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Abstract

In this paper, we combine two ideas: persistence-
based clustering and the Heat Kernel Signature (HKS)
function to obtain a multi-scale isometry invariant
mesh segmentation algorithm. The key advantages of
this approach is that it is tunable through a few intu-
itive parameters and is stable under near-isometric de-
formations. Indeed the method comes with feedback on
the stability of the number of segments in the form of a
persistence diagram. There are also spatial guarantees
on part of the segments. Finally, we present an ex-
tension to the method which first detects regions which
are inherently unstable and segments them separately.
Both approaches are reasonably scalable and come with
strong guarantees. We show numerous examples and a
comparison with the segmentation benchmark and the
curvature function.

1. Introduction

Given a shape, we would like to segment it into a
small number of meaningful components that can then
be analyzed and processed individually. Mesh segmen-
tation has applications in a wide range of fields includ-
ing reverse engineering, medical imaging (1) as well
as shape retrieval (2) and partial matching (3). Al-
though mesh-segmentation is a very active area of re-
search with considerable history (see e.g. (4) for a sur-
vey dating from 2006 and (1) for a survey of methods
for CAD applications), few methods have been pro-
posed with theoretical guarantees on the quality of the
segmentation. The fundamental problem is that the
quality of a segmentation is in general ill-defined. The
correct number of segments is application dependent
and is often given as input by the user. The desired
segmentation is then obtained through trial and error
by manually inspecting segmentations produced under
different parameter choices. Recently, Chen et al. pro-
posed a benchmark for mesh segmentation (5), which
is based on human segmentations of a database of ob-

jects. Thus, it reflects the (particular) human beliefs of
how the objects need to be segmented. This benchmark
partially alleviates the problem of the ground-truth;
however, the question of stability of mesh segmentation
algorithms is still a prominent one. To be practical, an
algorithm must produce a relevant segmentation and
be stable under different parameter choices.

Persistence-based clustering (PBC) (6) is a method
based on the notion that relevant segments correspond
to basins of attraction of some function. Hill climb-
ing algorithms are often used to find these basins, but
they are generally unstable. Topological persistence (7)
computes the prominence of the basin of attraction as-
sociated to each extremal point based on a hierarchy.
To compute the segmentation, we use this information
to merge segments in a theoretically justified way. The
topological framework ensures that under small pertur-
bations the resulting segmentation is provably stable.

We incorporate PBC into a framework for isometry-
invariant mesh segmentation by combining it with the
Heat Kernel Signature (HKS) function (8). It is invari-
ant to isometric deformations of the underlying shape,
and is stable under small perturbations of the surface.
The combination of the two methods results in a sta-
ble, isometry-invariant mesh segmentation. Further-
more, the HKS has a time parameter t, which can be
interpreted as an intrinsic notion of scale. Therefore,
by choosing various values of t, we can obtain segmen-
tations of the mesh at multiple scales. For a single
choice of scale and the associated HKS, PBC first re-
turns the prominence of the segments in the form of an
intuitive persistence diagram (PD), which allows the
user to choose a merging parameter, resulting in a sta-
ble segmentation. If the number of correct segments
is known a priori, the algorithm selects the appropri-
ate merging parameter, as well as gives feedback on
the stability of the resulting segmentation. We also in-
troduce a randomized method for detecting regions on
the mesh which are inherently unstable, and which are
segmented separately.
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2. Related Work

Mesh segmentation is a fundamental operation in
geometry processing, and has been widely studied over
the past several decades. For a review of existing meth-
ods we refer the reader to recent surveys on this field
(e.g. (4; 1; 9)). According to the ontology presented
in (1), mesh segmentation algorithms can be grouped
into two general classes: volumetric and surface based.
Since our method is purely surface-based, we only con-
sider similar techniques that fall within this category.

The algorithm proposed in this paper is most closely
related to watershed methods, and those based on crit-
ical points defined on the mesh. Similarly to our tech-
nique, these methods define a function on the mesh
and segment the surface by associating vertices with
extremal points (local maxima and minima) of this
function (10; 11; 12) . The majority of these meth-
ods use various notions of curvature as the watershed
function (1). As we demonstrate in this paper, curva-
ture is often not robust enough to allow for meaningful
shape segmentation. Instead, we use a recently pro-
posed Heat Kernel Signature (8), which can be inter-
preted as a multiscale notion of curvature, and allows
for more robust segmentation.

Our method is also related to feature-based tech-
niques that first identify feature points on the mesh,
and then segment it into regions that respect the fea-
ture points, e.g. (13; 14; 15). Similarly to these meth-
ods, we use local maxima of the Heat Kernel Signature
as feature points on the mesh. However, we also em-
ploy tools from persistent homology, and specifically
persistence-based clustering (6) to only consider signif-
icant or persistent feature points. As we show in this
paper, using only prominent features is crucial for a
successful segmentation.

Note that although several techniques, e.g. (16),
also attempt to group feature points together in order
to reduce over-segmentation, the main difference of our
work is that we use provably correct techniques to ex-
tract persistent features. Indeed, despite the plethora
of work in mesh segmentation virtually no practical
methods come with guarantees on either the quality of
the reconstructed segmentation or the stability of seg-
mentation with respect to the necessarily present pa-
rameters. In this paper we propose a practical method
for mesh segmentation but also aim to bridge the gap
between existing theoretical tools for stability analysis
and methods for mesh segmentation.

Isometry-invariant mesh segmentation has recently
been addressed in e.g. (17; 13; 18; 19), where the goal is
to produce a consistent segmentation of the shape un-
der potential near-isometric deformations such as ar-
ticulated motion. These methods often use spectral

invariants, such as the eigenfunctions of the Laplace-
Beltrami operator (17; 19) to achieve isometry invari-
ance. However, eigenfunctions can be rather unsta-
ble especially if the gap between the corresponding
eigenvalues is small. Recently, more stable invariants
based on the heat diffusion have been introduced in
(18; 8). In particular, the Heat Kernel Signature (8)
has shown promising results for feature based shape
analysis. However, existing methods that employ diffu-
sion invariants are either hierarchical (13) or use heuris-
tics to filter unstable feature points (8). In this paper,
we use theoretically justified tools from persistence-
based clustering (PBC) (6) to result in a multi-scale,
stable, and isometry invariant segmentation method
that comes with theoretical guarantees.

3. Persistence-based Clustering

In persistence-based clustering (PBC) (6), the goal
is to recover the basins of attraction of a function f on
a space X. PBC falls under the umbrella of topological
data analysis (20) and makes heavy use of topological
persistence theory (7; 21). The approach can be con-
ceptually divided into two parts: computing a global
description of the function called a persistence diagram
(PD) and using this information to compute the seg-
mentation.

For a function on a space (X, f), we track con-
nected components over different superlevel sets Xa =
f−1[a,∞) for a ∈ (−∞,+∞). As we sweep a from
+∞ to −∞, new connected components are either
born, or previously existing connected components are
merged together. Each connected component is associ-
ated with a local maximum of f , when the component
is first born. Merging occurs when a is such that there
is a path on X between x1 and x2, such that f(x) ≥ a
for all x along that path. Furthermore, persistence
theory creates a hierarchy of components: when two
components corresponding to local maxima x1 and x2,
s.t. x1 < x2 are merged, we say that the component
corresponding to x1 dies. Equivalently, the component
corresponding to the smaller local maximum is always
merged into the component corresponding to the larger
local maximum. On the other hand a component which
corresponds to a local maximum x1 is born at time x1.
The Persistence Diagram (PD) represents the births
and deaths of all the connected components by assign-
ing to each component a point in the extended plane
R2

, where the x-coordinate represents the birth of the
component and the y-coordinate represents its death.

The value of the PD is that it provides a stable repre-
sentation of the structure of the function on the space.
The persistence of each connected component is simply



the vertical distance of the corresponding point to the
diagonal. Since each point represents a local maximum
(peak) of the function, the more persistent peaks cor-
respond to the points which are far from the diagonal.
Conversely, points close to the diagonal are more likely
to correspond to noisy peaks. If the peaks of the func-
tion are persistent enough, we can separate them from
noisy local maxima by a line parallel to the diagonal.
The distance of this line to the diagonal is called the
merging parameter, denoted by τ . By controlling this
parameter, the user controls the number of the seg-
ments produced by our mesh segmentation algorithm.

Once τ is chosen, we again sweep a from +∞ to −∞
and keep track of the connected components. Now,
however, when we merge two components, we check to
see if both are sufficiently persistent. Assuming the two
maxima function values are x1 and x2 such that x1 <
x2, if x1 − a ≤ τ , the merge is performed as above. If,
however, x1−a > τ no merge is done. Once completed,
the number of segments corresponds precisely to the
number of points above the line in the PD.

One of the practical advantages of Persistence-based
Clustering is that before the user is forced to choose
the number of segments, during the first stage of the
algorithm, the Persistence Diagram provides a compact
visual representation of all of the local maxima of the
function. By inspecting the PD, the user can not only
chose a meaningful merging parameter, but also can
get a sense of the stability of the number of segments
under different choices of τ .

Implementation Computing the PD and the seg-
mentation can be done using the same algorithm. As
input we take a mesh M , a function f defined on its
vertices and the merging parameter τ . To compute
the PD, we set τ =∞. We then process the vertices in
decreasing value of f . For a processed vertex, we main-
tain the segmentation, C(), which returns the current
maximum over its connected component.

To process a vertex x, we first determine if it is a lo-
cal maximum in the mesh by comparing f(x) with f(y)
for all y in a one-ring neighborhood of x. If x is a local
maximum, a new component is born and the vertex is
assigned to itself in the segmentation, C(x) = x. If x
is not a local maximum, we assign it to the neighbor
with the highest function value. If the vertex is adja-
cent to two or more existing components, we check the
persistence of the components and merge them only if
they are not τ -persistent. To merge two segments with
maxima x1 and x2 such that f(x1) < f(x2), we set
C(x1) = x2.

When all of the vertices are processed, the segment
of each vertex can be found by iterating C until we
reach a fixed point (i.e. C(x) = x). When computing

the PD, every time we merge two components, we out-
put the pair (f(x1), f(x)), where x1 is the maximum
with the smaller value of f and x is the point currently
being processed. These are precisely the points of the
PD. This procedure is equivalent the standard persis-
tence algorithm for 0-dimensional homology (7).

If we use the Union-Find data structure, the algo-
rithm requires linear storage and runs in O(nα−1(n))
time where n is the number of edges in the mesh, and
α−1(·) is the inverse Ackermann function. For surface
meshes, the number of edges is linear in number of ver-
tices, making our algorithm highly scalable.

4. Heat Kernel Signature

Note that Persistence-based Clustering, gives the
user a choice of function defined on the mesh. As men-
tioned in the introduction, we use the Heat Kernel Sig-
nature (HKS) introduced by Sun et al. (8) to obtain
an isometry-invariant multi-scale segmentation.

The HKS can be defined on any Riemannian man-
ifold M, via the heat kernel of M. The heat kernel
kt(x, y) : R+×M×M→ R, is the minimal fundamental
solution of the heat equation, which, intuitively mea-
sures the amount of heat transferred from point x ∈M
to point y ∈ M in time t, given a point source at x at
time 0 (see (22) for a thorough discussion of the heat
kernel and its properties).

Following (8), the HKS of a point x is defined as
HKS(x): R+ → R, HKS(x,t) = kt(x, x). The rele-
vant properties of the Heat Kernel Signature are (see
(8) for the discussion): (i) Invariance under isometric
deformations of the shape, (ii) Stability under near-
isometric perturbations of the surface, and (iii) Multi-
scale: kt(x, x) is closely related to Gaussian curvature
for small t and can be interpreted as a multi-scale no-
tion of curvature at the scale defined by t.

Sun et al. (8) used HKS as an isometry-invariant
descriptor of points on the shape. Here we extend their
construction to segment the shape into stable clusters.
In particular, we fix a time t and consider the function
f : M → R, f(x) = kt(x, x). The additional time
parameter t allows us to control the scale at which the
segmentation is done. We illustrate the dependence of
our method on this scale parameter t in Section 7.

To compute the Heat Kernel Signature function, we
follow the procedure of Sun et al. (8) who define the
HKS on the mesh M as kt(x, x) =

∑k
i=0 e

−λitφ2
i (x),

where φi and λi are the first k eigenvalues and eigen-
vectors of the Laplace-Beltrami operator of M . We
use the discretization of the Laplace-Beltrami operator
by Belkin et al. (23), and compute the eigenvalues and
eigenvectors using the sparse eigen-solver in MATLAB.



Note that due to exponential decay of the influence of
individual eigenvalues, only a few eigenpairs are neces-
sary to estimate HKS for large values of t. For all of
the experiments in this paper, we used k = 300.

5. Theoretical Guarantees

Persistence-Based Clustering At the heart of the-
oretical guarantees of PBC is the fact that PDs can be
proven to be stable. We say two PDs, Df and Df̃ , are
close, if their bottleneck distance is small. The bot-
tleneck distance is the `∞-distance over all one-to-one
matchings between the points of the diagrams. In a
seminal result, it was shown for two close tame, con-
tinuous functions on a space, the bottleneck distance
is bounded by the sup-norm of the difference of the
functions (24).

Let S ⊂ R3 be a compact surface and f : S → R be
a c-Lipschitz function. Assume that we have a mesh,
M ⊂ R3 of S, whose vertex set P is contained in S
and that there exists an homeomorphism h : M → S
satisfying the following properties: (i) The diameter
of any triangle of M is bounded by some ε > 0, (ii)
For any p ∈ P, h(p) = p, and (iii) For any p ∈ S,
d(p, h(p)) < ε. The following then holds:

Corollary 1. For a c-Lipchitz function f on a compact
surface S, and for a mesh M satisfying (i)-(iii), we
can define a function f̂ on M , such that the bottleneck
distance is bounded by dB(Df,Df̂) ≤ 2cε.1

Proof. Define the (non continuous) function f̂ : M →
R: f̂ is equal to f on the vertices P. On each cell (edge,
triangle) of M , f̂ is equal to the maximum of the values
of f at the vertices of the cell. Let g = f̂ ◦h−1. From (i)
and (iii), it follows that for any p ∈ S, |f(p)− g(p)| <
2cε. Note that f̂ is tame (see (25)) and so g is also tame.
Furthermore, g has the same persistence diagram as
f̂ as the persistence of a function is invariant under
homeomorphism. The proposition then follows directly
from the stability theorem (24).

If the vertex set lies off the surface, the result holds
as long as we have estimates of the error in the function
value at the vertices through the homeomorphism.

With the stability of the PD assured, we require
the PD be decomposable into two disjoint regions: the
prominent peaks (persistence greater than d2) and the
topological noise (persistence less d1). Intuitively, if
the gap, d2 − d1, is sufficiently large compared to the
mesh granularity ε, the number of persistent segments
is stable. This follows directly from Corollary 1: with ε

1Note that the diagrams for f and f̂ are defined over different
spaces, namely S and M .

small enough, the bound on the distance the points can
move implies that the two regions will remain disjoint.
If HKS is used as the filtration function, because of its
isometry invariance, this result immediately extends to
the case of two meshes which are respectively close to
isometric shapes.

Finally, there is an approximation result on the
basins of attraction (Spatial Stability Theorem - Theo-
rem 4.9 (6)). Here we only recount the idea: for all the
τ -persistent points in Df̂ , the trace of a corresponding
segment coincides with the basin of attraction on the
underlying surface (almost)-until the first time it gets
connected to another τ -persistent segment. This region
is guaranteed to be stable because it is related to the
underlying object, rather than to our measurements.
Furthermore, because the function is c-Lipschitz and
sufficiently persistent, the stable region is always non-
empty (and the algorithm will return it correctly).

Heat Kernel Signature In this section we look at
the stability guarantees for the HKS. We first look at
the stability of HKS with respect to time. Theorem 3
in (26) bounds the derivatives of the heat kernel func-
tion with respect to time as a consequence of the fact
that it is a real analytic function for all t > 0, directly
implying that the function is stable in the choice of t.

For the guarantees of the PBC to apply, we require
the function to be well-behaved with respect to space
as well as t. For this we use Theorem 3.3 from (22),
which states that the heat kernel is a C∞ function in
space. Since we are working only on compact surfaces,
the continuity condition implies that it is Lipschitz for
some finite constant c.

The final condition is that the function we compute
on vertices is close to the HKS on the surface. Ideally
the approximation result should hold for all values of
t. The study of the heat kernel is an active area of
research, and only partial results exists. The method
we use to compute the HKS, the Mesh Laplace operator
defined in (23), is known to converge to the surface
Laplace-Beltrami operator. This result however, only
holds for small values of t. We conjecture that the
Mesh Laplace operator does converge for all relevant
values of t for a fine enough mesh.

These are some preliminary results of the heat kernel
and by equivalence the HKS. There is still significant
work to be done, including computing explicit bounds
on the Lipschitz constant and proving convergence of
the operator for a large enough value of t.

6. Regions without Features

In many cases, due to large plateaus in the function
value, though the segments are guaranteed to have a



(a) (b) (c)

Figure 1. The PD over 5 approximately isometric deformations for (a) the human, (b) the dog, (c) the horse

Figure 2. Segmentation with HKS with t = 0.1, for near isometric deformations of three models.

stable region, an arbitrarily large part of the segments
can be unstable (6). Restricting the class of functions
does little to alleviate the problem. Using the results
of Section 5, we propose an extension of the algorithm
which allows us to detect the unstable regions and seg-
ment them separately.

Each segment not only has a stable region, but the
vertex with maximum value in the segment must also
lie in this stable region. This is true under function
perturbation, resampling, etc. This is a simple con-
sequence of the Spatial Stability Theorem (6). This
implies that there is a unique bijection between stable
segments under perturbation. Furthermore, the bijec-
tion can be found by simply comparing the segment
assignment of the maxima. Hence to find the unstable
regions, we simply perturb the function using bounded
random noise and see how the segmentation changes.
Running this over several times, we detect which points
are assigned to different segments.

The extended algorithm then naturally follows. We

begin again by computing the PD of the function. For
a selected merging parameter τ , we compute β such
that no point in the PD has a persistence of [τ −β, τ +
β]). We then run the segmentation algorithm m times,
each time perturbing the original function values by
some bounded random noise, σ, such that |σ| ≤ β. In
practice we add uniform noise, however the algorithm
will work for any bounded distribution. By Corollary 1,
the number of segments, k is constant over all runs. To
find the bijection of the segments from runs i and i+1,
for each maximum in run i, we identify which segment
the maximum is assigned to in run i+ 1. This defines
a map between segments which is guaranteed to be
bijective. For each point we then store a k-dimensional
vector indicating how many times the point has been
assigned to each segment. This vector can be turned
into a probability distribution by normalizing over the
number of runs. We can then define the notion of ω-
stable by considering points stable if they assigned to
a segment at least ω fraction of the time.



Figure 3. Segmentation with extended algorithm and HKS with t = 0.1, for near isometric deformations of three models.

A nice property of this approach is that given a
bounded distribution on the function perturbations,
the segmentation induces a unique measure on the ver-
tices though a push forward from a n-dimensional hy-
percube. The probability that a vertex is assigned to
the i-th segment is equivalent to the probability that
a point chosen according to the perturbation distribu-
tion lands in a certain part of the hypercube. We leave
as future work, deriving explicit bounds for the speed
of convergence of our method under m, which can be
done using standard results from sampling theory.

7. Experiments

We implemented both the standard method (which
we refer to as the basic method), and the ex-
tended method to segment unstable regions separately.
We present a study of 3 models from the TOSCA
dataset (27) under different deformations and then
show results for the 3D Segmentation Benchmark (5).

Isometric Deformations In this section, we show
results for experiments with 3 models from (27): a hu-
man figure, a dog and a horse. The datatset provided
a number of isometric deformations for each model.
The dataset also contains a number of different types
of perturbations of varying strengths, including: addi-
tive, topological, sampling, and shot noise as well as
adding holes.

Setting t = 0.1, the PDs of the corresponding models
are shown in Figure 1. The key characteristic of all 3
PDs is that have a small number of points far from
the diagonal (5 for the human, 6 for the animals), and
varied points along the diagonal.

For the corresponding segmentations (Figure 2), we
recover the extremities (arms, legs, head and tail in
the latter two) of the models. Note that the body is

(a) (b)

Figure 4. (a) PD comparing different types of noise for the
human. (b) PD of human with HKS t = 0.001

generally inconsistent. This is where the HKS function
is small over a large area, making the border unstable.
Using the extended approach with small additive per-
turbations, 30 runs and a threshold of 90%2, the results
are shown in Figure 3. Additive noise on the function,
rather than on t was chosen because they were faster
to compute and the results were indistinguishable. In
each case, we recover a segment representing the torso.
In all of these cases shown, the unstable region was
always one segment but in general it can add many
segments. We lose some control over the number of
segments we obtain in the end, since we do not now a
priori how many unstable segments there will be.

Beyond isometric deformations, the PDs for the hu-
man with the different deformations are shown in Fig-
ure 4(a). The dataset provided 5 strengths of deforma-
tions; the results of the middle strength are shown. The
results of “shot noise” are not shown, as outliers cause
the difference in the ∞-norm to be large, resulting in
a poor approximation. Of the other deformations, the
error was due to topological noise. False connections

2Every point which did not fall into one segment in 90% or
the runs was segmented separately.



(a) (b) (c)

(d) (e) (f)

Figure 5. Segmentation of human with noise added (a)
for the basic algorithm, (b) extended algorithm. Result for
topological deformation with (c) the basic algorithm (d)
extended algorithm; Segmentation with extended algorithm
(e) with holes in the mesh; (f) Topological noise.

connect components much earlier than they would be
otherwise. Both of these violate the assumptions of the
proofs and dealing with them is beyond the scope of the
paper. The results with additive noise, shown in Fig-
ure 5(a,b) are remarkably similar to the isometric case,
despite the mesh being quite noisy. Likewise for the
case where holes are added (Figure 5(e)). In the case
of topological noise Figure 5(c,d), part of the knee is
segmented with the hands due to the extra connections.
Note however, that in the case of the dog model, extra
connections do not connect distinct segments, and the
segmentation is unaffected.

A large motivation for using HKS is its multiscale
property. Figure 4(b) shows the PD of the human with
t = 0.001, where the same 5 prominent segments are
present (two points are very close). However, there are
many additional persistent points. These correspond
to fingers, toes, and other smaller features. As a result
the segments are much noisier. However, as shown in
Figures 6(a) and (c), we recover the fingers as segments.
The areas such as the arms are are assigned haphaz-
ardly to different fingers. Certain segments arise from
the bends in arms and legs (compare Figure 6(a) and
Figure 6(b)) as bending is not an isometry and HKS
is not preserved at the fine scales. With the extended
method, we see that outside the extremities, the seg-
mentation is mostly unstable (Figure 7).

For the dog model, the smaller value of t, Figure 8
shows cleaner results, due to the fact that features are
not at different scales. Therefore, we recover natural
segments, i.e. the individual ears, lower jaw, and parts
of the legs. The perturbation again recovered the torso,
although it also contains part of the head.

(a) (b) (c)

Figure 6. (a) Segmentation of human with t = 0.001. (b)
Different pose (c) Close up of hand.

Figure 7. Segmentation with extended algorithm of human
with t = 0.001. Black indicates unstable areas.

Method CD RI HD CE
1 2

Curvature 0.348 0.218 0.257 0.255 0.253
Basic

Curvature 0.322 0.221 0.220 0.232 0.201
Extended

HKS 0.213 0.124 0.105 0.129 0.067
Basic
HKS 0.164 0.120 0.097 0.121 0.061

Extended

Table 1. Benchmark Results

Benchmark We also ran the 3D Segmentation
benchmark (5) on the algorithm. We used the median
of the number of segments in the human segmentations
for each model. Segmentations were computed with
both versions of the algorithm, and using HKS over a
range of t’s and the curvature magnitude provided in
the benchmark.

For HKS, we generated segmentations for logarith-
mically spaced values of t ∈ [0.005, 10]. The results
were compared against all the human segmentations.
Due to limited space, Table 1 shows only the results
averaged over the dataset. For HKS, the segmenta-
tions for all values of t were compared, but only the
lowest score for each model was included in the av-
erage. For a complete description of the metrics see
(5). The results are comparable with other methods
described in (5). Further, HKS performed better than
curvature, due to the fact that segmentations at several
scales were produced. Finally, the extended algorithm
in both cases has lower scores suggesting that the lack
of features is something worth segmenting separately.



(a) (b)

Figure 8. Segmentation of dog with t = 0.001 (a) Basic
method (b) Extended method.

8. Future Work & Conclusions

In this paper, we have presented a provably sta-
ble method for segmentation of isometric shapes, by
combining the strengths of persistence-based cluster-
ing with the multiscale Heat Kernel Signature func-
tion. The use of persistence diagrams not only gives
the user a convenient way to chose the proper param-
eters, but also provides a notion of stability, hinting at
what the relevant number of segments should be. We
also present a way to segment regions without features
and give some theoretical guarantees on our method.
The key remaining challenges consist of strengthening
our analysis to provide a provably convergent scheme
to compute the HKS and analyze its smoothness prop-
erties. It would be also interesting to apply our method
in the case of point clouds in possibly high dimensions.
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