operatorname{XOR}(x, y)=x y^{\prime}+x^{\prime} y$

Expressing XOR Using AND, OR, NOT							
x	y	x^{\prime}	y^{\prime}	$x^{\prime} y$	$x y^{\prime}$	$x^{\prime} y+x y^{\prime}$	XOR
0	0	1	1	0	0	0	0
0	1	1	0	1	0	1	1
1	0	0	1	0	1	1	1
1	1	0	0	0	0	0	0

Notation	Meaning
x^{\prime}	NOT x
$x y$	x AND y
$x+y$	x OR y

Exercise. Show \{AND, NOT\}, \{OR, NOT\}, \{NAND\}, \{AND, XOR\} are universal. Hint. Use DeMorgan's Law: $(x y)^{\prime}=\left(x^{\prime}+y^{\prime}\right)$ and $(x+y)^{\prime}=\left(x^{\prime} y^{\prime}\right)$

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.

- $\operatorname{XOR}(x, y)=x y^{\prime}+x^{\prime} y$.

Use sum-of-products form

- $\operatorname{MAJ}(x, y, z)=x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z$.

Many possible circuits for each Boolean function.

- Sum-of-products not necessarily optimal in:
- number of gates (space)
- depth of circuit (time)
- $\operatorname{MAJ}(x, y, z)=x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z=x y+y z+x z$.

size $=8$, depth $=3$

size $=4$, depth $=2$

Expressing a Boolean Function Using AND, OR, NOT

Ingredients.

- AND gates.
- OR gates.
- NOT gates.
- Wire.

Instructions.

- Step 1: represent input and output signals with Boolean variables.
- Step 2: construct truth table to carry out computation.
- Step 3: derive (simplified) Boolean expression using sum-of products.
- Step 4: transform Boolean expression into circuit.

Expressing ODD Using Sum-of-Products

Expressing ODD Using Sum-of-Products								
x	y	z	ODD	$x^{\prime} y^{\prime} z$	$x^{\prime} y z^{\prime}$	$x y^{\prime} z^{\prime}$	$x y z$	$x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z$
0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	1
0	1	0	1	0	1	0	0	1
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	1	0	1
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	1	0	0	0	1	1

$\operatorname{ODD}(x, y, z)$.

- 1 if odd number of inputs are 1 .
- 0 otherwise.

Goal: $x+y=z$ for 4-bit integers.

- We build 4-bit adder: 9 inputs, 4 outputs.
- Same idea scales to 128-bit adder.
- Key computer component.

Step 1.

- Represent input and output in binary.

Let's Make an Adder Circuit

Goal: $x+y=z$ for 4 -bit integers.
Step 2. (first attempt)

- Build truth table.
- Why is this a bad idea?
- 128-bit adder: 2^{256+1} rows > \# electrons in universe!

Summand Bit			
x_{i}	y_{i}	c_{i}	z_{i}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Goal: $x+y=z$ for 4 -bit integers.
Step 3.

- Derive (simplified) Boolean expression.

Goal: $x+y=z$ for 4 -bit integers.
Step 4.

- Transform Boolean expression into circuit.
- Chain together 1-bit adders.

$z 3$

Let's Make an Adder Circuit
Goal: $x+y=z$ for 4-bit integers.
Step 4.

- Transform Boolean expression into circuit.
- Chain together 1-bit adders.

4-Bit Subtractor Implementation

Subtractor circuit: $z=x-y$.

- One approach: new design, like adder circuit.
- Better idea: reuse adder circuit.
- 2's complement: to negate an integer, flip bits, then add 1

4-Bit Subtractor Interface

TOY Arithmetic Logic Unit: Interface

ALU Interface.

- Add, subtract, bitwise and, bitwise xor, shift left, shift right, copy.
- Associate 3-bit integer with 5 primary ALU operations.
- ALU performs operations in parallel
- control wires select which result ALU outputs

op	2	1	0
,+-	0	0	0
$\&$	0	0	1
\wedge	0	1	0
\ll, \gg	0	1	1
input 2	1	0	0

2 $n=8$ for main memory
2^{n}-to-1 multiplexer

- n select inputs, 2^{n} data inputs, 1 output.
- Copies "selected" data input bit to output.

8-to-1 Mux Implementation

TOY Arithmetic Logic Unit: Implementation

6.2: Sequential Circuits

Combinational circuits.

- Output determined solely by inputs.
- Can draw solely with left-to-right signal paths.

Sequential circuits.

- Output determined by inputs

AND previous outputs.

- Feedback loop.

SR Flip-Flop
What is the value of Q if:
. $S=1$ and $R=0$? $\quad \Rightarrow Q$ is surely 1

Flip-flop.

- A small and useful sequential circuit.
- Abstraction that "remembers" one bit.
- Basis of important computer components:
- memory
- counter

We will consider several flavors.

What is the value of Q if:

- $S=1$ and $R=0$? $\quad \Rightarrow Q$ is surely 1 .
- $S=0$ and $R=1$? $\quad \Rightarrow Q$ is surely 0

What is the value of Q if:

- $S=1$ and $R=0$? $\quad \Rightarrow Q$ is surely 1 .
- $S=0$ and $R=1 ? \quad \Rightarrow Q$ is surely 0 .
- $S=0$ and $R=0$? $\quad \Rightarrow Q$ is possibly 0

SR Flip-Flop

What is the value of Q if:

- $S=1$ and $R=0$? $\quad \Rightarrow Q$ is surely 1 .
- $S=0$ and $R=1$? $\quad \Rightarrow Q$ is surely 0
- $S=0$ and $R=0$? $\quad \Rightarrow Q$ is possibly $0 \ldots$ or possibly 1 .

While $S=R=0, Q$ remembers what it was the last time S or R was 1 .

What is the value of Q if:

- $S=1$ and $R=0$?
$\Rightarrow \quad Q$ is surely 1 .
- $S=0$ and $R=1$?
$\Rightarrow \quad Q$ is surely 0 .
. $S=0$ and $R=0$? $\quad \Rightarrow Q$ is possibly 0 . . or possibly 1 !

SR Flip-Flop

SR Flip-Flop.

- $S=1, R=0$ (set) $\quad \Rightarrow$ "Flips" bit on.
- $S=0, R=1$ (reset) \Rightarrow "Flops" bit off.
- $S=R=0$
\Rightarrow Status quo.
- $S=R=1$
\Rightarrow Not allowed

Implementation

Interface

Clock

- Fundamental abstraction.
- regular on-off pulse
- External analog device.
- Synchronizes operations of different circuit elements
- 1 GHz clock means 1 billion pulses per second.

Clock

Frequency is inverse of cycle time.

- Expressed in hertz.
- Frequency of 1 Hz means that there is 1 cycle per second.
- Hence:
- 1 kilohertz (kHz) means 1000 cycles/sec.
- 1 megahertz (MHz) means 1 million cycles $/ \mathrm{sec}$.
- 1 gigahertz (GHz) means 1 billion cycles/sec.
- 1 terahertz (THz) means 1 trillion cycles/sec.

By the way, no such thing as 1 "hert" !

Heinrich Rudolf Hertz (1857-1894)

Clocked SR Flip-Flop.

- Same as SR flip-flop except S and R only active when clock is 1.

Implementation

Clocked D Flip-Flop.

- Output follows D input while clock is 1.
- Output is remembered while clock is 0

Combinational circuits implement Boolean functions

- Gates and wires Fundamental building blocks
- Truth tables. Describe Boolean functions.
- Sum-of-products. Systematic method to implement functions

Sequential circuits add "state" to digital hardware.

- Flip-flop. Represents 1 bit.
- TOY register. 16 D flip-flops.
- TOY main memory. 256 registers.

Next time: we build a complete TOY computer (oh yes).

George Boole (1815-1864)

Claude Shannon (1916-2001)

