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Abstract
Recent shape editing techniques, especially for man-made models, have gradually shifted focus from maintaining
local, low-level geometric features to preserving structural, high-level characteristics like symmetry and paral-
lelism. Such new editing goals typically require a pre-processing shape analysis step to enable subsequent shape
editing. Observing that most editing of shapes involves manipulating their constituent components, we introduce
component-wise controllers that are adapted to the component characteristics inferred from shape analysis. The
controllers capture the natural degrees of freedom of individual components and thus provide an intuitive user
interface for editing. A typical model usually results in a moderate number of controllers, allowing easy estab-
lishment of semantic relations among them by automatic shape analysis supplemented with user interaction. We
propose a component-wise propagation algorithm to automatically preserve the established inter-relations while
maintaining the defining characteristics of individual controllers and respecting the user-specified modeling con-
straints. We extend these ideas to a hierarchical setup, allowing the user to adjust the tool complexity with respect
to the desired modeling complexity. We demonstrate the effectiveness of our technique on a wide range of man-
made models with structural features, often containing multiple connected pieces.

1. Introduction
Shape editing is useful for reusing existing models and gen-
erating new shape variations. Recent editing techniques,
especially for man-made models, aim to preserve struc-
tural, high-level characteristics instead of local, low-level
geometric features. However, most accessible objects are
represented as bare polygonal surfaces, without any se-
mantics or structural information associated. Therefore,
shape analysis is typically required prior to meaningful
editing of polygonal models, demanding an analyze-and-
edit approach [KSCOS08, GSMCO09, XWY∗09, ZXTD10,
CLDD09]. Generally speaking, such analysis results in a
set of geometrical constraints. During editing, the manipu-
lated object is optimized to satisfy the user-specified mod-
eling constraints while respecting the geometric constraints
derived from the analysis.

The key challenge in realizing such an analyze-and-edit
approach is two-fold. First, how to analyze the given model;
second, how to represent the results of the analysis to facil-
itate a constrained optimization. Gal et al. [GSMCO09] use
1D controllers which they call “wires”. These controllers are
defined at sharp features, which typically form closed flat 3D
curves. The use of wires as controllers is based on the idea
that most man-made shapes can be captured by a small num-
ber of 1D curves. While this is generally true, there are many
man-made objects or parts which are smooth and lack char-
acteristic sharp features. On the other hand, some objects
might have many sharp features, leading to an excess of re-

dundant controllers [GSMCO09] or constraints [KSCOS08].
This observation motivates the use of controllers that are in-
dependent of sharp features of the object and possibly hier-
archically organized.

This paper presents an intuitive shape editing technique
for man-made engineering models. Our technique builds on
the analyze-and-edit paradigm, and introduces volumetric
controllers derived from a hierarchical analysis of the given
model. Our technique is based on two key ideas. First, the
controllers are component-wise (Figure 1), and their shapes
are adapted to the geometry of model components, enabling
effective protection of the underlying shape and structure.
Second, the user has easy control over the properties of the
small number of individual controllers, their inter-relations
as well as the hierarchical organization of controllers.

The controllers that we use are simple geometric paramet-
ric primitives (e.g., cylinders and cuboids, as shown in Fig-
ures 1 and 3). A controller forms a volumetric “cage” over
the enclosed shape component and reflects the natural de-
grees of freedom afforded by the component geometry. We
show that although such controllers have small degrees of
freedom, they sufficiently express a variety of editing effects
and provide intuitive guidance for shape editing.

The fact that the controller construction is hierarchical is
crucial in providing the user access to a rather small num-
ber of controllers that capture the main components of the
model to be edited. This makes tasks like manual specifi-
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Figure 1: Our technique allows structure-preserving shape manipulation through construction of a small set of component-wise controllers (b),
which are adapted to the component geometry of the given model (a) and thus capture its natural degree of freedom for editing. The editing result
(g) is easily obtained by directly manipulating a subset of the controllers (highlighted in red here, with the numbers showing the editing order)
while automatically computing the rest of the controllers to maintain both the individual shape characteristics and their inter-relationships.

cation or modification of the inter-relations (like symmetry
and parallelism) among the high-level components easy to
achieve. The user can also construct a customized controller
hierarchy to easily adjust the tool complexity with respect to
the desired modeling complexity.

When the user manipulates the controllers within their
predefined editing degrees of freedom, the changes in the
manipulated controllers are automatically propagated to the
other controllers. We propose a component-wise propaga-
tion scheme that maintains both the defining characteris-
tics of individual controllers and their mutual relations. We
demonstrate that our technique allows easy manipulation of
models while preserving their structures (see an editing ex-
ample in Figure 1 and the interactive editing sessions in the
accompanying video).

2. Related Work
In recent years, many deformation techniques have been de-
veloped for deforming polygonal meshes. These methods
typically assume that the input mesh consists of homoge-
neous material, which works well for organic shapes with
homogeneous material. The works of Popa et al. [PJS06]
and Botsch et al. [BPGK06] are two exceptions: these meth-
ods can simulate surface deformation with non-homogenous
material behavior by manual specification of local surface
stiffness. However, all the above methods are designed for
organic objects and exhibit rubber-like deformations, which
would inappropriately distort structural features (e.g., or-
thogonality, parallelism) in man-made objects.

Surface deformation techniques can be roughly cate-
gorized into two groups: surface-based (e.g., [YZX∗04,
SLCO∗04, BS08]) and space-based (e.g., [HSL∗06, SSP07,
BPWG07, LLCO08, BCWG09]). The latter group of tech-
niques typically enclose a given object within a cage, which
has roughly the same shape as the input model but with a
significantly lower polygon count. Cage-based deformation
techniques are mainly designed for simplicity, flexibility and
speedup, regardless of the structural features of underlying
objects or inter-relations among different components. Our
volumetric controllers also form cages which drive the defor-
mation of the enclosed local geometry. However, our cages
are local and deliberately simple to inherit the inter-relations
among the components of the underlying objects as well as
to express the editing degrees of freedom required to main-
tain the intrinsic characteristics of the parts.

Our technique is most related to the iWires technique in-
troduced by Gal et al. [GSMCO09], and builds upon their
concept of analyze-and-edit. The key observation of their
work is that man-made models can be characterized by a
set of 1D wires with associated shape properties and inter-
relationships among them (e.g., symmetry, parallelism),
which are maintained during editing via a multi-stage con-
strained optimization. The wires are simply defined at sharp
features without having control on their number and loca-
tions. Furthermore, wires as controllers are local and obliv-
ious to the notion of components, thus making component-
level shape manipulation (see an example in Figure 2) not
easy to achieve. As we will explain later, our component-
wise controllers also allow a simpler design of edit propaga-
tion over controllers.

There are other editing methods specifically designed for
man-made objects. These methods, however, focus on spe-
cific editing operations like resizing [KSCOS08] or spe-
cific types of models like articulated models [XWY∗09] and
architectural scenes [CLDD09]. For example, Kraevoy et
al. [KSCOS08] presented a technique for scaling complex
man-made objects in a non-homogeneous way while implic-
itly preserving certain geometric characteristics of the orig-
inal model. Observing that mechanical joints naturally de-
fine the editing degrees of freedom afforded by the geome-
try, Xu et al. [XWY∗09] presented a joint-aware deforma-
tion framework for manipulating mechanical models with
joints, which are detected through slippable motion analy-
sis. Neither of these methods attempts to preserve the global
inter-relationships among geometric features, which is cru-
cial for preserving the shape characteristics and meaning of
the manipulated object under editing. The work of Cabral et
al. focuses on modeling textured architectural scenes, where
angle preservation plays an important role.

3. Overview
Our system builds upon the analyze-and-edit paradigm and
thus consists of two main steps: shape analysis and shape
editing, as illustrated in Figure 2.

The goal of the analysis step is to construct a small set of
component-wise controllers and identify their mutual rela-
tions. The challenge here is to compute the proper types of
primitives that best fit the meaningful components of a given
model. Since the model itself does not have prior component
information, we employ a hierarchical mesh segmentation
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Figure 2: System overview. The given model is analyzed and automatically decomposed into meaningful components (a). Each component is
equipped with a proper controller (b). During editing, the user manipulates one of the controllers (highlighted in red) and the applied change
is automatically propagated to other controllers to maintain the structural relations among them, such as symmetry, coplanar and parallelism
(e). (d) is an intermediate propagation result. The final model is reconstructed with respect to the modified controllers (f).

algorithm that supports simultaneous shape decomposition
and primitive fitting [AFS06] (Section 4). A typical model
usually leads to only dozens of components (Figure 2 (a))
and their associated controllers (Figure 2 (b)). We then iden-
tify the mutual relations between the found controllers by au-
tomatic shape analysis and possibly a small amount of user
assistance for specifying alternative semantic relations.

We use four types of primitives as controllers, namely,
spheres, cuboids, cylinders, and generalized cylinders (Fig-
ure 3). We focus on these four types of primitives as con-
trollers since they are simple and still well approximate the
component geometry of most man-made models. Their sim-
plicity is necessary for intuitive user manipulation.

Figure 3: Left column: We use four types of primitives as controllers
(i.e., sphere, cuboid, cylinder, and generalized cylinder). Each prim-
itive is characterized by its associated feature curves (shown in yel-
low). Middle and Right columns: To protect the structural features of
the underlying shape geometry, each type of controllers has prede-
fined degrees of freedom for editing. In particular, the sphere prim-
itive is the only type of primitive that does not support anisotropic
scaling. Note that for the example of generalized cylinder, the con-
troller and the original model coincide.

Since typical editing scenarios involve only a small set
of component-wise controllers that reveal the editing space
afforded by the associated components, our system lets the
user edit a model via its controllers. This design reduces
possible unexpected deformation of the engineering struc-
tures of the model since the components are prevented
from deforming unnaturally. During editing, the user ma-
nipulates one of the controllers as a handle (Figure 2 (c))
and the changes are then automatically propagated from
the controller being edited to the other ones (Figure 2
(d, e)). A component-wise propagation scheme (Section 5)
is proposed to effectively preserve the structural informa-
tion defined for the individual controllers and their inter-
relationships identified in the analysis step. The edited model
is finally reconstructed with respect to the changed con-
trollers (Figure 2 (f)).

The above ideas can be naturally extended to support a
hierarchical organization of controllers (Section 6). The user
forms a hierarchy of controllers, where the top levels of con-
trollers are for direct manipulation and depend on the editing
complexity, and the lower levels of controllers are used to
protect structural features during editing and depend on the
model complexity. Edits are first propagated over all the con-
trollers at the top levels and then passed in the same fashion
down to the lower levels.

4. Controller Construction and Analysis
This section presents the details of the construction of the
component-wise controllers and the analysis of their inter-
relationships.

4.1. Controller Construction
Constructing controllers that are adapted to the component
geometry demands a decomposition of a given model into
meaningful components and the fitting of the components
with proper types of controllers. Many man-made models
consist of multiple connected components (in terms of mesh
connectivity), each of which possibly comprises multiple se-
mantically meaningful parts [MYY∗10]. Therefore, our dis-
cussion below focuses on splitting a single connected part
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Figure 4: By drawing a stroke (i.e., red curves) over the automati-
cally segmented results, the user can split or merge segments. Edit-
ing results of the table model are shown in Figure 17.

into multiple components and fitting each component with a
proper primitive.

We use a variant of the method by Attene et al. [AFS06],
which computes a hierarchical segmentation of a single-
connected model by finding a best-fit primitive for each
component. The hierarchy of segments is obtained by a
bottom-up clustering algorithm. The key of this cluster-
ing algorithm lies in the design of the merging cost for
two clusters. Besides the fitting errors of different types of
primitives [AFS06], we incorporate boundary concavity and
boundary length cost into the fitting error. We compute the
boundary concavity as the average edge normal difference
in order to encourage cuts along concave regions. The length
cost is the length of the segment boundary. These two bound-
ary measures help merge pairs of clusters with large length
and concave boundaries and are found to produce fitting re-
sults that better capture the shape semantics. See Figure 4
for two decomposition results.

We observe that it is rather computationally expensive to
directly include all four types of primitives for model de-
composition. Hence, we adopt a two-step approach. In the
first step, similar to [AFS06], we perform a model decom-
position using only spheres, planes and cylinders. In the
second step, we include cuboids and generalized cylinder
and exclude planes. Specifically, for components fitted with
planes or cylinders during decomposition, we refit them with
cuboids or generalized cylinders and retain whichever best-
fit primitive as the controller. To fit a generalized cylin-
der, we first extract a 1-D curve-skeleton of the compo-
nent [ATC∗08]†, then compute the skeleton-to-surface dis-
tance along the skeleton, and finally trace 2-D profile circles
along the skeleton to create a generalized cylinder.

The results of the above automatic decomposition and
fitting process can sometimes deviate from the user intent.
Our system allows user intervention to modify the auto-
matic segmentation results. For example, the user can mod-
ify the decomposition results using simple merging or split-
ting operations by sketching strokes over the extracted com-
ponents (Figure 4). The splitting is implemented by sepa-
rating the parent cluster into its two children in the hierar-
chy tree [AFS06] while the merging is achieved by finding

† If junction nodes or loops are detected in the extracted skeleton,
we simply consider the fitting error with a generalized cylinder as
infinity.

Figure 5: Examples of inter-relationships automatically established
by our system. Note that the groups of controllers with common rela-
tions are not necessarily mutually exclusive. For relations like paral-
lelism we delegate their definition to the feature curves of controllers
(see the main text for more details).

the common ancestor for the clusters. Primitives are then re-
fitted for the affected components. The merging operation
is especially useful for combining spatially or topologically
disconnected pieces. If necessary, the properties of individ-
ual controllers, including primitive type, orientation and po-
sition, could also be manually modified.

4.2. Establishing Mutual Relations
Defining the inter-relations among the controllers is the key
to establishing a good structure-preserving editing tool. The
relations of interest include symmetry, coplanarity, paral-
lelism, concentricity, and orthogonality. Controllers sharing
common relations naturally form groups, which are not nec-
essarily mutually exclusive (Figure 5). To detect the global
symmetry between each pair of controllers, we use the
method of [MGP06] and take into account the geometry of
both the controllers and their underlying components. Since
other types of relations like coplanarity may hold only at one
end of two controllers but not the other end, we delegate the
definition of these relations to the feature curves of the con-
trollers.

Feature Curves of Controllers. Feature curves of a con-
troller are a set of planar circles or rectangles that define
the controllers (Figure 3). Specifically, the feature curve of a
sphere controller is the equator along its principle z-axis. For
a cylinder or generalized cylinder, the two circles at its two
ends constitute its feature curves. For a cuboid, its feature
curves are the rectangles on its six sides. The feature curves
uniquely characterize a primitive given their positions and
orientations. Note that unlike wires in [GSMCO09], our fea-
ture curves inherently come with the controllers and do not
need to be detected. Moreover, all feature curves in our sys-
tem are simple planar curves that are easy to optimize during
edit propagation (Section 5).

Except for the symmetry relation, in our system all other
mutual relations (i.e., coplanarity, parallelism, concentricity,
and orthogonality) are detected at the level of feature curves
(see examples in Figure 5). However, the feature curves

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.



Zheng et al. / Component-wise Controllers for Structure-Preserving Shape Manipulation

Figure 6: Component-wise propagation in action (see the accompanying video for propagation animation). The input model (a) and the
controllers of the components (b). The editing effects caused by the user’s translation of a pillar is first propagated to controllers which have
symmetry relations with the controller being manipulated (b → c). Then the propagation goes from controller to controller by proximity (c →
d). These two steps are repeated until all controllers are treated. Controllers being processed in each step are highlighted in blue.

come with the notion of components, i.e., each feature curve
is associated with the controller it belongs to, which is cru-
cial for our simpler and effective edit propagation algorithm.

We let the user manually modify the automatically found
inter-relationships to achieve different editing results (Fig-
ures 11, 12, and 13). Since many man-made objects involve
only a small set of component-wise controllers and inter-
relationships, typically only a small amount of user interac-
tion suffices.

5. Edit Propagation
Component-wise controllers provide intuitive guidance for
interactive editing, we therefore allow the user to edit at the
controller level. The user initiates editing operations by ma-
nipulating one controller (Section 5.1) or a set of controllers
as a group (Section 6). The modeling constraints are then
propagated to the rest of the controllers (Section 5.2). The
shape characteristics of individual controllers and their mu-
tual relations are automatically preserved during propaga-
tion to achieve high-level editing of the object. The modified
controllers finally induce a deformation of the surface itself
(Section 5.3).

5.1. Manipulation of Individual Controllers
To protect the underlying geometry of the model compo-
nents, each type of controllers has certain predefined degrees
of freedom for editing, no matter if the controllers are un-
der direct manipulation or in the process of edit propagation.
For example, it is not recommended to apply any shearing
or stretching transformation to the sphere-shape controllers
in order to maintain their underlying sphere-like geometry.
Below we summarize all allowed local transformations for
each type of controllers (Figure 3):

� spheres: similarity transformations (i.e., rigid transforma-
tions + isotropic scaling).
� cuboids: similarity transformations + frustum scaling

along three main axes.
� cylinders: similarity transformations + frustum scaling

along cylinder axes.

� generalized cylinders: similarity transformations + frus-
tum scaling along main axes (e.g., the chair arms of the
top-left example in Figure 17).

The user could optionally allow different isotropic scal-
ing at two opposite ends of a controller, leading to a frus-
tum scaling. For example, the two ends of a cylindrical-
shape controller can be modified by different isotropic scal-
ing transformations, forming conical frustums (Figure 3).
Similarly, different similarity transformations can be spec-
ified at different circular cross sections of generalized cylin-
ders. The specified transformations are then linearly interpo-
lated to construct the entire generalized cylinders (Figure 3).

5.2. Component-wise Propagation
The edit propagation can essentially be viewed as an opti-
mization problem, with the user manipulation and the inter-
relations as the model constraints, seeking a new configura-
tion of all the controllers that can fulfill both requirements.
However, formulating a global optimization solution is chal-
lenging. The different natures of the inter-relations and dif-
ferent properties of controllers make it infeasible to design a
proper objective function and weight assignments for global
optimization. Hence, we opt for a component-wise propaga-
tion scheme.

Overall procedure. Our propagation scheme proceeds
progressively in a component-to-component manner. Each
controller is treated only once and will not be revisited af-
ter it is processed. Specifically, in a breadth-first manner,
the propagation proceeds to other controllers by symmetry
and proximity, as illustrated in Figure 6. Let Ω be the set
of controllers that have been optimized. Initially, Ω contains
the set of controllers manipulated by the user. Since sym-
metry relations between different components is an impor-
tant shape characteristic, these relations are immediately en-
forced when encountered. Therefore, for each controller C in
Ω, we first identify all the untreated controllers (i.e., those
not in Ω) that are in the same symmetry group as C (e.g.,
controllers in yellow in Figure 6 (b)), then apply the same
transformation to them as C (adjusted according to symme-
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Figure 7: Various stages of the edit propagation on feature curves (see the accompanying video for propagation animation). We optimize the
shape, scaling, orientation and position of feature curves of the controllers (in blue) to preserve both their individual defining characteristics
(e.g., circularity) and the mutual relations with other feature curves (e.g., coplanarity). See the text for more details.

try), and finally add them to Ω. Next, we progressively se-
lect a closest controller to the ones in Ω, optimize it (by ad-
justing its position and orientation according to its feature
curves, see details below) and then add it to Ω (Figure 6
(d)). We define the distance between a pair of controllers
as the closest distance among all the feature curves of the
two controllers, which is computed before editing. We repeat
the above symmetry-based and proximity-based propagation
steps until all the controllers are optimized.

Optimizing a new controller. Now we explain the details
of how we optimize an untreated controller that is closest to
the ones in Ω, denoted as U . Overall, we update the indi-
vidual feature curves of U with respect to the feature curves
of the controllers in Ω, denoted as Θ, and then restore the
controller U . Figure 7 (c–g) illustrates the propagation pro-
cess (Θ here contains the six feature curves of the cylindrical
controllers of the table legs). We start with the feature curve
of U closest to all the curves in Θ, denoted as cU (e.g., the
top circular feature curve of the the seat surface in Figure 7
(c)). The edit influence from Θ to cU is found by local frame
encoding [GSMCO09]. The resulting curve may violate the
original characteristics of cU (e.g., circularity). Therefore it
is first optimized to retain its original characteristics (e.g.,
Figure 7 (c→d)). Note that all feature curves in our sys-
tem are simple planar curves which are easy to optimize.
Next, we adjust the position and orientation (with scaling
unchanged) of cU with respect to the feature curves in Θ

that hold common mutual relations with cU (e.g., Figure 7
(g→h) and (k→l)). The above procedure continues until all
the feature curves of controller U are treated. Finally, we re-
store U by adjusting the position and scaling of all its feature
curves (with orientation unchanged). For example, to restore
a cylinder controller, we need to adjust the scaling of its two
ends to be the same and align them along a common axis
(Figure 7 (e→f)).

Discussions. It is possible that the user-manipulated edit-
ing constraint leads to conflict between the interrelations
among controllers. In such cases, not all interrelations can
be preserved after editing. In the example of Figure 7, the
coplanar relation among top/bottom faces of the legs and ta-
ble surfaces is violated after the legs are rotated. Our current

solution to address potential conflicts is to restore mutual re-
lations in a prescribed order: symmetry, concentricity, copla-
narity, parallelism, and orthogonality (Figure 15). Besides
providing users with some control over the priority of rela-
tions, a possibly better solution is to let users choose from
suggestive results of enforcing relations in different priority
orders.

5.3. Final Deformation
After all the controllers are treated, we update the underly-
ing surface to reflect the changes of the controllers. Since
all surface components are enclosed by our controllers, a
straightforward solution might be to use the controllers as
cages and apply a cage-based deformation technique (e.g.,
the Green coordinates [LLCO08]). However, it is unclear
how the boundaries between adjacent surface components
should be deformed as they are controlled by different cages,
which might lead to noticeable artifacts. Thus, we adopt
a surface-based deformation approach instead [LSLCO05],
with the modeling constraints derived from the transformed
feature curves.

Figure 8: The final deformation is governed by the virtual edges
(highlighted in red) that connect the controller with the underlying
component in a feature-to-feature manner.

Our component-wise controllers have no direct connec-
tion with the underlying surface. Therefore, to transfer the
edit influence from the controllers to the surface, we con-
struct virtual edges between the underlying surface and the
controllers. A straightforward approach is to connect sam-
pled points of the feature curves to their nearest points on
the surface. However, we found this approach sometimes
causes distortion artifacts, especially around regions with
sharp features. To preserve the surface features, we ex-
tract surface feature curves using the method of Ohtake et
al. [OBS04] and construct virtual edges connecting points
on the controller feature curves to their nearest points on
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Figure 9: An editing example with two levels of controllers. Four
groups of controllers (i.e., two cuboid controllers and two cylinder
controllers) are formed as the top-level controllers (bottom left).
Grouped controllers are highlighted with red feature curves. The
user initiates edit intent by anisotropically scaling the bigger cuboid
controller. The edit is propagated first to the rest of the top-level con-
trollers, then to the original controllers (bottom right), and finally to
the surface itself (top right). See the accompanying video for inter-
active grouping and editing results.

the surface feature curves (Figure 8). If no surface feature
curve is detected in a certain range to a sampled point on
a controller curve, the above-mentioned straightforward ap-
proach is used to construct virtual edges for these parts (e.g.,
cushions in Figure 16). The range is defined as 2 × dis-
tance from the curve point to its nearest surface point. Fi-
nally, we transform those end points of the virtual edges
lying on the surface in the same way as their correspond-
ing points on the controllers, inducing a surface deforma-
tion optimized by the method of Lipman et al. [LSLCO05].
Here the transformed end points of the virtual edges serve
as boundary constraints for the surface deformation opti-
mization. We adopt a surface-based deformation approach
with virtual edges mainly as a proof of concept to demon-
strate the effectiveness of our component-wise controllers in
a complete editing system. We expect that a better space-
based deformation approach (e.g., by improving the ap-
proach of [LLCO08]) can work well without using virtual
edges.

6. Hierarchical Controller Organization
For better editing flexibility, we allow the user to group a set
of controllers and edit at the group level (see interactive edit-
ing sessions in the accompanying video). By making groups
of groups, we essentially obtain a hierarchical organization
of controllers. The propagation scheme described in the pre-
vious section is easily adapted to support hierarchal propa-
gation. For simplicity, below we explain the ideas under two
levels of controllers: the original controllers as the bottom
level and groups of controllers as the top level. The exten-
sion of these ideas to more levels is straightforward.

Although some hierarchical information is generated dur-
ing automatic model decomposition (Section 4.1), it is avail-
able only within each connected part and is unreliable since
it is based on low-level shape analysis only. Therefore, like
many editing systems, we allow the user to interactively de-
fine and control the grouping of the controllers, which is
especially crucial for grouping multiple connected compo-

Figure 10: Another editing example with two levels of controllers.
The original controllers of the 6 wheels are grouped and the result-
ing top-level controller is edited.

nents. Each set of grouped controllers is automatically fitted
with a best-fit primitive as a top-level controller, using the
same construction method as for the lowest-level controllers
(e.g., Figures 9 and 10).

The user manipulates one of the top-level controllers to
initiate an editing operation. The edit is then propagated to
the underlying surface in a top-down manner: first the top-
level controllers, then the bottom-level controllers and fi-
nally the surface itself. More specifically, the edit influence
is first propagated from the manipulated top-level controller
to the rest of the top-level controllers using the propagation
scheme described in the previous section. Next, to propa-
gate the edit from the top-level controllers to the bottom-
level controllers, for each top-level controller we first find
the closest bottom-level controllers inside it (according to
the distance defined between feature curves) and then up-
date their position, scale and orientation using local frame
encoding and decoding [GSMCO09]. Finally, the affected
bottom-level controllers trigger the edit propagation to the
rest of the bottom-level controllers.

7. Results and Discussions
We have tested our techniques on a variety of man-made
models, most of which exhibit many structural features and
often have multiple connected components. Before editing,
both the automatically constructed component-wise con-
trollers and the automatically extracted structural relations
associated with the controllers are subject to user refinement
or modification (e.g., Figures 11, 12, and 13). During edit-
ing, the user can manipulate either an individual controller
(Section 5) or a grouped controller (Section 6). In both cases,
our propagation scheme automatically propagates the edit
from the controller(s) under direct manipulation to the rest
of the controllers. To control the editing effects, the user can
optionally fix the position and/or orientation of certain con-
trollers on the fly. The accompanying video shows some in-
teractive editing sessions.

Letting the user directly manipulates the feature curves
enables more flexible editing. For instance, translating one
feature curve of a cylinder controller while keeping the fea-
ture curve at the other end can partially resize the cylinder
along the axis. Thus, we provide such a user interface in our
system. In other words, the user is able to either manipulate
a controller as a whole or its individual feature curves, if de-
sired (e.g., Figure 3). Obviously, the extra flexibility brought
by the latter UI enhances the editing capacity but may lead to
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Figure 11: Changing mutual relations between controllers leads to
different editing effects. The user initiates the edit by enlarging the
front-left tire (top left). Top row: editing result without symmetry
relation defined between front and back tires. Bottom row: editing
result with manually assigned reflective symmetry relation between
front and back tires.

Figure 12: Editing with user-specified mutual relations. Top row:
editing result with symmetry and coplanar relations defined between
left and right slats. Bottom row: editing result with the relations
removed.

Figure 13: Editing with user-specified relations. Top row: without
coplanar relations defined between the front and back covers. Bot-
tom row: with coplanar relations manually assigned.

failure in restoring the defining characteristics of individual
controllers (e.g., being frustum scaled).

Figure 17 shows a wide range of edits performed on vari-
ous engineered models using our approach. We demonstrate
that without reverse engineering it is possible to obtain in-
tuitive results using our controllers with light-weight shape
analysis and a small amount of user interaction. Our tech-
nique automatically adjusts the shape, size, position, and ori-
entation of individual controllers such that the editing re-
sults satisfy the user-specified modeling constraints while
preserving structural features.

Figure 14 shows a result of non-homogeneous shape
resizing with our hierarchical organization of controllers.
Non-homogeneous resizing lets the user control resizing ef-
fects by specifying different scaling factors for the three

Figure 14: A non-homogeneous resizing example. To resize the en-
tire model, we form a top-level controller which encloses all the
original controllers. Such two-level representation of controllers
successfully preserves the underlying surface structures (e.g., cir-
cularity) during non-homogeneous resizing.

axes [KSCOS08]. Given this low-dimensional editing space,
it is unnecessary to let the user manipulate individual con-
trollers, which exposes excessive editing degrees of freedom
to users. A single top-level controller which encloses the
entire model sufficiently provides the desired user control.
Therefore we claim that to some extent a hierarchical organi-
zation of controllers can enhance the user’s editing flexibil-
ity while minimizing the user effort towards desired editing
effects.

Timings. Our technique essentially consists of two steps:
shape analysis and shape editing. The bottleneck of the anal-
ysis step lies in controller construction (Section 4.1), whose
time complexity depends on both the number of connected
components and the granularity of the individual compo-
nents. For all the models shown in the paper, it typically
took less than one minute to finish all the processing de-
scribed in Section 4, including the time for user interven-
tion. In fact, for many models in our experiments, the au-
tomatic shape analysis process suffices to properly detect
all the inter-relations among controllers because man-made
models are usually regularly shaped and have rather distin-
guishable components. For some complex models like the
robot ship in Figure 1, only a small amount of interaction is
required to manually adjust relations such as co-planarity.

After the model is analyzed in the pre-processing step, the
user is able to edit its shape through component-wise con-
trollers at interactive rate. The user simply performs mouse
drag-and-drop operations and the system provides immedi-
ate feedback (see the accompanying video). The user can
control the editing effects on the fly using operations like
selecting different controllers for direct manipulation, fix-
ing different controllers, forming different controller hierar-
chies, etc. To achieve fast runtime performance for the final
deformation of the underlying surface (Section 5.3), we per-
form system pre-factorization in the initialization step and
do fast back-substitution at runtime [LSLCO05]. The edit-
ing sessions for all the examples in the paper took no more
than two minutes.

Comparison with iWires. Our approach differs from the
iWires method in several aspects. First, our technique is built
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Figure 15: Our component-wise propagation scheme (bottom row)
alleviates the conflicting problem among different sets of inter-
relations (symmetry vs. concentric in this example), which leads to
different sizes of the four pillars (top middle & top right) by the
wire-level propagation scheme of Gal et al. [GSMCO09].

upon the concept of component-wise editing. This presents
to the user only a small set of editing controllers, which
come with the inherently afforded editing degrees of free-
dom and thus offer intuitive editing guidance (see interactive
editing sessions in the accompanying video). In contrast, as
iWires uses wires as controllers, which are more low-level,
it is more powerful for shape editing at the level of feature
curves. Therefore bringing both component-wise and wire-
like controllers into an integrated system would be an inter-
esting topic to explore in the future. Second, the component-
wise controllers enable the design of a simple yet effective
propagation paradigm. As mentioned in Section 5.2, iWires
does not consider the object components in the design of
edit propagation and thus may fail to preserve component-
wise features when optimizing individual wires of a single
component to maintain different inter-relations. In contrast,
our approach leverages the concept of component to govern
the propagation in a natural manner, leading to better prox-
imity definition, thus alleviates this problem (Figure 15).
Third, our system integrates the user control within the anal-
ysis procedure, allowing more control over the editing re-
sults. The component organization enables all the user inter-
ventions to be performed at a convenient level. Lastly, the
component-wise controllers makes our technique insensitive
to the local shape features. In contrast, noisy models and
models with few structural features render automatic wire
extraction challenging for iWires (Figure 16).

Limitations. Since our controller construction is based
on model decomposition, it can fail to identify a compo-
nent that crosses over multiple connected pieces. Redefin-
ing the merging cost for two clusters by considering dis-
connectedness might alleviate this problem. In addition, our
controllers are by default defined to enclose the underlying

Figure 16: Our approach does not rely on sharp features of the orig-
inal geometry as controllers. This enables handling of models with
few sharp features (e.g., seat and back cushions), whereas iWires
cannot achieve such editing result since no wires can be extracted
on these parts (right).

components. Hence, it may fail to detect and preserve hol-
low features, e.g., cylindrical holes in the phone dial model
in [GSMCO09]. In such cases, user assistance may be re-
quired to manually place proper controllers there. Lastly, our
technique does not penalize self-intersection between com-
ponents caused by editing, which is an interesting topic to
explore in the future.

8. Summary
We have introduced component-wise controllers for
structure-preserving editing of man-made models. Con-
trollers are constructed to adapt to the component geome-
try and thus naturally reflect their editing degrees of free-
dom, providing intuitive user interface for editing. We de-
sign a simple but effective component-wise propagation al-
gorithm to preserve both the characteristics of individual
controllers and their mutual relations while satisfying user-
specified modeling constraints. Our framework supports hi-
erarchical organization of controllers, allowing the user to
easily organize the controllers to match edit intent. The tech-
nique has already been demonstrated on a large number of
man-made models full of structural features, which are chal-
lenging to edit with traditional local surface or volumetric
deformation techniques.
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