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Abstract

Feature detection in geometric datasets is a fundamental tool for solving shape matching problems such as partial
symmetry detection. Traditional techniques usually employ a priori models such as crease lines that are unspecific
to the actual application. Our paper examines the idea of learning geometric features. We introduce a formal
model for a class of linear feature constellations based on a Markov chain model and propose a novel, efficient
algorithm for detecting a large number of features simultaneously. After a short user-guided training stage, in
which one or a few example lines are sketched directly onto the input data, our algorithm automatically finds all
pieces of geometry similar to the marked areas. In particular, the algorithm is able recognize larger classes of
semantically similar but geometrically varying features, which is very difficult using unsupervised techniques. In
a number of experiments, we apply our technique to point cloud data from 3D scanners. The algorithm is able
to detect features with very low rates of false positives and negatives and to recognize broader classes of similar
geometry (such as “windows” in a building scan) even from few training examples, thereby significantly improving
over previous unsupervised techniques.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Artificial Intelligence [I.2.10]: Vision and Scene Understanding—

1. Introduction

Feature matching is an important tool in geometry process-
ing to address correspondence problems such as rigid and
deformable shape matching [ASP∗04, GMGP05, HFG∗06,
BBK06, LG05], or symmetry detection [MGP06, PMW∗08,
BBW∗09b]. Its principle is to find discrete objects that de-
scribe characteristic pieces of the input which is useful
in many contexts: cleanup and precision improvements of
scanned data, auto completion and hole filling, meshing,
instance highlighting and many more. With the recent and
growing wealth of available scanned and modeled geometry,
such tasks become increasingly important.

Almost all algorithms for global correspondences (with-
out known initialization) start by detecting geometric fea-
tures that are invariant under the considered correspon-
dence transformation. Then, consistent correspondences are
found via global optimization techniques such as branch and
bound, loopy belief propagation, or Hough-transform-based
voting. Afterwards, dense correspondences can be estimated
using local optimization techniques such as gradient descent
(to refine transformation parameters) or region growing (to

Figure 1: We propose an interactive learning algorithm for
finding features that are similar to user strokes. In this exam-
ple, 2-3 examples curves have been sketched on the model
for each class (indicated by the color), further instances are
found automatically.

refine the corresponding area in partial matching scenarios).
The first step, to detect invariant features, is crucial in such
a pipeline, as it determines the type of correspondences to
look for. If no features are detected for a part of the geome-
try, it cannot be recognized. Similarly, having too many fea-
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tures leads to clutter that might lead to failures too. From this
point of view, traditional feature detection algorithms (based
on a fixed model) have some shortcomings:

• Application specific: A fixed model determines a pri-
ori what constitutes an interesting feature. Different data
characteristics may require designing a new detector.
• Unspecific response: The detector might output a large

number of elements, while only a fraction corresponds to
structures we aimed for, putting an additional burden on
later matching stages.
• Lack of generalization: Traditional feature detectors and

descriptors cannot express classes of semantically similar
but geometrically different features by the same model.

For some application domains, such as rigid alignment of
3D objects or fundamental matrix estimation (structure from
motion) in images, these shortcomings are acceptable be-
cause these problems are well-constrained by a small num-
ber of correct matches. Here, state-of-the-art techniques such
as scale-space blob detection via SIFT-like algorithms have
become standard “out-of-the-box” tools [Low03, LG05].
However, there are many upcoming shape-matching prob-
lems that aim at a deeper “shape understanding” and make
a large number of feature matches necessary. A typical ex-
ample is partial symmetry detection where objects are de-
composed into building blocks [MGP06,PSG∗06,PMW∗08]
and potentially reassembled to form new models [BWS10].
Here, the design of the feature detector is often the limit-
ing factor in the recognition process [BBW∗08,BBW∗09b].
In extension to this, there is the much harder problem of
recognizing semantically similar but geometrically differ-
ent parts which is a mostly unsolved problem [ZSCO∗08,
BBW∗09a,ATCO∗10] and seems to push fixed-priori-model
approaches to their limits. In this paper, we propose to get the
user into the loop to better address these issues by learning a
matching model. The user can specify what to look for using
strokes (e.g., windows or doors in a 3D scan).

Our choice to use strokes follows previous find-
ings [OBS04,HPW05,BBW∗09b] for unsupervised settings
which indicate that crease lines have advantages in charac-
terizing salient features in 3D geometry. Line features are
numerous, but more discriminative than just keypoints and
their locally adjacent regions. We develop a formal frame-
work to describe such features based on Markov chains. It
combines two desirable properties: It is expressive enough
to learn complex feature lines and their variations. Further-
more, the solution can be computed efficiently: We present
a novel algorithm to solve the interference problem within
seconds by computing all significant local optima simulta-
neously, dramatically improving over iterated naïve search.

Our model is particularly designed to run with minimal
and simple user input, which is crucial for making it a useful
interactive tool. Typically, a single stroke is enough to train
simple detectors, while a few can span more complex classes
with significant geometric variation. Our weakly supervised

approach consistently outperforms complex unsupervised
algorithms. In particular, we can detect semantically similar
parts which permits applications currently mostly inaccessi-
ble to unsupervised global correspondence algorithms.

2. Related Work

The goal of our technique is to establish correspondences
among semantically similar geometric features. There is
a large body of work on correspondence estimation for
geometric data sets. Early techniques such as the clas-
sic iterated closest point (ICP) algorithm for rigid match-
ing [BM92,CM92] as well as the later deformable ICP tech-
niques [ACP03, HTB03, BBK06, BR07] are based on local
optimization, thus requiring a user-guided initialization.

More recently, several global optimization techniques
have been proposed that solve the problem without prealign-
ment [ASP∗04,GMGP05,LG05,HFG∗06,CZ08,HAWG08,
ZSCO∗08, TBW∗09]. An interesting variant is partial sym-
metry detection, where a single shape is decomposed into
building blocks. A common approach is transformations
voting, which detects symmetries under a fixed group of
transformations such as similarity transformations [MGP06,
PSG∗06, PMW∗08]. The use of a location independent vot-
ing space can, however, lead to problems if many symmetric
parts are present simultaneously. Matching graphs of surface
feature [BBW∗08] has been proposed to avoid this prob-
lem. In particular, matching configurations of crease-line
features [BBW∗09b] have recently demonstrated good per-
formance in many practical applications and this is one of
the main motivations for our work. Feature-based match-
ing, however, comes at a cost, which is the reliance on fea-
ture detection. Obviously, a fixed detection scheme is not
suitable for all kinds of data characteristics. With our user-
guided model, it is possible to interactively train detectors
for different application scenarios without creating a new
matching model from scratch. The limitations of a fixed-
model become also apparent when trying to match dissimi-
lar but semantically related geometry [BBW∗09a,ZSCO∗08,
ATCO∗10]. This problem is notoriously ill-posed. A small
amount of user-trained knowledge can help significantly in
making this problem conceptually as well as computation-
ally feasible.

Learning of feature matching is rare in geometry process-
ing. Schoelkopf et al. [SSB05] apply regression techniques
from machine learning to estimate correspondences but do
not learn from user input. In follow-up work, Steinke et
al. [SSB06] identify invariant feature regions in a morphable
face model [BV99] by an oriented principal component anal-
ysis (PCA). Their method requires some amount of training
data and outputs a weighting function that describes the in-
variance of local descriptors. In contrast, we are aiming at
finding sparse and discrete feature lines from minimal user
input. A recent paper of Kalogerakis et al. [KHS10] explored
learning user segmentation by example. It uses, somewhat
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similar to our approach, a (loopy, in their case) Markov ran-
dom field (MRF) with learned local descriptors at nodes and
learned edge compatibility costs. Then, MAP estimation is
performed using iterated graph cuts. Unlike our approach,
no correspondences are computed within the segmented re-
gions, and only one global solution is computed.

User-labeled images have been used extensively in com-
puter vision for object recognition, automatic segmenta-
tion, and image understanding [CET01,VJ01,LLS04,FH05].
An important ingredient are classifiers with strong gener-
alization capabilities, such as “face” recognition in images
[VJ01]. In our setting, we are able to use simpler local classi-
fication techniques within our model because geometry is far
less ambiguous than images that suffer from lighting, shad-
ing, projection, and occlusion differences. As global models,
subspace (PCA) techniques have been used [CET01, BV99]
which are very expressive but difficult to globally optimize,
as well as generalized voting techniques (e.g. [LLS04]). The
technique most similar to our approach is Felzenszwalb et
al.’s “Pictorial Structures” that use a tree structure MRF of
local appearances to describe objects by decomposition into
parts and spatial relations. While conceptually related, our
setting differs in two important aspects: First, we are dealing
with general 2-manifolds in an irregularly sampled repre-
sentation (point clouds) as inference domain which provides
more degrees of freedom and is more difficult to handle than
regular pixel grids. Secondly, unlike in image understanding
applications, we are aiming at finding many instances simul-
taneously rather than only the best explanation for an image.

3. Matching Model

The goal of our technique is to recognize curves on surfaces
that coincide with geometric features. Our current imple-
mentation works on surfaces approximated by finite point
clouds, therefore being applicable to raw 3D scanner data.
An implementation for other representations (e.g., triangle
meshes) would require only minimal modifications. Curves
are represented as polygonal lines. Training data is expected
to be given in the same format, with nodes being placed at
corresponding locations. Our goal is to learn the geometric
characteristics of these curves and subsequently find all oc-
currences of similar geometry in an input data set.

3.1. Feature Lines

Formally, assume that we are given an input surface S ⊂ R3

that is a 2-manifold of arbitrary topology. From the perspec-
tive of our algorithm, it will be given a sampled represen-
tation S̃ = {s1, ...,sn},si ∈ R3. We encode feature lines on
S via piecewise linear curves (polylines) X = {x1, ...,xk}
where each xi ∈ S̃ is one corner point along the curve.

One specific class of feature lines F is characterized by
statistics on both the shape of the curve X as well as statistics

Figure 2: Feature lines are modeled as Markov chains: Each
node is controlled by a potential function φ that matches lo-
cal geometry. In addition, pairwise potentials ψ encode the
shape variation of the curve.

on the underlying geometry. A class of feature lines is char-
acterized by a probability density function p : S̃k → R≥0.
We describe the feature line by a Markov chain model: The
probability density for a polyline is described by singleton
potential functions φi that prescribe local geometry and by
pairwise potential functions ψi that encode the shape of the
curve itself (1/Z is the normalization constant):

p(X ∈ F) = 1
Z

k

∏
i=1

φi(xi)
k−1

∏
i=1

ψi(xi,xi+1) (1)

This means that a class of feature lines is completely
characterized by specifying a set of potential functions
{(φi)i,(ψi)i}. In the following section, we will look at how
to define and learn these functions from user input.

4. Learning

For representing both the {(φi)i and the (ψi)i}, we use sim-
ple Gaussian models that encode low-dimensional subspaces
in the shape space. Obviously, there are much more sophisti-
cated learning techniques such as support vector machines or
boosted classifiers that are frequently applied at this point in
computer vision applications [VJ01, PJC∗10]. However, we
are aiming at learning from a minimal amount of training
data (often only one or two examples). Complex non-linear
methods are of little use here as the training data itself does
not support many degrees of freedom. Thus, a simple linear
learning technique is an adequate choice in our scenario.

To simplify, we assume that all models have a designated
upward direction. For models such as architectural scenes,
statues, as well as many other man-made and natural arti-
facts, this is the case and can be easily specified interactively.
We will denote this direction as up in the following. In con-
junction with the surface normal n(x),x ∈ S̃, this gives us a
unique coordinate frame for each surface point, removing a
rotational degree of freedom from the matching. In the fol-
lowing, we use (u(x),v(x),n(x)), or in short (u,v,n) when
clear from the context, to denote an orthogonal, right-handed
coordinate frame where n is the surface normal and u is a
vector orthogonal to n that is closest to up.

User Interaction: For the learning phase, we ask the user to
sketch one or more polylines on the surface. We have imple-
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mented a tool that combines a 3D point-cloud viewer with
a surface curve editor to specify such curves interactively.
Each click leaves a control point on the surface, which makes
the curve initialization very simple. If multiple curves are
specified for a model, our algorithm expects the user to put
nodes of the curve in corresponding positions. This is not a
big problem in practice as users usually tend to chose salient
features as node points that are rather easy to locate.

Learning Local Evidence: We define the density φi(x) as
a Gaussian model in the shape space of local pieces of ge-
ometry in the vicinity of each data point: We cutout consis-
tent regions around each point of the model and form local
depth images along the normal axis. We will refer to these
as descriptors. The descriptor space is high dimensional:
every depth image pixel represents one degree of freedom.
We learn a low dimensional subspace as Gaussian distribu-
tion by a PCA of corresponding training points. For a single
training example, this automatically degrades to learning a
constant mean depth image.

Technically, we parameterize the neighborhood of each
point x ∈ S̃ as local heightfields [PG01]: We fix a radius pa-
rameter rφ, specified by the user. It specifies the “thickness”
of the feature line, i.e., how far the algorithm should reach
out around each node to compare local geometry. We then
cut out all points within a radius of rφ from x and project
them in normal direction onto the tangent plane in x spanned
by (u,v). Let (u j,v j,n j) denote the respective coordinates
of the points in the local tangent frame. We collect all points
that fall within a rectangular region u j,v j ∈ [−rφ, ...,rφ] and
store their normal direction n j. We finally splat these values
into a d× d pixel grid (we use a fixed d = 16) and use a
push-pull algorithm to fill potential holes with a smooth in-
terpolation. We precompute these descriptors for all points
x ∈ S̃ in the input and compress them to more compact
dc-dimensional vectors using PCA (in our experiments, we
keep the dc = 16 dominant of 256 dimensions of the PCA).
This reduces computational costs but it will not signifi-
cantly reduce the discriminability of the descriptors because
the projection will well preserve distances in the descriptor
space [DG03]. We denote these values dx (for all x ∈ S̃).

Given this database of local geometry, learning a Gaus-
sian model of φi(x) is straightforward. Assume that the user
has specified m input curves, each consisting of k nodes
x( j)

i , i = 1..k, j = 1..m. We compute a dc-dimensional mean

µ(φ)i and a dc×dc covariance matrix Σ
(φ)
i of the sets {dx( j)

i
} j

for each node i = 1..k across the curves using PCA. The so-
defined subspaces of significant variance will typically be
much lower dimensional than the original descriptor space
because they were computed from only very few and pre-
sumably highly correlated examples. We store these statis-
tics to characterize the training set. We then evaluate φi as

multi-variate normal distribution:

φi(x)∼ exp(−1
2
(dx−µ(φ)i )T

Σ(φ)
−1
i (dx−µ(φ)i )) (2)

where

Σ(φ)i := Σ
(φ)
i +λI. (3)

Here, we do not use the original covariance matrices but add
an additional uniform noise term, specified by the user pa-
rameter λ. This term models uniform Gaussian noise in the
data. Typically, it should be set according to the measure-
ment accuracy. Often, this is not known exactly and has to be
estimated roughly. Increasing this parameter also increases
the tolerance towards shape variations that are not captured
in the training set. In the user interface, the parameter λ can
be specified as fraction of the overall variance (maximum
eigenvalue of the covariance matrix of the complete descrip-
tor space) of the input patches. This choice facilitates the
definition of λ as it becomes independent of scaling and to
some extent invariant to different input data sets. Please note
that λ is not learned automatically from the user-specified
examples. Using only few examples might not be sufficient
to estimate full rank covariance matrices Σ

(φ)
i , and a statisti-

cally reliable estimation of the full matrix would require pro-
hibitively large amounts of training data. Our simple mixture
model avoids this problem by separating base the noise floor
from one or two main directions of variation in the descriptor
space.

Learning the Curve Shape: Learning the curve parame-
ters proceeds analogously: For each user specified curve,
we measure the length and the twist of each curve segment
{xi,xi+1}. The length is just the Euclidean distance of the
endpoints. The twist is a vector of two angles that describes
how to rotate around the normal n(x) in order to align the
new with the previous curve segment, thereby encoding the
orientation. For each triple of length and or orientation pa-
rameters, we again learn means µψ

i and 3×3 covariance ma-
trices Σ

ψ

i via a PCA analysis of corresponding curve seg-
ments in the user-defined training set. We scale the length
and the two angle parameters with three constant factors to
obtain a unit variance for each curve segment over all curves.
This whitening transform is necessary because angles and
length are measured in different units so that the main axis
of the PCA might be affected by scaling rather than data
characteristics. In order to form the final probability densi-
ties ψi(x,y), we again add isotropic Gaussian noise to ac-
count for general inaccuracies. In the following, let cx,y de-
note the scaled length and orientation parameters. Using this
notation, we obtain:

ψi(x,y)∼ exp(−1
2
(cx,y−µψ

i )
T

Σψ
−1
i (cx,y−µψ

i )) (4)

with

Σψi := Σ
ψ

i +

λ2
length 0 0
0 λ2

angle 0
0 0 λ2

angle

 . (5)
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The parameters λlength and λangle describe the anticipated
variation of edge length and orientation. In the user inter-
face, length variations are specified relative to the average
segment length (in percent) and angular variation by the ex-
pected standard deviation in degrees.

Furthermore, we add an option to scale all covariance ma-
trices that are learned from data (for both local evidence and
curve shape) by a factor > 1 so that more variation in the
learned direction is allowed. This is useful as small sample
sets might not capture the full variance.

5. Inference

Our task is now to find all solutions that match our proba-
bilistic model (Eq. 1). The technical challenge is that Equa-
tion 1 defines a probability density on a high-dimensional
space: For k curve points, we have to consider |S̃|k different
assignments. A brute-force evaluation is clearly infeasible.
Therefore, we first reduce the distribution to a polynomially
sized representation and then extract the solutions from that
representation, similar to [LTSW09].

As a reduced representation, we use the max-marginals νi
of p with respect to fixed node positions xi = y:

νi(y) = max
X∈S̃k

with xi=y

p(x1, ..,xi, ..,xk) (6)

This means, all curves that go through y at node i are con-
sidered and the maximum probability value is kept.

Explicitly computing the maximum in Eq. 6 by enumer-
ation is exponential as well. However, it is well known that
for tree structured MRFs (and thus for chains in particular),
the computation can be performed in polynomial time us-
ing dynamic programming. The max-product belief propa-
gation algorithm compute exact marginals in O(kn2) time
for k nodes (curve nodes in our case) and n states (discrete
points in S̃ in our case) [YFW01]. We will now first briefly
recap how belief propagation is traditionally used to com-
pute a single globally optimal solution (Subsec. 5.1). After-
wards, we describe our modified algorithm that finds sev-
eral locally optimal solutions simultaneously (Subsec. 5.2).
Afterwards, we describe how we augment the algorithm to
avoid the O(n2) complexity (Subsec. 5.3).

5.1. Belief Propagation

Belief propagation on chains works in two passes [YFW01]:
First, information is propagated from the start node through
all nodes of the chain until the end node. The end node
then has gathered enough information to compute the cor-
rect max-marginals. In a second pass, information is propa-
gated back to the start to obtain correct max-marginals ev-
erywhere. The messages combine knowledge from the local
evidence term φ, the compatibility term ψ and the incoming

belief about the state of the node:

mfwd
i→i+1(xi+1) = max

xi
φi(xi)ψi(xi,xi+1)m

fwd
i−1→i(xi) , (7)

where mfwd
0→1(x) = 1. The backward messages mbwd

i→i−1 are
constructed analogously, just passing information in the op-
posite direction. The max-marginals are afterwards given by

νi(xi) = φi(xi)m
fwd
i−1→i(xi)m

bwd
i+1→i(xi). (8)

If we want to compute the globally optimal solution, we
have to perform backtracking on the solution, which can be
conveniently combined with the backward message passing,
where each step yields the needed correct max-marginal at
that node: We start backtracking from the k-th node. We out-
put a maximum likelihood curve Z = {z1, . . . ,zk} by choos-
ing the maximum of the max-marginal of node k and then
combining this solution with the best match at k−1 and then
iterating backwards:

zk = argmax
xk

νk(xk); zi = argmax
xi

φi(xi)ψi(xi,zi+1) (9)

5.2. Computing Several Local Optima Simultaneously

In order to detect a large number of features (which is par-
ticularly useful for symmetry detection applications), having
only one output curve is not enough. We therefore augment
the standard algorithm as follows:

Instead of starting backtracking at a single point zk of
maximum max-marginal probability, we extract a solution
for each local maxima of the distribution νk. The restriction
to local maxima is neccesary since otherwise (when starting
backtracking for all positions xk with a νk(xk) over a thresh-
old) we would obtain very similar curves with just minimally
perturbed positions of the last node. Therefore, we only ac-
cept maxima that are the largest value within a window of
radius 2rφ around each point (where rφ is again the descrip-
tor radius). We then start backtracking at each of these solu-
tions. This will extract all at most O(n/r2

φ) locally optimal
solutions for which the distance at node xk is at least 2rφ.

In cases where solutions overlap at the end node, it is pos-
sible to miss locally optimal curves that could diverge in two
or more different directions (think of detecting the boundary
of a single leaf of a four leaf clover; only one curve will be
found if the center is the end node). We can fix this problem
by starting the local maxima backtracking for each node of
the chain (after computing the max-marginals). We obtain
an arrangement of overlaid solution curves that can be com-
bined arbitrarily by cutting segments between crossings of
the curves and recombining. In practice, however, such sit-
uations are rare; we did not observe this ambiguity in our
experiments (even if it did happen, as for the leaf example,
it could usually be addressed by changing the start point).
We therefore restrict our practical implementation to a sin-
gle backtracking pass.
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a) multi-class learning

b) single-class learning

c) no covariance scaling

d) With/without covariance scaling

Figure 3: a) Multi-class learning: Decomposing the old town hall into partially symmetric elements. Up to two examples are
used per class. b) Single-class learning: Detecting “all windows”. Training data (in blue) consists of only 4 feature lines. c)
Without scaling the learned covariance matrices, results deteriorate. (d) Detail of overlay: green (unscaled), yellow (scaled).
When using scaled versions of the learned covariance matrices, the extracted curves adopt better to the underlying geometry.

5.3. Reducing the complexity

So far, our algorithm is too slow in practice: In order to com-
pute a single message in Eq. 7, we have to consider all states
of node xi+1 and for each maximize over all possible states
xi, requiring O(n2) computations where n is the number of
discretization points (typically in the range of millions). This
has to be repeated at least k−1 times to compute νk.

The computational effort can be reduced significantly by
taking the properties of the potentials φ and ψ into account.
We know that ψi describes a line segment originating at
position xi with a length that is constrained by a Gaussian
distribution. In addition, the descriptors φ are typically non-
matching for large portions of the data.

We first replace the Gaussian distributions φi,ψi by trun-
cated versions, were we clamp the value to zero if the den-
sity falls below 5% of the maximum. This has the additional
advantage of avoiding spurious local extrema of very low
density so that we can run the previously described peak ex-
traction algorithm without need for an additional threshold
value to filter out promising local extrema.

Given this truncated potentials, we can now restrict the
message passing computations: First, in the loop over possi-
ble positions xi ∈ S̃, we only consider points for which the
messages computed so far are non-zero. In the first iteration,
we consider the evidence term φ1 to make this decision. Sec-
ondly, we do not try to combine it with all points xi+1 ∈ S̃
to evaluate ψ(xi,xi+1) but restrict ourselves to points xi+1
for which ψ(xi,xi+1) is potentially non-zero. In order to es-

timate this, we compute the maximum length lmax of the dis-
tance ‖xi−xi+1‖ for which ψ(xi,xi+1) is non-zero. This can
be achieved by looking at the covariance matrix Σ

ψ

i (which
correlates angels and distances) and extracting the maximum
variance in distance direction. Having lmax, we now extract
only points xi+1 from S̃ within that are located within a
sphere of radius lmax around xi. We retrieve these points ef-
ficiently by using a hierarchical range query. For this, we
precompute an octree for the points S̃. During runtime, we
traverse the octree top down, only following boxes that over-
lap with the spherical range and outputting the points in the
leaf nodes that are within the range. In typical applications,
the maximum radius lmax is very small in comparison to the
size of the complete scene so that we get very significant
speedups by this optimization.

6. Results and Implementation

We have implemented the described feature detection frame-
work in plain, single threaded C++ and performed experi-
ments on an Intel Core-2 Quad 2.4GHz PC with 8GB main
memory. In order to realistically evaluate the performance
in practice, we apply our technique to a number of LIDAR
rangescans (and two synthetic test scenes, Fig. 10). We use
the raw data without any preprocessing other than a sim-
ple subsampling for the very dense point clouds. In particu-
lar, no smoothing, hole-filling, or outlier detection has been
performed. Four of our benchmark data sets are taken from
the well-known Hannover city scan collection (available on-
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model #points #preproc. [s]
old town hall 744,567 516
new town hall 1,271,777 908

museum 2,119,367 3,741
baroque church 2,618,385 2,432

stars 313,236 326
relief 289,509 336

street (training/all) 198,767/1,056,158 436/999

Table 1: Statistics for our example scenes. Timings are for
descriptor radius 0.01.

line at http://www.ikg.uni-hannover.de). In addition, we use
a scan of the “Ludwigskirche”, a baroque church from the
18th century, provided by the LKVK Saarland. The LIDAR
data suffers from significant noise artifacts. In particular,
reflective surfaces such as windows create local clouds of
structured, non-Gaussian noise artifacts. The scan quality of
the church data set is slightly better, probably due to more
modern acquisition equipment.

In the following, we conduct a number of experiments:
For each data set, we have annotated structural elements.
Afterwards, we use our algorithm to identify the learned
classes. We perform different types of experiments: In mul-
tiple class learning, our objective is to find elements of dif-
ferent categories. In single class learning, we try to build
a single general class for semantically similar objects. In a
third experiment type, we perform multiple class learning
and restrict ourselves to only a single example per category
to study how far we can get with an absolute minimum of
user supervision.

Figure 3a shows the result of a multi-class learning ex-
periment performed on the Hannover “old town hall” data
set. We train separate line feature classes for several types
of windows, the small roof towers, and archways. The de-
tected structures include rounded, pointy, and even com-
plex shapes. For each class, we use at most two examples,
sketched by the user directly onto the model (as shown in the
accompanying video). By setting conservative global vari-
ance parameters per class, we can avoid any false positives:
No wrong matches are present and members of different
classes are not mixed up. At the same time, we obtain a
false negative rate of 24% (32 out of 133). Unrecognized
elements include several severely distorted pieces such as
elements with large scale acquisition holes or strong clutter
due to outliers.

We repeat the multi-class experiment on the new town hall
data set, obtaining roughly comparable results (see Figure
5). We perform another multi-clss experiment on the mu-
seum data set (Figure 6). In this case, we use exactly the
same isotropic noise parameters for all classes, nevertheless
obtaining good matching results. Figure 7 shows the results
for the baroque church. Here, we perform multi-class learn-

ing with only a single instance specified per class. This re-
duces the recognition results a bit, but we nevertheless re-
trieve more than 70% correctly and do not observe false neg-
atives. Figure 1 shows results of another interactive session
where 2 examples per class are used (the round windows
marked in green use three examples capturing different types
of empty/solid/grid-structured interior).

Next, we perform a single-class learning experiment,
where a set of windows are comprised in one class. The re-
sults are showing in Figure 3b and the variation in the in-
put is illustrated in Figure 4. In this case, we recognize all
but 7 out of 84 windows in the model. Out of the 7, three
contain large holes such that a recognition is obviously im-
possible. Again, false negatives can be avoided. In order to
obtain good results, it is important to specify a large enough
variance of the learned model. It is obviously problematic to
estimate the variance from only very few training examples.
Therefore, we have used the option to scale up the learned
variance of descriptors and curve shape. Figures 3c,d show
the difference between using unmodified and scaled values.
We obtain much higher recognition rates without introduc-
ing false positives even if we scale up the standard deviation
significantly, for both the trained shape model and the de-
scriptors. Consequently, we use these settings for all other
examples in our paper.

Running time: As most descriptor-based shape analysis
techniques, our technique needs some time to precompute
the descriptors. This has to be done only once per data set.
Preprocessing times are in the range of a few minutes to up
to one hour (Table 1). Please note that this is an embar-
rassingly parallel task that can probably be speed up signif-
icantly by an optimized implementation, but this is not the
focus of our work. The interaction is much faster. Training a
model is very fast but some auxiliary tasks such as estimat-
ing the global descriptor variance can take up to 5 seconds
in our examples. Finding all line features is usually also in-
teractive, in the range from below one to approximately 10
seconds. However, it is possible to create “broken” training
models for which the algorithm takes a very long time (up
to 20 minutes) to finish. This happens for example if curves
are sketched on non-descriptive, planar regions where prun-
ing cannot be effectively performed. For practical applica-
tions, these degenerate cases are not relevant as no reason-
able matching can be expected. Nevertheless, we would like
to include a user warning in such cases in future work.

Figure 4: Different types of windows recongnized as one
class in the experiment shown in Figure 3b.
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Figure 5: Decomposition into several classes.

Figure 6: 5 different classes extarcted. Same global param-
eters for each class. Two training instances clicked per class

7. Discussion

In any detection task, there is an inherent trade-off between
generalization performance and precision. Our model aims
at learning robustly from very few examples, which limits
the precision for very large training sets. Figure 4 shows that,

Figure 7: Learning classes by using just one example each.

nevertheless, quite some variance can be captured. And for
very different geometry, the user of our system can anytime
create multiple classes of feature lines with corresponding
vertices to model complex mixtures. We also evaluate the
ability to transfer learned features from one data set to an-
other in Figure 8, depicting a row of different houses from
one street in the Hannover data set: Only the small part of
one house marked in blue is used for initial learning (4 win-
dows). The model is stored and reused on the second, inde-
pendent data set and a large fraction of windows in the other
houses is detected. Of course, this is limited to rather similar
geometry. It is impossible to infer very different geometry
that is not within the span of the example space.

Figure 9 illustrates various quality levels of user input. For
a single input curve, accuracy is not an issue and all matched
curves will be detected with the same imperfect shape. Only
when combining several curves in a single model, accuracy
plays a role. Nonetheless, potential imprecision is implicitly
handled by our model that already accounts for inaccurate
surface descriptions. Further, as the feedback is almost im-
mediate, it is easy to add only curves when needed or to see
and correct the negative impact of an imprecise curve. Fig-
ure 9 illustrates the effect of different levels of noise in the
specification of two example curves. It turned out that we
had to deliberately click off target to obtain artifacts.

The bad-input example of Figure 9 also reflects that we do
not explicitly impose closed curves. In principle, it is possi-
ble to formulate the belief propagation algorithm for closed
curves, but the computation cost would increase by a polyno-
mial factor. The choice of open curves allows us to perform

detection with 
transferred model

training set

Figure 8: Transferring learned models: Four curves were
trained on the blue area, in red are detected windows for the
same and a different data set.
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reasonable input noisy input very noisy input

Figure 9: Our method is robust to imprecisions in user input
(top, middle), even for very noisy input, our solution still
finds reasonable matchings (bottom).

our very efficient search procedure. Most matched curves are
almost closed because the descriptors snap them to the right
locations during the search. We could easily add a culling
step to reject curves that are not "closed enough", but, in
practice, this was not necessary. In our examples, only for
the unrealistically bad user input benefits from this.

Our model is not necessarily scale invariant: Only if
the user provides examples with scale differences, the lin-
ear model will automatically span the whole subspace of
scaled examples. However, our current descriptors are not
scale-invariant, thereby limiting the scale range; a design
choice to make the detection more reliable. We could achieve
full scale-invariance using scale space descriptors such as
SIFT [Low03, LG05]. Still, our solution is flexible enough
to handle significant variations (Figure 10). By learning dif-
ferent scales its impact in the detection step is reduced (al-
though we still use scale-dependent descriptors). The algo-
rithm finds even instances that were not directly trained, but
it fails for strong scale differences which is desired behavior.

Limitations and Future Work: Our user-guided feature de-
tection scheme has currently some limitations. Most impor-
tantly, we can only find line features, we cannot find com-
plex graphs with cycles. These have to be composed out
of several, independently-trained and retrieved lines. In fu-
ture work, we would like to examine matching more com-
plex graphs by combining our approach with graph matching
techniques such as [BBW∗08,BBW∗09b]. In this context, an
extension to general, tree structured graphs as feature prim-
itives would be possible. Furthermore, our current feature
model assumes a fixed upward, mostly motivated by appli-
cations to architectural models and similar man-made struc-
tures. This is no principal limitation. However, a straightfor-
ward solution to this problem (such as evaluating the match

Figure 10: Although our descriptors are not scale invariant
to increase precision, our method is scale tolerant (green)
when learned (red) and supports complex features (top: dis-
continuities, bottom: embossed shapes).

for different base orientations covering 360◦ degrees) would
increase the runtime. A more efficient strategy is again sub-
ject to future work. One more limitation we have observed
in practice is that the model is not robust to missing data;
if part of a feature maps to a hole in the surface it cannot
be detected because no discretization points are available
(using a robust φ model is therefore not sufficient). Here,
a dynamic discretization of the domain, including potential
holes, is needed. In addition to addressing these limitations,
we would also like to examine more complex example ap-
plications, such user guided (partial) symmetrization in the
spirit of Mitra et al. [MGP07], global matching of dissim-
ilar shapes [ACP03, ZSCO∗08], as well as shape modeling
by docking corresponding parts, as introduced by Bokeloh et
al. [BWS10], now replacing rigid docking with user-guided
docking sites.

8. Conclusions

We have presented a technique that learns line features from
user input that is designed to work with few training exam-
ples. We believe that this weak form of user supervision is a
powerful tool for shape matching problems in the future, in
particular, if care is taken to minimize the necessary work for
the user. Nonetheless, even a small user interaction makes
matching significantly more robust. Although conceptually
simple and easy to implement, our approach, hereby, obtains
good results with few false positives and negatives. We can
train both discriminative models (that find only rigidly sim-
ilar instances), as well as broader classes of models (that
relate to each other non-rigidly, but have a vaguely similar
appearance). In our prior experience, similar results in accu-
racy and robustness have not been possible to achieve with
unsupervised techniques. Furthermore, only setting up their
parameters takes more time than our solution to draw a few
sketches. Furthermore, a supervised approach like ours can
learn broader classes of semantically similar objects, which
is a very hard problem without user input. Consequently,
user guidance could offer a viable way to higher-level “shape
understanding”, approaching semantic rather than purely ge-
ometric interpretations. We consider our algorithm a first
step into this broad and less explored venue of geometry pro-
cessing.
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