
4.5 Small World Phenomenon

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 04/05/12 10:08:45 PM

Small World Phenomenon

Small world phenomenon. Six handshakes away from anyone.

An experiment to quantify effect. [Stanley Milgram, 1960s]
 You are given personal info of another person.
 Goal: deliver message.
 Restriction: can only forward to someone you know by first name.
 Outcome: message delivered with average of 5 intermediaries.

e.g., occupation and age

Stanley Milgram Kevin Bacon

Applications of Small World Phenomenon

Sociology applications.
 Looking for a job.
 Marketing products or ideas.
 Formation and spread of fame and fads.
 Train of thought followed in a conversation.
 Defining representative-ness of political bodies.
 Kevin Bacon game (movies, rock groups, facebook, etc.).

Other applications.
 Electronic circuits.
 Synchronization of neurons.
 Analysis of World Wide Web.
 Design of electrical power grids.
 Modeling of protein interaction networks.
 Phase transitions in coupled Kuramoto oscillators.
 Spread of infectious diseases and computer viruses.
 Evolution of cooperation in multi-player iterated Prisoner's Dilemma.

Reference. Duncan J. Watts, Small Worlds: The Dynamics of Networks
between Order and Randomness, Princeton University Press, 1999.

Graph Data Type

Application demands a new data type.
 Graph = data type that represents pairwise connections.
 Vertex = element.
 Edge = connection between two vertices.

A B

F

I

E H

DC

G

vertex

edge

Graph Applications

communication

graph

telephones, computers

vertices edges

fiber optic cables

circuits gates, registers, processors wires

mechanical joints rods, beams, springs

hydraulic reservoirs, pumping stations pipelines

financial stocks, currency transactions

transportation street intersections, airports highways, airway routes

scheduling tasks precedence constraints

software systems functions function calls

internet web pages hyperlinks

games board positions legal moves

social relationship people, actors friendships, movie casts

neural networks neurons synapses

protein networks proteins protein-protein interactions

chemical compounds molecules bonds

One Week of Enron Emails

FCC Lobbying Graph

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

Protein Interaction Network

Reference: Jeong et al, Nature Review | Genetics

ARPANET

The Internet

The Internet as mapped by The Opte Project
http://www.opte.org

Internet Movie Database

Input format. Movie followed by list of performers, separated by slashes.

http://www.imdb.com/interfaces

% more movies.txt
...
Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/... /Geppi, Cindy/Hershey, Barbara
Tirez sur le pianiste (1960)/Heymann, Claude/.../Berger, Nicole (I)
Titanic (1997)Paxton, Bill/DiCaprio, Leonardo/.../Winslet, Kate
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/.../McEwan, Geraldine
To All a Good Night (1980)/George, Michael (II)/.../Gentile, Linda
To Be or Not to Be (1942)/Verebes, Ernö (I)/.../Lombard, Carole (I)
To Be or Not to Be (1983)/Brooks, Mel (I)/.../Bancroft, Anne
To Catch a Thief (1955)/París, Manuel/Grant, Cary/.../Kelly, Grace
To Die For (1989)/Bond, Steve (I)/Jones, Duane (I)/.../Maddalena, Julie
To Die For (1995)/Smith, Kurtwood/Kidman, Nicole/.../Tucci, Maria
To Die Standing (1990)/Sacha, Orlando/Anthony, Gerald/.../Rose, Jamie
To End All Wars (2001)/Kimura, Sakae/Ellis, Greg (II)/.../Sutherland, Kiefer
To Kill a Clown (1972)/Alda, Alan/Clavering, Eric/Lamberts, Heath/Danner, Blythe
To Live and Die in L.A. (1985)/McGroarty, Pat/Williams, Donnie/.../Dafoe, Willem
...

Internet Movie Database

Q. How to represent the movie-performer relationships?
A. Use a graph.
 Vertex: performer or movie.
 Edge: connect performer to movie.

Graph data type.

A B

F

I

E H

DC

G

% more tiny.txt

A/B/I
B/A/F
C/D/G/H
D/C
E/F/I
F/B/E/G/I
G/C/F/H
H/C/G
I/A/E/F

Graph API

to support use with foreach

Graph Representation

Graph representation: use a symbol table.
 Key = name of vertex.
 Value = set of neighbors.

A B

F

I

E H

DC

G

A

B

C

D

E

F

G

H

I

B I

A F

D G H

C

I F

E B G I

C F H

C G

A E F

key value

symbol table

String SET<String>

Set Data Type

Set data type. Unordered collection of distinct keys.

Q. How to implement?
A. Identical to symbol table, but ignore values.

Graph Implementation

public class Graph {
 private ST<String, SET<String>> st;

 public Graph() {
 st = new ST<String, SET<String>>();
 }

 public void addEdge(String v, String w) {
 if (!st.contains(v)) addVertex(v);
 if (!st.contains(w)) addVertex(w);
 st.get(v).add(w);
 st.get(w).add(v);
 }

 private void addVertex(String v) {
 st.put(v, new SET<String>());
 }

 public Iterable<String> adjacentTo(String v) {
 return st.get(v);
 }
}

add new vertex v
with no neighbors

add w to v's set of neighbors
add v to w's set of neighbors

public Graph(In in) {
 st = new ST<String, SET<String>>();
 while (!in.isEmpty()) {
 String line = in.readLine();
 String[] names = line.split("/");
 for (int i = 1; i < names.length; i++)
 addEdge(names[0], names[i]);
 }
}

Graph Implementation (continued)

Second constructor. To read graph from input stream.

In in = new In("tiny.txt");
Graph G = new Graph(G, in);

% more tiny.txt

A/B/I
B/A/F
C/D/G/H
D/C
E/F/I
F/B/E/G/I
G/C/F/H
H/C/G
I/A/E/F

A B

F

I

E H

DC

G

Performer and movie queries.
 Given a performer, find all movies in which they appeared.
 Given a movie, find all performers.

Graph Client: Movie Finder

public class MovieFinder {
 public static void main(String[] args) {

 In in = new In(args[0]);
 Graph G = new Graph(in);

 while (!StdIn.isEmpty()) {
 String v = StdIn.readLine();
 for (String w : G.adjacentTo(v))
 StdOut.println(w);
 }

 }
}

process queries

read in graph from a file

Graph Client: Movie Finder

% java MovieFinder action.txt
Bacon, Kevin
Death Sentence (2007)
River Wild, The (1994)
Tremors (1990)

Roberts, Julia
Blood Red (1989)
I Love Trouble (1994)
Mexican, The (2001)
Ocean's Eleven (2001)

Tilghman, Shirley

% java MovieFinder mpaa.txt

Bacon, Kevin
Air I Breathe, The (2007)
Air Up There, The (1994)
Animal House (1978)
Apollo 13 (1995)
Balto (1995)
Beauty Shop (2005)
Big Picture, The (1989)
…
Sleepers (1996)
Starting Over (1979)
Stir of Echoes (1999)
Telling Lies in America (1997)
Trapped (2002)
Tremors (1990)
We Married Margo (2000)
Where the Truth Lies (2005)
White Water Summer (1987)
Wild Things (1998)
Woodsman, The (2004)

Kevin Bacon Numbers

Oracle of Kevin Bacon

Dianne WestBullets Over BroadwayJohn Cusack

Kevin BaconFootlooseDianne West

The Road to Wellville

Ferris Beuller's Day Off

Dirty Dancing

Ghost

Was in

John Cusack

Matthew Broderick

Jennifer Gray

Patrick Swayze

 With

Kevin Bacon

Jennifer Gray

Matthew Broderick

Patrick Swayze

Whoopi Goldberg

Actor

Kevin Bacon Game

Game. Given an actor or actress, find chain of
movies connecting them to Kevin Bacon.

Computing Bacon Numbers

How to compute. Find shortest path in performer-movie graph.

PathFinder API

PathFinder API.

Design principles.
 Decouple graph algorithm from graph data type.
 Avoid feature creep: don’t encrust Graph with search features;

instead make a new datatype.

Computing Bacon Numbers: Java Implementation

public class Bacon {
 public static void main(String[] args) {

 In in = new In(args[0]);

 Graph G = new Graph(in);

 String s = "Bacon, Kevin";
 PathFinder finder = new PathFinder(G, s);

 while (!StdIn.isEmpty()) {
 String performer = StdIn.readLine();
 for (String v : finder.pathTo(s)
 StdOut.println(v);
 }
 }
}

process queries

create object to
return shortest paths

read in the graph from a file

% java Bacon top-grossing.txt
Stallone, Sylvester
Rocky III (1982)
Tamburro, Charles A.
Terminator 2: Judgment Day (1991)
Berkeley, Xander
Apollo 13 (1995)
Bacon, Kevin

% java Bacon top-grossing.txt
Goldberg, Whoopi
Sister Act (1992)
Grodénchik, Max
Apollo 13 (1995)
Bacon, Kevin

Tilghman, Shirley

A B

F

I

E H

DC

G

Computing Shortest Paths

To compute shortest paths:
 Source vertex is at distance 0.
 Its neighbors are at distance 1.
 Their remaining neighbors are at distance 2.
 Their remaining neighbors are at distance 3.
 …

0 1

1

2 2 3 4

4 5

Computing Shortest Paths

distance = 0distance = 1distance = 2distance = 3

Breadth First Search

Goal. Given a vertex s, find shortest path to every other vertex v.

Key observation. Vertices are visited in increasing order of
distance from s because we use a FIFO queue.

Put s onto a FIFO queue.
Repeat until the queue is empty:

 dequeue the least recently added vertex v
 add each of v's unvisited neighbors to the queue,
 and mark them as visited.

BFS from source vertex s

Breadth First Searcher: Preprocessing

public class PathFinder {
 private ST<String, String> prev = new ST<String, String>();
 private ST<String, Integer> dist = new ST<String, Integer>();

 public PathFinder(Graph G, String s) {
 Queue<String> q = new Queue<String>();
 q.enqueue(s);
 dist.put(s, 0);
 while (!q.isEmpty()) {
 String v = q.dequeue();
 for (String w : G.adjacentTo(v)) {
 if (!dist.contains(w)) {
 q.enqueue(w);
 dist.put(w, 1 + dist.get(v));
 prev.put(w, v);
 }
 }
 }
 }

To find shortest path: follow prev[] from vertex v back to source s.
 Consider vertices: v, prev[v], prev[prev[v]], …, s.
 Ex: shortest path from C to A: C – G - F - B - A

Breadth First Searcher: Finding the Path

symbol tables

public Iterable<String> pathTo(String v) {
 Stack<String> path = new Stack<String>();
 while (dist.contains(v)) {
 path.push(v);
 v = prev.get(v);
 }
 return path;
}

A B

F

I

E H

DC

G

G

FB

null A

-

prev

A

G

C

I

B

F

G

A

0

dist

1

4

5

2

2

3

4

1

A

key

B

C

D

E

F

G

H

I

source

Running Time Analysis

Analysis. BFS scales to solve huge problems.

933,864

280,624

139,861

70,325

21,177

performers

39 sec

5.5 sec

2.0 sec

0.72 sec

0.32 sec

BFS

15 sec

2.1 sec

0.72 sec

0.31 sec

0.26 sec

read input

56 sec

7.5 sec

2.8 sec

0.99 sec

0.52 sec

build graph

285,462

21,861

14,938

2,538

1,288

movies

3.3M

610K

270K

100K

28K

edges

0 secall.txt

0 secaction.txt

0 secmpaa.txt

PG13.txt

G.txt

data File

0 sec

0 sec

show

60MB
data as of April 9, 2007

Data Analysis

Exercise. Compute histogram of Kevin Bacon numbers.
Input. 285,462 movies, 933,864 actors.

 7,9055

 9036

 1007

 148

111,1494

218,0882

561,1613

∞

1

0

Bacon #

 32,294

 2,249

 1

 Frequency

Buzz Mauro, Jessica Drizd, Pablo Capussi
Argentine short film Sweet Dreams (2005)

Fred Ott, solo actor in
Fred Ott Holding a Bird (1894)

data as of April 9, 2007

Applications of Breadth First Search

More BFS applications.
 Particle tracking.
 Image processing.
 Crawling the Web.
 Routing Internet packets.
 ...

Extensions. Google maps.

Erdös Numbers

Erdös Numbers

714

413

9411

2312

26210

115

4 billion +∞

66,1575

32,2806

10,4317

3,2148

62,1364

5,7132

26,4223

9

1

0

Erdös #

953

502

1

 FrequencyPaul Erdös. Legendary, brilliant, prolific
mathematician who wrote over 1500 papers!

What’s your Erdös number?
 Co-authors of a paper with Erdös: 1.
 Co-authors of those co-authors: 2.
 And so on …

Paul Erdös (1913-1996)

Erdös Graph

Conclusions

Linked list. Ordering of elements.
Binary tree. Hierarchical structure of elements.
Graph. Pairwise connections between elements.

Data structures.
 Queue: linked list.
 Set: binary tree.
 Symbol table: binary tree.
 Graph: symbol table of sets.
 Breadth first searcher: graph + queue + symbol table.

Importance of data structures.
 Enables us to build and debug large programs.
 Enables us to solve large problems efficiently.

