COS126 Exam 1 Mini-Test

1. Short Answer

- 1. Here is a 16-bit two's complement binary integer: 111111111111101100. Convert it to decimal. Circle your answer.
- 2. Write the value of (double) (22 / 7).
- 3. Write the value of b after the following two statements are executed. Remember that Java ints use 32-bit 2's-complement representation:

```
int a = 2147483647; // 2^31 - 1
int b = a + 1;
```

- 4. Write this number using Java's scientific notation, (without using Math.pow()): $6.022 \cdot 10^{23}$
- 5. Write a TOY statement to clear Register 5 to zero.
- 6. You have a program called Recipe.java which reads from standard input and writes to standard output. You have compiled it. The command-line to run it so it reads keyboard input and writes to the terminal screen is: java Recipe. Write the command-line to run it so it reads input redirected from a file named cookbook.txt.

Write the command-line to run it so it reads input from cookbook.txt and writes to an output file named meal.txt

Write the command-line to run it so it reads keyboard input and pipes the output to another compiled program named HungryThing.java.

2. Arrays, Functions

The following two methods do the same job. They each take an ORDERED array of ints and a target number as arguments.

```
public static boolean mystery1(int[] array, int target) {
   for (int i = 0; i < array.length; i++) {</pre>
      if (array[i] == target) return true;
      else if (array[i] > target) return false;
   }
   return false;
}
public static boolean mystery2(int[] array, int target) {
   int low = 0;
   int high = array.length - 1;
   while (low <= high) {
      int mid = (low + high) / 2;
      if (array[mid] == target) return true;
      else if (array[mid] < target) low = mid + 1;</pre>
      else high = mid - 1;
   }
   return false;
}
```

Use this array to answer the following questions:

int[] a = { 2, 5, 11, 14, 15, 27, 31};

a) What does mystery1(a, 5) return?

target	low	hi	mid	return value

b) Fill in the trace table to show that mystery2(a, 5) returns the same thing.

2. Cont'd

- c) What do mystery1(a, 20) and mystery2(a, 20) return?
- d) In general, what do these methods do?
- 3. **Performance.** The following table gives approximate running times for a program with N inputs for various values of N.

Ν		time
1000	5	seconds
2000	20	seconds
5000	2	minutes
10000	8	minutes

Which of the following best describes the likely running time of this program for N = 100,000?

- V. A few minutes
- W. A few hours
- X. Half a day
- Z. A few days

4. Recursion, Debugging

There's a bug in the following recursive program. You need to find it and fix it.

```
public class Series{
    public static int func(int j){
        if (j==1) return 1;
        return 2*func(j-1)+5*func(j-2);
    }

    public static void main(String[] args) {
        int N=Integer.parseInt(args[0]);
        if (N<0) {
            System.out.println(''invalid argument'');
            return;
        }
        System.out.println(func(N));
    }
}</pre>
```

a. Draw the recursion tree for func(3). You only need to draw the tree up to 3 levels, which means the height of the recursion tree should be no greater than 3.

b. From the recursion tree in (a), do you see a problem with the program? Explain what is the problem.