What is TOY?

5 The TOY MGChine An imaginary machine similar to:

* Ancient computers.

= Today's microprocessors.
= And practically everything in between !

OUTPUT =

DIGITAL SAUISPMENT CORTONATION = |
PDPEE

Introduction to Computer Science - Sedgewick and Wayne - Copyright © 2007 - http://www.cs.Princeton.EDU/IntroCS

Why Study TOY? Inside the Box
Machine language programming. Switches. Input data and programs. Registers.
* How do Java programs relate to computer? * Fastest form of sT.orage. .
* Key fo understanding Java references. Lights. View data. * Scratch space during computation.
S . . 16 16-bit registers.
* Still situations today where it is really necessary. Memory « Register 0 s always 0.

multimedia, computer games, embedded devices, scientific computing, MMX, Altivec
* Stores data and programs.

256 16-bit "words."
* Special word for stdin / stdout.

Arithmetic-logic unit (ALU). Manipulate
data stored in registers.
Computer architecture.

)) Standard input, standard output. Interact
* How does it work: Program counter (PC). with outside world.

* How is a computer put together? * An extra 8-bit register.

* Keeps track of next instruction to

be executed.

TOY machine. Optimized for simplicity, not cost or performance.

Data and Programs Are Encoded in Binary

Each bit consists of two states:
* 1orO; true or false.
* Switch is on or off; wire has high voltage or low voltage.

Everything stored in a computer is a sequence of bits.
* Data and programs.
* Text, documents, pictures, sounds, movies, executables, ...

0100 M = 77, = 01001101, =
0100 0 = 79, = 01001111, =
olooilol M = 77, = 01001101, =

Hexadecimal Encoding

How to represent integers?

* Use hexadecimal encoding. bec B Hex

* Binary code, four bits at a time. -

Bl o000 o

«Ex: 6375,, =0001100011100111, 0001 1
= 18E7,, - 0010 2

- 0011 3

0100 4

0101 5

0110 6

0111 7

4D, ¢
4F ¢
4D,

-

= =
als|w]~ o

-
=

-
IS

Pl ol L Lo Te L T T o)
0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

1 8 E 7

6375, = 1 x 163 + 8 x 162

= 4096 + 2048

1000
1001
1010
1011
1100
1101
1110
1111

© ©

H oM O Q W

Binary Encoding

How to represent integers?
* Use binary encoding.

Dec Bin Dec
« Ex: 6375,, = 0001100011100111, 0000
- 0010 10

Pl ol L Lo Te T T T o)
0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

6375,, = +212 4211 +27 426 425 +22 421 420
= 4096 +2048 +128 +64 +32 +4 42 +1
Machine "Core" Dump
Machine contents at a particular place and time.
* Record of what program has done.
* Completely determines what machine will do.
indices
l Main Memory
Registers pc o/8 1/9 2/a 1/B 3/c 4/D 5/E
m 0000 0000 0000 0000 0000
2000 oaee| oeael eome 0000 0000 0000 0000 0000
mum- 0000 0000
EY index of next
0000 0000 0000 0000 instruction BEew Ge0Y
0000 0000
data s 0000 0000
program =
m 0000 0000 0000 0000 0000 0000 0000
riables m 0000 0000 0000 0000 0000 0000 0000
m 0000 0000 0000 0000 0000 0000 0000

1000
1001
1010
1011
1100
1101
1110
1111

6/f

0000
0000
0000
0000
0000
0000

0000
0000
0000

Why do They Call it "Core"? A Sample Program

A sample program. Adds 0008 + 0005 = 000D.
Selected Core TOY memory
/8 (program and data) comments
00: 0008 8
01: 0005 5
5 DI o o
Current
0000 0000 0000 10 10: 8200 RA < mem[00]
Registers Program counter 11: 8801 RB < mem[01]
r’ 12: 1CAB RC < RA + RB
| 13: 9c02 mem[02] < RC
. 14: 0000 halt
/ > Pl] add. toy
i i
Y i % D) H TOY code to compute 0008,, + 0005,
T/I/Z Current
i e sunients
http://www.columbia.edu/acis/history/core.html
A Sample Program Load
Program counter. The pc is initially 10, so the machine Load. [opcode 8]
interprets 8a00 as an instruction. * Loads the contents of some memory location into a register.
* 8200 means load the contents of memory cell 00 into register a.
00: 0008 8 00: 0008 8
01: 0005 5 01: 0005 5
(== =] [02: 0000 0 (== =] - 02: 0000 0
0000 0000 0000 - 0000 0000 0000
Registers Progfam counter 11: 8B01 RB < mem[01] Registers Program counter 11: 8B01 RB < mem[01]
12: 1CAB RC < RA + RB 12: 1CAB RC < RA + RB
13: 9C02 mem[02] < RC 13: 9c02 mem[02] < RC
14: 0000 halt 14: 0000 halt
index of next
instruction to execute add. toy add. toy
s e a3 [z a0 s] s 7 [6l 5] 451 2] il o
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
816 A16 0016

Load

Load. [opcode 8]
* Loads the contents of some memory location into a register.
* 8801 means load the contents of memory cell 01 into register 5.

00: 0008 8
01: 0005 5

[(=]=T=] - 02: 0000 0

0008 0000 0000
10: 8A00 RA < mem[00]

Registers Program counter

12: 1CAB RC < RA + RB
13: 9C02 mem[02] < RC

14: 0000 halt

add. toy
s o 332 [aa o] 9] e [7] 6] 5] 4] 5] 2] 1] 0]
1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1

816 Bis 016

Store

Store. [opcode 9]
* Stores the contents of some register into a memory cell.
* 9C02 means store the contents of register c into memory cell 02.

00: 0008 8
01: 0005 5

[(=]=T=] - 02: 0000 0

0008 0005 000D
10: 8A00 RA < mem[00]

Registers Program counter 11: 8BO1 RB < mem[01]

14: 0000 halt

add. toy
50t 3]z 0] 9 Lo] 7 o] 51 a5 23] 0]
1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0
916 C16 0216

Add

Add. [opcode 1]
* Add contents of two registers and store sum in a third.
* 1cAB means add the contents of registers 2 and 3 and put the result into

register c.

00: 0008 8
01: 0005 5

[(=]=T=] - 02: 0000 0

0008 0005 0000
10: 8A00 RA < mem[00]

Registers Program counter 11: 8B01 RB < mem[O01l

13: 9C02 mem[02] < RC
14: 0000 halt

add. toy

210 s | 8 [7]l s]3] 2]] 0]
1 1 1 0 0 1 0 1 0 1 0 1 1

EEE
0 0 0
116 c16 A16 B16

Halt

Halt. [opcode 0]
* Stop the machine.

00: 0008 8
01: 0005 5

[(=]=T=] - 02: 000>

0008 0005 000D
10: 8A00 RA < mem[00]

Registers Program counter 11: 8BO1 RB < mem[01]
12: 1CAB RC <~ RA + RB

add. toy

TOY code to compute 0008,, + 0005,

Same Program, Different Data Load

Load. [opcode 8]
* Loads the contents of some memory location into a register.
* 8200 means load the contents of memory cell 00 into register a.

Program. Sequence of instructions.
Instruction. 10, 11,12, 13, and 14 (executed when pc points to it).

Data. 00, 01, and 02 (used and changed by instructions).
data

00: 1CAB 7339 00: 1CAB 7339
0l: 1CAB 7339 0l: 1CAB 7339
BEEEIEE B 02: 0000 0 ESEIES - 02: 0000 0
0000 0000 O0O0OO - 0000 0000 O0O0OO
Registers Program counter 11: 8B01 RB < mem[01] Registers Program counter 11: 8B01 RB < mem[01]
12: 1CAB RC < RA + RB 12: 1CAB RC < RA + RB
mem[02] < RC 13: 9C02 mem[02] < RC
halt 14: 0000 halt
add. toy add. toy
instruction
1caB,, =1 x 163 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0]
o e . 5| 18] 23| 12] 13] 0] 5 8| 7] 6] 51 4] 3] 2] 3]0
1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
4+ 10 x 16t
8 A 00
e opode et aas
= 4096 + 3072 + 160 + 11 = 733910

Load Add

Add. [opcode 1]
* Add contents of two registers and store sum in a third.
* 1cAB means add the contents of registers 2 and 3 and put the result into

Load. [opcode 8]
* Loads the contents of some memory location into a register.
* 8801 means load the contents of memory cell 01 into register 5.
register c.

00: 1CAB 7339 00: 1CAB 7339
01: 1CAB 7339 01l: 1CAB 7339

[(=]=T=] - 02: 0000 0 ﬂﬂ- - 02: 0000 0

1CAB 0000 0000 1caB 0000
10: 8A00 RA < mem[00] 10: 8A00 RA < mem[00]

Registers Program counter Registers Program counter 11: 8BO1 RB < mem[01
12: 1CAB RC < RA + RB
13: 9C02 mem[02] < RC 13: 9C02 mem[02] < RC

14: 0000 halt 14: 0000 halt

add. toy add. toy

st 3]z a0] 9 Lo 7 o] 51 a5 23] 0] 53t 32 0] 9 (o] 7 o] 5] a3]2 1] o]
1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1

816 B16 0116

116 C16 A16 B16

Store

Store. [opcode 9]
* Stores the contents of some register into a memory cell.
* 9C02 means store the contents of register c intfo memory cell 02.

00: 1CAB 7339

01: 1CAB 7339
(== =] 02: 0000 0
1caB

1cAaB 3956 13
10: 8A00 RA < mem[00]

Registers Program counter 11: 8BO1 RB < mem[01]

14: 0000 halt

add. toy
s as [z 0] 9 Lo] 7 o] 51 a5 23] 0]
1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0
916 C16 0216

Program and Data

Instructions

Program. Sequence of 16-bit integers, — halt
interpreted one way. - add
subtract
Data. Sequence of 16-bit integers, and
interpreted another way. xor
shift left
Program counter (pc). Holds memory address shift right

of the "next instruction" and determines load address

which integers get interpreted as instructions. - load
- store
load indirect

16 instruction types. Changes contents of

registers, memory, and pc in specified, store indirect

well-defined ways. branch zero
branch positive

Jjump register

jump and link

Halt

Halt. [opcode 0]
* Stop the machine.

00: 1CAB 7339
01: 1CAB 7339

1CAB

1cAaB 3956 14
10: 8A00 RA < mem[00]

Registers Program counter 11: 8BO1 RB < mem[01]
12: 1CAB RC < RA + RB

add. toy

TOY Instruction Set Architecture

TQY instruction set architecture (ISA).

* Interface that specifies behavior of machine.

* 16 register, 256 words of main memory, 16-bit words.
* 16 instructions.

Each instruction consists of 16 bits.
* Bits 12-15 encode one of 16 instruction types or opcodes.
* Bits 8-11 encode destination register d.
* Bits 0-7 encode:
[Format 1] source registers s and t
[Format 2] 8-bit memory address or constant

(2] ae o]zl (a0 5 [o] 7] ol s]3] 2]] o]
1 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0

Format2 [peote [desed |

Interfacing with the TOY Machine

To enter a program or data:
* Set 8 memory address switches.
* Set 16 data switches.

* Press Load: data written into addressed word of memory.

To view the results of a program:
* Set 8 memory address switches.
* Press Look: contents of addressed word appears in lights.

Load Look Step Run
ADDR ouTPUT
® o000 e

Flow Control

Flow control.

* To harness the power of TOY, need loops and conditionals.
* Manipulate pc to control program flow.

Branch if zero. [opcode C]

* Changes pc depending on whether value of some register is zero.
* Used fo implement: for, while, if-else.

Branch if positive. [opcode D]

* Changes pc depending on whether value of some register is positive.

* Used fo implement: for, while, if-else.

Interfacing with the TOY Machine

To execute the program:

* Set 8 memory address switches to address of first instruction.
* Press Look to set pc to first instruction.

= Press Run to repeat fetch-execute cycle until halt opcode.

Fetch-execute cycle.
= Fetch: get instruction from memory.
= Execute: update pc, move data to or from

memory and registers, perform calculations. w

Load | Look | ‘Step Rén Enter Stop Reset

INWAIT # READY
PC STDOUT

An Example: Multiplication
Multiply. Given integers a and b, compute c = a x b.

TOY multiplication. No direct support in TOY hardware.

Brute-force multiplication algorithm:

int a = 3;
* Initialize c to 0. ln: b = g,
int ¢ = 0;
* Add b to ¢, a times. nile (a 1= 0) {
while (a !'=
c =c¢c + b;
a=a-1;
}

brute force multiply in Java

Issues ignored. Slow, overflow, negative numbers.

Multiply

Step-By-Step Trace

multiply.toy

An Efficient Multiplication Algorithm

Inefficient multiply.
* Brute force multiplication algorithm loops a times.
* In worst case, 65,535 additions!

"Grade-school" multiplication.
= Always 16 additions to multiply 16-bit integers.

Decimal Binary

multiply.toy

Binary Multiplication

6rade school binary multiplication algorithm to
compute c=ax b.
* Initialize c = 0.
* Loop over i bits of b.
-if b; = 0, do nothing @ b =inbitofb
-if b; = 1, shift a left i bits and
add to ¢

Implement with built-in TOY shift instructions.

@ b =i"bitofb

a<<0

a<<2

a<<3

Shift left. (opcode 5)

= Move bits to the left, padding with zeros as needed.
« 1234, << 7., = 1A00,,

discard

Shift Left

olof1]1]of1]o]o0
316 416
<< 7 pad with 0’s
N
p
olofJof1]1]of1]o]lof[o]of[o]o][o]o0]o0O
16 A 016 016
Bitwise AND

Logical AND. (opcode B)

<

0 0 0

* Logic operations are BITWISE. 0 1 0

. 0024, & 0001, = 0000,, 1 0 o0

101 1
olofofJoJo|o]oJo]o[o[1]0o]0o]1]0
016 016 216 416
o|o|o|o o|o|o|o o|o|o|o o|o|o
056 016 0.6 1is
o[oJof[oJo[o]o[o][o[o]o[o][of[o0]o0
016 016 016 016

Shift Right

Shift right. (opcode 6)

= Move bits to the right, padding with sign bit as needed.
« 1234, >> 7., = 0024,

discard
sign bit
oloJofl1]ofJo[1]o0
116 216
pad with 0’s >> 7
N
/ ™~
oloJoflofoJo|lo[o]Jo]o[1]of[o]1]0]o0
016 016 216 416
Shifting and Masking
Shift and mask: get the 7 bit of 1234,
= Compute 1234, >> 7,, = 0024,,.
= Compute 0024, & 1;5 = O
oloflol1]ofof1]ofoJo]z]1]o]1]0]0
116 216 315 416
>> 7
oloflofJofJofofofJo[oJo|]z1]o]o]1]0]0
016 016 216 416
&
olololofo[o[o]o[o[o][o]o]o][o]o]1
016 016 016 116
o|o|o|o o|o|o|o o|o|o|o o|o|o|o
016 016 016 015

OA: 0003

Binary Multiplication

3 .
OB: 0009 9 = nputs
0c: 0000 0 e output
OD: 0000 0
OE: 0001 1 4 constants
OF: 0010 16
10: 8A0A RA < mem[OA] a
11: 8BOB RB < mem[OB] b
12: 8COD RC < mem[O0D] c=0
13: 810E Rl < mem[OE] always 1
14: 820F R2 < mem[OF] i=16 @ 16 bit words
loop do {
15: 2221 R2 < R2 - R1 i--
16: 53A2 R3 < RA << R2 a<<i
17: 64B2 R4 < RB >> R2 b > i
branch 18: 3441 R4 <~ R4 & R1 b, = ith bit of b
C41B if (R4 == 0) goto 1B if b; is 1
1A: 1cc3 RC < RC + R3 add a << i to sum
D215 if (R2 > 0) goto 15 } while (i > 0);

1C: 9cocC mem[0C] < RC

multiply-fast.toy

Useful TOY "Idioms"

Jump absolute.
= Jump to a fixed memory address.
-branch if zero with destination

-register O is always O 17: co14 pe — 14

Register assignment.
= No instruction that transfers contents of one register into another.
* Pseudo-instruction that simulates assignment:
-add with register O as one of two source registers
17: 1230 R[2] < R[3]

No-op.
= Instruction that does nothing.
* Plays the role of whitespace in C programs.
- numerous other possibilities! 17: 10007 no-op

TOY Reference Card

I3 Y N T R R N

Format 1 opcode dest d source s

source t

opcode dest d addr

0: halt 1 exit(0)

1: add 1 R[d] < R[s] + R[t]

2: subtract 1 R[d] < R[s] - R[t]

3: and 1 R[d] < R[s] & R[t]

4: xor 1 R[d] < R[s] ~ R[t]

5: shift left 1 R[d] < R[s] << R[t]

6: shift right 1 R[d] < R[s] > R[t]

7: load addr 2 R[d] < addr

8: load 2 R[d] < mem[addr]

9: store 2 mem[addr] < R[d]

A: |oad indirect 1 R[d] < mem[R[t]]

B: store indirect 1 mem[R[t]] < R[d]

C: branch zero 2 if (R[d] == 0) pc < addr
D: branch positive 2 if (R[d] > 0) pc < addr
E: jump register 2 pc < R[d]

F: jump and link 2 R[d] < pc; pc < addr

A Little History

Electronic Numerical Integrator and Calculator (ENIAC).
* First widely known general purpose electronic computer.
* Conditional jumps, programmable.

* Programming: change switches and cable connections.
* Data: enter numbers using punch cards.

Register 0 always O.
Loads from mem [FF] from stdin.
Stores to mem [FF] to stdout.

30 tons
30x50x85ft

17 468 vacuum tubes
300 multiply/sec

John Mauchly (left) and J. Presper Eckert (right)
http://cs.swau.edu/~durkin/articles/history_computing.html

ENIAC, Ester Gerston (left), Gloria Gordon (right)
US Army photo: http://ftp.arlmil/ftp/historic-computers

ENIAC Basic Characteristics of TOY Machine
TOY is a general-purpose computer.
* Sufficient power to perform ANY computation.

* Limited only by amount of memory and time.

Stored-program computer. [von Neumann memo, 1944]

* Data and program encoded in binary.

John von Neumann

* Data and program stored in SAME memory.
* Can change program without rewiring.

Outgrowth of Alan Turing's work. (stay tuned)

All modern computers are general-purpose computers

and have same (von Neumann) architecture.

Maurice Wilkes (left)
EDSAC (right)

Harvard vs. Princeton

Harvard architecture.
* Separate program and data memories.
* Can't load game from disk (data) and execute (program).

* Used in some microcontrollers.

Von Neumann architecture.
* Program and data stored in same memory.
* Used in almost all computers.

Q. What's the difference between Harvard and Princeton?
A. At Princeton, data and programs are the same.

