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Abstract

Shape segmentations designed for different applications show significant variation in the composition of their
parts. In this paper, we introduce the segmentation and labeling of shape based on the simultaneous optimization
of multiple heterogenous objectives that capture application-specific segmentation criteria. We present a number
of efficient objective functions that capture useful shape adjectives (compact, flat, narrow, perpendicular, etc.)
Segmentation descriptions within our framework combine multiple such objective functions with optional labels
to define each part. The optimization problem is simplified by proposing weighted Voronoi partitioning as a com-
pact and continuous parametrization of spatially embedded shape segmentations. Separation of spatially close but
geodesically distant parts is made possible using multi-dimensional scaling prior to Voronoi partitioning. Opti-
mization begins with an initial segmentation found using the centroids of a k-means clustering of surface elements.
This partition is automatically labeled to optimize heterogeneous part objectives and the Voronoi centers and their
weights optimized using Generalized Pattern Search. We illustrate our framework using several diverse segmen-
tation applications: consistent segmentations with semantic labels, bounding volume hierarchies for path tracing,
and automatic rig and clothing transfer between animation characters.

Categories and Subject Descriptors (according to ACM CCS): Computational Geometry and Object Modeling
[I.3.5]: Geometric algorithms, languages, and systems.—

1 Introduction

Digital 3D models, represented as polygon meshes or point
clouds, are extensively used in engineering design, ani-
mation, games and medicine. These models are invariably
structured into parts dictated by their application: limbs for
articulated character rigging, functional components for en-
gineering simulations, tight bounding volumes for efficient
rendering or labeled anatomic structures for medical visu-
alization. The partitioning of a model into such parts is re-
ferred to as shape segmentation, and its automation for vari-
ous applications is an important area of ongoing research.

Most object classes and segmentation applications have
domain-specific knowledge that can help define object parts
as well as provide them with semantically meaningful la-
bels. Humans for example [Ric08] have well-documented
relationships between different body parts. The humanoids
in Fig. 9, after being consistently segmented and labeled
to have a head, torso, arms and legs, can be automatically
rigged, clothed and even morphed into each other.

While it is not reasonable for users to manually segment
and label hundreds of shapes, one can imagine that a user-
specified description of segments and labels can suffice to
automatically segment and label an entire class of objects
consistently. Current shape segmentation algorithms, unfor-
tunately, are designed to optimize fixed objectives such as
concave boundaries [KT03] and ellipsoidal [SS05], symmet-
ric [MGP06] or convex [KJS07] parts. These approaches
typically limit user input to the number of desired segments
and a handful of threshold values. The current approach to
incorporate domain knowledge is to design and implement
a new segmentation algorithm, which is infeasible for most
users, e.g. artists, animators, medical experts.

Contributions

We present a framework for shape segmentation that al-
lows for the incorporation of domain-specific knowledge
through arbitrary objective functions that geometrically de-
scribe each segment (with an optional label). These objec-
tives can be unary, asserting properties of an individual part,
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e.g. that it should be narrow, compact, flat, or they can by n-
ary, referring to part inter-relations, e.g. a set of parts should
be parallel to each other, or have the same approximate size,
or two parts should be perpendicular to each other. We thus
cast the segmentation problem as a black-box optimization
minimizing an aggregate objective function over the space
of segmentations.

Current approaches to shape segmentation are surface-
based in that they explicitly represent segmentations as par-
titions of mesh faces, the connectivity of segments being
separately enforced. The combinatorial complexity of all
possible surface segmentations is enormous, and motivates
both a more compact representation of surface segmenta-
tions as well as efficient approaches to label assignment
and objective function minimization. We propose a volume-
based segmentation, where a weighted Voronoi partition-
ing of space implicitly defines a segmentation of any em-
bedded shape (see Fig. 2 and 4). Shape segmentations are
thus continuously parameterized by the Voronoi centers and
weights defining each segment. Objects with complex artic-
ulations are handled by embedding geodesic distances into
Euclidean space using multi-dimensional scaling (MDS)
prior to Voronoi partitioning (see Fig. 3).

The Voronoi centers representing each part are initialized
using a k-means clustering of the given shape, where k is
the known number of parts. The initial segmentation is then
automatically labeled according to the given objectives. We
show optimal label assignment, when binary objectives are
involved, to be NP hard but adapt an O(n3) algorithm for
optimally labeling unary objective functions and present an
evolutionary approach to label n-ary objectives. We then op-
timize the Voronoi centers and weights using Generalized
Pattern Search.

Voronoi partitioning can easily be made to preserve useful
geometric properties such as symmetry, allowing us to (if
desired) ensure a symmetric segmentation as well as reduce
the dimensionality of the optimization domain for symmetric
parts. Optimization complexity can also be reduced within
our framework by hierarchical segmentation.

Finally, we show the generality of our approach by apply-
ing it to several diverse segmentation problems: consistent
segmentations with semantically meaningful labels, bound-
ing volume hierarchies for path tracing, automatic character
rigging, and automatic transfer of clothing between anima-
tion characters.

2 Related work

Current segmentation algorithms can be broadly classified
into the following groups.

Affinity: In affinity-based approaches, affinity metrics de-
fine the likelihood of every pair of surface elements be-
ing in the same segment. Segmentation algorithms seek to
maximize intra-segment similarity and inter-segment dis-

similarity based on these metrics. Examples include graph
cut [KT03,KLT05,PSG∗06,LZ07,LZSCO09,GF08] and wa-
tershed approaches [MW99, ZTS02]. Spectral embeddings
in which Euclidean distances correlate to the affinities be-
tween surface elements [LZ07] can allow for affinity-based
approaches to lend themselves well to volume-based seg-
mentation.

Model fitting: In model fitting approaches, every segment of
the mesh is assumed to be independently generated by a dif-
ferent parameterized model. Model parameters can be fit to
candidate parts and, conversely, surface elements classified
given a configuration of models. Optimization techniques for
such segmentations include region growing [LMM98], vari-
ational [SS05,JKS05] and hierarchical approaches [AFS06].
Our weighted Voronoi parametrization of segmentations
shares the parametric continuity of model fitting approaches.

Property-based: Properties such as symmetry [TW05,
MGP06,SKS06], convexity [CDST97,LA05,KS06,KJS07],
tubularity [MPS∗04], texture [LMLR06, LMLR07], dif-
fusion over surfaces [dGV08], and modes of vibration
[HWAG09], are often held to some degree locally by the
segments but not by the overall surface. These properties are
difficult to capture through pairwise affinities of surface ele-
ments or generative model approaches.

All these approaches have intrinsic limitations corre-
sponding to their category. Affinity-based methods require
that it be possible to evaluate the objective function for pairs
of surface elements. This may be difficult for functions that
require a larger shape context to sensibly evaluate, such as
being developable or co-axial. Moreover, these approaches
are not amenable to optimizing heterogenous objectives, e.g.
one part being convex and the other concave. Approaches
based on generative models, unfortunately, are also not ap-
plicable to some common segmentation objectives such as
convexity or symmetry that are hard to formulate genera-
tively. Finally, property-based approaches tend to be specifi-
cally tailored to produce homogeneous segmentations, i.e. in
which all parts possess the given property. Recent surveys of
segmentation algorithms [AKM∗06, Sha08] show extensive
research addressing a wide range of segmentation criteria but
also a lack of general, automated frameworks to heteroge-
neously combine existing and new segmentation criteria.

3 Multi-objective shape segmentation

While current approaches work well for their intended appli-
cations, the incorporation of object- and application-specific
knowledge can result in better quality and consistently la-
beled segmentations (see Fig. 6, 7 and 9).

Implementing a segmentation algorithm from scratch is a
non-trivial task beyond the capability of most users. Users
can thus convey domain knowledge to a general segmen-
tation framework either by providing example labeled seg-
mentations [SSSCO08], or by encoding this knowledge us-
ing a set of geometric objective functions. In this paper we
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Convexity Narrow handle Combination

Liu and Zhang Kraevoy and Sheffer Simari and Singh
Spectral Embedding Convexity Ellipsoidal primitives

Figure 1: Above: Our multi-objective approach. Left: op-
timizing for convex parts. Center: optimizing only for the
narrowness of the handle. Right: optimizing a combina-
tion of these objectives and perpendicularity between head
and handle. See Sec. 8. Below: Alternative approaches
[LZ07, KJS07, SS05].

take the latter, novel approach by providing a general multi-
objective segmentation and labeling framework and a work-
ing set of useful geometric objectives (see Fig. 13) that users
can combine or augment to suit their application. Each part
of a segmentation description is uniquely identified by a
label and a multi-objective function that geometrically de-
scribes the part and (possibly) its relation to other parts. Ob-
jectives for a labeled part may thus be unary (eg. narrow,
flat, symmetric convex, compact, developable), binary (eg.
perpendicular to, bigger than, adjacent to), or n-ary (eg. par-
allel, coaxial, similar in size).

As a simple example, consider a hammer. This object is
defined by Merriam-Webster as “a hand tool consisting of a
solid head set crosswise on a handle and used for pounding.”
This naturally suggests two segmentation labels: handle and
head. Moreover, it suggests the segmentation objective that
the part labeled head be perpendicular to the part labeled
handle. Our knowledge might further suggest that the parts
should be approximately convex and that the part labeled
handle should be narrow. The effects of incorporating multi-
ple objectives into the segmentation of a hammer shape can
be seen in Fig. 1.

Given a segmentation description, shape segmentation
can be cast as an optimization that minimizes an aggregate
objective function which combines, as the sum of squares,
the objective functions describing each part label. The seg-
mentation optimization algorithm thus decoupled from its
labeled description has the following characteristics: 1) Het-
erogeneous objectives for different part labels allows these
parts to be distinguished from each other and overcomes
the drawback of a homogenous segmentation criterion as-
sumed by existing segmentation techniques. 2) The objective
functions are evaluated on fully instantiated segmentations,
avoiding the need of affinity-based approaches to evaluate
objectives sensibly on single face pairs. 3) As long as objec-
tive function evaluation is possible, a generative model is not
strictly necessary (though certainly possible). 4) The frame-
work easily allows for assertions not just about parts but of
inter-part relations using n-ary objectives. 5) Users wishing
to define a new segmentation description can select from a

Standard Voronoi partition Weighted Voronoi partition

Figure 2: Comparison of the standard Voronoi partition
induced by a random set of points and the multiplicatively
weighted Voronoi partition induced by points with the same
locations but varying associated weights.

set of existing objective functions (see Sec. 8) and new ob-
jective functions seamlessly integrate into the framework.

4 Parameterizing segmentations

In order to optimize a segmentation with respect to an ag-
gregate objective function as described above, we need to
be able to describe segmentations by means of some set of
parameters. The set of all possible segmentations can be pa-
rameterized directly by a vector indicating the segment label
of each face explicitly, but such a parametrization would be
cumbersome, since the vast majority of the segmentations
would be undesirable, being unconnected, having compli-
cated boundaries, etc. We would also like to avoid a surface
parametrization, since this is its own difficult problem, and
places topological constraints on the shape representation as
well as introducing distortion.

We thus propose the use of a Voronoi space partition to de-
fine the surface segmentation of an embedded shape. A set
of 3D points, each corresponding to a part label, naturally
induces a segmentation on the shape by classifying each sur-
face element according to the Voronoi region it occupies. We
classify polygon faces based on their centroid but a segmen-
tation at sub-face resolution can also be defined.

A natural limitation of this representation is that Voronoi
regions are only capable of describing planar boundaries.
Augmenting the centers with a distance scaling weight al-
lows curved boundaries and non-convex regions. Formally,
a point p’s distance to a center c with weight w is given
by ||p− c||/w. The result is known as a multiplicatively
weighted Voronoi partitioning [OBSC00] (see Fig. 2 and 4).

Ensuring segment connectedness: The set of Voronoi
points and weights defines a continuous-domain
parametrization over a subset of all possible surface
segmentations. In practice, the compact shape of Voronoi
cells naturally tends to induce connected and compact
surface segmentations. It is, however, possible to obtain
disconnected segments. To achieve connectivity we use a
priority queue flooding scheme as introduced by Cohen-
Steiner et al. [CSAD04] and successfully used in at least
one other segmentation approach [SS05].
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Initial seg. Optimized seg. Corresponding seg.
in MDS in MDS in initial shape

Figure 3: Segmentation induced by the partition in MDS
space is easily mapped through correspondence with the
original shape. See Sec. 8 and Fig. 13 for objective details.

Segmenting shapes under complex articulation: As ex-
pected, surface elements within a Voronoi region will tend
to be proximal in Euclidean space. For many desired sur-
face segmentations, however, geodesic proximity is more
important than Euclidean proximity. While ensuring seg-
ment connectivity alleviates the problem of geodesically dis-
tant surface elements belonging to the same segment, it does
not address the fact that a part with complex articulation
may be hard to capture using a single Voronoi cell. We
address this concern using MDS as a pre-processing step,
which has proven useful in other segmentation approaches
[KLT05, LZ07]. We pre-compute all pairs of approximate
geodesic distances between surface elements (using shortest
paths on the connectivity graph) and then use MDS to find a
3D Euclidean embedding of the shape with these distances.
The result is an unfurling of articulation such that Euclidean
distances in the embedded shape approximate geodesic dis-
tances in the original shape. One may now find a weighted
Voronoi partition in the MDS space and optionally evaluate
objective functions in this space or the original undistorted
one as is appropriate for the given objective. The resulting
segmentation is trivially mapped by element correspondence
to the original surface. Fig. 3 illustrates this approach by
cleanly segmenting a highly articulated octopus model. Fig-
ures 7 and 9 were also obtained using this technique.

5 Initial center placement

The first step in our optimization is to automatically find a
coarse initial placement of partition centers which will serve
as the initial guess for the optimization. We achieve this by
way of k-means clustering where k is the known number of
labels. This approach has the advantages of simplicity and
the fact that it produces a Voronoi partition by construction,
given that it is based on distance to cluster centers. It also
naturally produces compact, similarly-sized segments.

The centers are initialized using furthest point initializa-
tion: choose the farthest pair of surface points and then,
while centers remain to be initialized, select the point with
maximum closest distance to the points chosen thus far. If
adjacency information is available and connectivity of seg-
ments is desired, the classification step of the k-means al-
gorithm can be done using the previously-mentioned queue

Unlabeled Labeled and
K-means seeding Optimized result

Figure 4: Left: Result of k-means approach to initialization.
Right: Labeled and optimized result. See Sec. 8 and Fig. 13
for objective details.

approach. Should a segment become empty, we select as its
new center the surface element furthest from the current non-
empty centers. Initial segmentations resulting from this ap-
proach are illustrated in Fig. 3 (left), and 4 (left).

6 Assigning labels to segments

A set of partition centers induces a shape segmentation. In
many, though not all (see Sec. 8) cases, however, the seg-
mentation will refer to objectives of a heterogenous nature.
For instance, in the hammer example of Fig. 1 the narrow
objective term refers only to the segment labeled handle.
This means that labels must be assigned to each center prior
to objective evaluation, as different labelings produce differ-
ent objective function values. When there are relatively few
labels and the objective is not computationally expensive,
an exhaustive approach of all permutations may be feasible.
As the number of segments grows, this approach quickly be-
comes intractable. In the following, we present two alterna-
tives to address this labeling problem.

Optimal unary objective labeling

If the segmentation makes use of only unary objectives, or
if we consider only the set of unary objective terms for the
purposes of addressing the assignment problem, it is possible
to efficiently find an optimal labeling.

Assume that for each label j we have a set of k unary
objective terms µ j,1,µ j,2, . . . ,µ j,k. We can build an n×n cost
matrix C such that

Ci, j = ∑
k

µ j,k(i)

which represents the cost of assigning label j to the part as-
sociated with center i for all i, j pairs.

Given this cost matrix, we can now cast part labeling as an
assignment problem which can be optimally solved in O(n3)
by the Hungarian algorithm [Kuh55, Mun57]. Given C the
algorithm will return an assignment vector a such that a[i] =
j indicates that the part associated with segment i should
receive label j to minimize the sum cost.
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Evolutionary labeling

When objectives of higher arity are involved, the problem
grows in complexity. In fact, binary objectives suffice to re-
duce the Traveling Salesman Problem (TSP) to our labeling
problem. Assume there are n cities and map them to single-
point segments. Further assume we have labels l1, l2, . . . , ln
indicating that the city labeled li should be the i-th visited
on the tour, and that the binary objective dist(li, l j) denotes
the distance between the cities labeled li and l j. The labeling
which minimizes the aggregate objective

n

∑
i=1

dist(li, l(i mod n)+1)

is the solution to the given TSP instance.

Thus motivated, we address the n-ary objective labeling
problem with an evolutionary approach. Such approaches
have had success in the past with problems such as TSP and
other ordering problems [Mic98].

An individual in our population is naturally represented
using permutation encoding: a vector x of length n where
x[i] = j indicates segment i will receive label j. The fit-
ness of an individual will be determined by the value the
aggregate objective function takes when using the labeling
specified by the individual. We use tournament selection
as our selection strategy, in which a small random subset
of the previous population is considered and the individual
with highest fitness is selected. An individual can be mu-
tated by uniform-randomly selecting two of its entries and
interchanging them. Finally, given two individuals x1 and
x2, we can produce an offspring candidate y using uniform
crossover. In particular, we generate a uniformly random bit
vector b and let y[i] := x1[i] if b[i] = 0 and y[i] := x2[i] if
b[i] = 1 unless x2[i] already appears in y from x1. After
crossover, any such conflicting entries are repaired, assign-
ing them randomly from the set of remaining (unassigned)
labels.

This evolutionary labeling approach is specified in Al-
gorithm 1. In particular we use a population size of 20, a
crossover fraction of 80%, a tournament size of 4, and typi-
cally achieve an optimal labeling in under 10 iterations.

Note that the labeling objective is free to differ from the
segmentation objective. The labeling objective may describe
part adjacencies and similarities, while the segmentation ob-
jective describes the desired final configuration of parts.

7 Segmentation optimization

Having addressed the matters of center initialization and la-
bel assignment, we now focus on segmentation optimization.
If wish to obtain a segmentation consisting of n segments, it
can be parameterized by a real vector x of dimensionality
m = 4n of the form

x = (x1,y1,z1,w1,x2,y2,z2,w2, . . . ,xn,yn,zn,wn)

Algorithm 1 Evolutionary optimal objective labeling
1: // Initialize population P
2: for i = 1 to populationsize do
3: P[i]← random permutation of the n labels
4: loop
5: // Evaluate fitness
6: for i = 1 to populationsize do
7: F[i] ← aggregate obj. function value with assign-

ment P[i]
8: Remember best fitness and individual so far
9: i← 1

10: // Generate crossover individuals
11: while i≤ crossoverfraction∗populationsize do
12: x1← tournamentselection(P,F)
13: x2← tournamentselection(P,F)
14: P′[i ++]← uniformcrossover(x1,x2) // w/repair
15: // Generate mutation individuals
16: while i≤ populationsize do
17: x← tournamentselection(P,F)
18: P′[i ++]← mutate(x)
19: P← P′
20: return individual with best fitness observed

where (xi,yi,zi) are the 3D coordinates of the i-th Voronoi
center and wi is its associated weight. The task is now to
search for a value of x that minimizes the aggregate objective
function when evaluated on the segmentation induced by x.

Gradient-descent approaches are not suitable given the
discrete nature of the surface representation: a center must
be altered sufficiently to induce a change in the classification
of at least one surface element. We instead choose general-
ized pattern search, which is a derivative-free, direct search
method [Tor97, AJ03].

Given a pattern size ∆, at each iteration the method eval-
uates the aggregate objective function at all 2m neighbors
formed by adding and subtracting ∆ to each coordinate of
the current x. If any such neighbor produces a lower objec-
tive value, the iteration is considered successful, x is updated
and ∆ is multiplied by an expansion factor. Otherwise, the
iteration is considered unsuccessful, no update of x occurs,
and ∆ is multiplied by a contraction factor. The algorithm
terminates when ∆ falls below a given threshold. In particu-
lar, we use an initial ∆ of .2d where d is the shape’s bounding
box diagonal, an expansion factor of 1.2, a contraction fac-
tor of .5 and a ∆ threshold of 10−4d. We typically observe
convergence in fewer than 50 optimization iterations.

Symmetry constraints: Recent methods allow for the
robust automatic detection of symmetries in 3D shape
[KFR04, TW05, SKS06, MGP06, PSG∗06] and, whenever
possible, shape processing algorithms should leverage this
redundancy. An advantageous property of our framework
for parameterizing mesh segmentations is that it is easy to
apply symmetry constraints to optimization parameters. For
instance, if one segment is known to be symmetric to an-
other, then the latter’s Voronoi center position and weight
can be generated by symmetry from the first. If a segment is
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Symmetry Convexity Integrated

Figure 5: Our approach can easily be used to segment by
multiple objectives hierarchically.

known to lie on a plane of global symmetry, then its Voronoi
center can be constrained to lie on the plane. The advantages
of exploiting this known redundancy are two-fold: first, if
a shape is known to have a certain global symmetry, then
the segmentation is assured to have the same symmetry by
construction. Second, the dimensionality of the optimization
domain is reduced by removing parameters which can effec-
tively be generated from others. The user need only provide a
constraint function which takes in the non-redundant param-
eters and produces the others from known symmetry. Fig. 4
illustrates this in our results on bird models by constraining
one wing to be symmetric to the other and the body and tail
to lie on the plane of global symmetry.

Hierarchical segmentation: Our approach can easily be
used to segment by multiple objectives hierarchically. Fig. 5
illustrates a case where we first segment to maximize planar
symmetry of parts, then by convex components, and then in-
tegrate the result. In Sec. 8 we will also describe how our ap-
proach can be used to obtain hierarchical bounding volumes
for path tracing acceleration (Fig. 8) as well as a seman-
tically meaningful hierarchical segmentation of humanoid
characters (Fig. 9).

8 Applications

Our framework and the following applications were imple-
mented in Matlab. Labeling plus optimization time is ~3
min. per segmentation on average, but of course this will
depend on mesh density, the objective functions used, and
the efficiency of their implementation. All experiments were
run on a Pentium M 2.13Ghz processor with 2Gb RAM.

Semantically meaningful segmentations

Fig. 1, 3, 4, 6, 7, and 9 show examples of semantically mean-
ingful segmentations and associated labelings obtained us-
ing our method. The decompositions are determined by user-
specified objectives which encode a description of the parts
of the model and their interrelations (see table in Fig. 13).
We now define the objective function terms used to describe
these segmentations.

Liu and Zhang – Spectral Embedding

Kraevoy and Sheffer – Convexity

Simari and Singh – Ellipsoidal primitives

Multi-objective – Labeled and optimized

Figure 6: Result of applying our approach (bottom row) to
bird models compared to the approaches of Liu and Zhang
[LZ07], Kraevoy and Sheffer [KS06] and Simari and Singh
[SS05]. Note how our approach achieves semantic consis-
tency across shapes. See Sec. 8 and Fig. 13 for objective
details.

Given a segmented surface, let P be the segment asso-
ciated with a given label. Define P.scalei, i ∈ [1,3] as the
part’s scales resulting from PCA, i.e. as the square root of the
eigenvalues of the surface’s 3× 3 covariance matrix, sorted
in descending magnitude. We define the following unary ob-
jectives named according to their corresponding adjective:

narrow(P) :=
.5(P.scale2 + P.scale3)

P.scale1

flat(P) := .5
(

P.scale3

P.scale1
+

P.scale3

P.scale2

)
compact(P) := 1−narrow(P)

Let us further define P.c as part P’s centroid and P.axisi,
i ∈ [1,3] as the part P’s i-th normalized eigenvector also re-
sulting from PCA. We may then define the objectives

planarsymmetric(P) := min
i

surfdist(P, reflect(P,P.c,P.axisi))

ellipsoidal(p) := surfdist(P,covarellipsoid(P))

We define surfdist(S1,S2) as the sum of area-weighted
squared distance of points from S1 to S2 normalized by the
total area of S1 and by its bounding box diagonal length.
In turn reflect(S, p,~n) represents the planar reflection of sur-
face S about the plane determined by point p and normal
~n. This is similar to the symmetry metric used by Simari
et al. [SKS06] but is non-iterative. Naturally, we define the
covarellipsoid(P) as the covariance ellipsoid of part P deter-
mined by its centroid, and PCA scales and axes.

Let us also define the following n-ary objectives that refer
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Liu and Zhang – Spectral Embedding

Kraevoy and Sheffer – Convexity

Simari and Singh – Ellipsoidal primitives

Multi-objective – Labeled and optimized

Figure 7: Comparison of our approach to the result of ap-
plying Liu and Zhang [LZ07], Kraevoy and Sheffer [KS06]
and Simari and Singh [SS05]. Note that in our results the
head, body and legs are consistently segmented and labeled
across models. Leg labels are considered interchangeable.
See Sec. 8 and Fig. 13 for objective details.

to label interrelations. Specifically

perpendicular(P1,P2) := |P1.axis1 ·P2.axis1|

similarsize(P1,P2, . . . ,Pk) :=
1
d ∑

i
||Pi.scale− ŝ||

where d is the global surface’s bounding box diagonal,
Pi.scale refers to the part’s entire 3× 1 scale vector and
ŝ = 1

k ∑i Pi.scale.

Finally we define the global objective

convexparts(Seg) :=

(
1
V

∣∣∣∣∣
(

∑
P∈Seg

H(P)

)
−V

∣∣∣∣∣
) 1

3

where Seg refers to the segmentation, H(P) is part P’s con-
vex hull volume and V is the volume enclosed by the total
original surface.

Fig. 13 describes the specific objectives and constraints
(where applicable) used in each of the results of Fig. 1, 3, 4,
6 7 and 9. The first four were automatically labeled using the
optimal unary approach while the last two were done using
the evolutionary approach. Objective weights were found ex-
perimentally by trial and error, though there was not need of

Figure 8: Comparison of average number of triangle inter-
sections per pixel computed (on log10 scale) as a function
of axis-aligned bounding box hierarchy depth. Curves cor-
respond to octree (red) and our method’s results when op-
timizing volume tightness (green) and a combined objective
of volume tightness and uniform partitioning (blue).

much refinement. Note that they do not change per model,
but rather are kept fixed for all models in a class.

Bounding volume hierarchies for path tracing

Bounding volume hierarchies are often used to accelerate
path tracing. A common way to obtain such hierarchies is
through the use of an octree which at each level divides the
space into axis-aligned octants through the object’s centroid.

We use our segmentation approach to obtain axis-aligned
bounding box hierarchies by segmenting a model using an
objective which optimizes bounding volume tightness:

bbox1(Seg) := ∑
P∈Seg

AABB(P)

where AABB(P) is P’s axis-aligned bounding box volume.

Alternatively, our method allows us to optimize bounding
volume tightness simultaneously with distribution of faces:

bbox2(Seg) :=

(
1

H(P) ∑
P∈Seg

AABB(P)

) 1
3

+ cv({|P| : P ∈ Seg})

where H(P) is P’s convex hull volume and cv is the coef-
ficient of variation defined as the ratio of the standard devi-
ation to the mean of a set. This term favors segmentations
where all segments have a similar number of faces.

Fig. 8 shows a comparison of the bounding boxes ob-
tained with octree partitioning and those obtained by our
method using either objective on three scenes. In each case,
we show an order of magnitude improvement in triangle in-
tersection tests per pixel rendered, with the combined objec-
tive function showing further improvement over the single
objective. Note that in this application labeling is unneces-
sary since the objectives are homogenous to all parts.
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Figure 9: Top: Our multi-objective segmentation consistent across models. Center (blue): Resulting skeleton placement us-
ing part and part-boundary centroids. Bottom (red): Skeleton placement of Baran and Popović. See accompanying video for
comparison of resulting animations. See Sec. 8 and Fig. 13 for objective details.

Automatic character rigging

Another useful application is that of correctly placing an ani-
mation skeleton, such as one available from motion capture,
onto a target mesh of roughly the same class, e.g. bipedal
humanoid. Baran and Popović [BP07] recently address this
problem in their Pinocchio framework. Pinocchio discretizes
the problem of embedding the skeleton by constructing a
graph whose vertices represent potential joint positions and
whose edges are potential bone segments. These vertices are
found by packing spheres computed from the medial surface.
Then, the method learns a good embedding of the skeleton
into the graph and gradient descent method is used to refine
the skeleton.

We propose an alternative approach using our multi-
objective segmentation framework. Given a humanoid
mesh:

1. Perform an MDS embedding as described in Sec. 4 to
undo any articulation and perform a few steps of smooth-
ing to remove high frequency detail that is not relevant to
the coarse-level segmentation.

2. Segment the result into six parts according to a descrip-
tive set of objectives, the part labels being head, torso,
arm_left, arm_right, leg_left, and leg_right. The labeling
objective asserts part adjacencies as well as similarity be-
tween the two arms and similarity between the two legs.
The segmentation objectives then assert part properties
and interrelationships as detailed in Fig. 13. Left and right
are disambiguated assuming a close-to-canonical orienta-
tion (as Baran and Popović also do).

3. Each part is then decomposed hierarchically (see Sec. 7)
in the original space into regions by means of convexity.
Arms are segmented into upper arm, forearm, and hand.
Legs are segmented into upper leg, lower leg and foot.
The torso is segmented into chest and abdomen. These
subparts are easily and unambiguously labeled based on
geodesic proximity to the torso , in the case of the arms
and legs, and to the head in the case of the chest and ab-
domen.

These objectives and hierarchy result in the segmentations
shown in the left column of Fig. 9. Note the consistency
achieved across a range of varied models using a general
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Figure 10: Left: A character with deformers associated to its clothing. Right: Clothing scaled and transferred automatically
onto the semantically correspondent places.

set of objectives which describe what we know about hu-
manoids and the animation skeleton.

The animation skeleton can now be easily placed accord-
ing to this segmentation. The joints corresponding to the
head, chest, abdomen, hands and feet are placed at the cor-
responding part centroid. Joints corresponding to shoulders,
elbows, hips, knees, ankles, and mid-body are placed at the
centroid of the corresponding part boundaries. The second
row of Fig. 9 shows in blue the skeleton placement that re-
sults form our segmentations.

For comparison, the third row of Fig. 9 shows in red the
skeleton placement produced by Pinocchio. Comparison of
resulting animations can be seen in the accompanying video.
Our approach results in similar placements for well posed
characters, such as the first two. However, our approach
needed no training since it directly received the user knowl-
edge in the form of the segmentation objectives. Moreover,
as can be observed, our approach much better handles char-
acters under articulation as well as those with large vari-
ations in part proportions and locations such as the dino
model. On the other hand, our approach will naturally fail
when expected parts are not present, whereas Pinocchio can
still produce a result in these situations. We thus see the two
approaches as complementary.

Automatic character dressing

Another compelling application of the semantically-labeled
humanoid characters above is the ability to automatically
clothe such characters. Clothes and accessories parametri-

cally defined on a segmented and labeled mannequin can be
easily transferred to dress a new character.

Accessories such as the hat and shoes (see Fig. 10) are de-
fined with respect to parts such as the head and feet on the
mannequin. Dressing a given semantically-segmented char-
acter with a desired accessory requires transforming it to the
correspondingly labeled part. We define this as the affine
transform that maps the oriented bounding box (OBB) of
the mannequin’s part to the OBB of the corresponding part
on the given character.

Clothing such as the shirt and shorts (Fig. 10) and acces-
sories that drape across parts are first coarsely deformed to
fit the new character and then relaxed by simulation to drape
naturally. We automatically fit spline curves to the bound-
aries of the parts that the item of clothing drapes over. These
corresponding curves (left of Fig. 10) on the mannequin
and target character define a wire deformation [SF98], that
coarsely reshapes the clothing around the new character. To
ensure that the entire item of clothing is deformed, the radius
of influence of the wire curves is set conservatively large to
1.5 times the largest bounding box dimension of its adjacent
parts on the mannequin. Finally, a cloth simulation drapes
the coarsely fitted clothing over the target character.

The results on three characters, female, armadillo and
muscleman, are illustrated at the right of Fig. 10. As can
be seen, in the case of the armadillo the transfer only works
well for the shoes and not the shirt and hat, understandably,
because of the oddly shaped torso and protruding ears. The
coarse fitting of the shorts cause the tail to protrude resulting
in the shorts relaxing over the body with a protruding tail.
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Figure 11: Our spatial parametrization can easily handle
polygon-soup models by ignoring mesh connectivity. Here
we segment such a model into convex parts. Closeups show
non-manifold regions with interpenetrating faces and small
disconnected components. Such a model could not be han-
dled by current methods that require manifold geometry.

9 Limitations and future work

We recognize that there are classes of objects which our
parametrization might have difficulty with and its limitations
with respect to complex boundaries (Fig. 12). Our approach
captures simple boundaries and more complex boundaries
could be addressed in a refinement pass using min-cuts or
active contours, for example.

We can perhaps look at this parametrization with the anal-
ogy of spatial volume-based vs. surface-based deformation
techniques. Both have pros and cons and have been the sub-
ject of ongoing research for over 25 years. This is the first
volume-based segmentation parametrization approach and is
likely to stimulate further research in this direction. It also
shares pros and cons analogous to those of volume-based de-
formations. It is simple and compact (a vector of 4k scalars,
where k is the number of segments) and decouples the seg-
mentation search from the surface resolution-dependent ob-
jective function evaluation (most objectives we use are O(n),
where n is the number of surface elements).

Our approach is surface representation-agnostic, works
with non-manifold or disconnected objects (Fig. 11), can ad-
dress non-zero genus shapes (Fig. 12), and we show it to
work well on examples typical to segmentation literature. As
with the many extensions on the original box-shaped FFDs
we expect work subsequent to this paper to be able to capture
richer volume shapes with more complex boundaries.

We show our results on what could be considered a rel-
atively low number of parts. However, in many real-world
applications this is more than sufficient, especially (as we
show) when the method is applied hierarchically. We present
practical results across several such applications and show
them to compare favorably to state-of-the-art methods.

Manual intervention, allowing for user placement of ini-
tial segmentation parameters, can be added to our system
with no conceptual difficulty. In our work, user input can
help with both the segmentation and labeling. Our goal,
however, is to be able to consistently label and segment not
one, but entire classes of objects, and our approach is the
first to automate this process based on multiple heteroge-
neous black-box objectives.

Figure 12: Left: Our spatial parametrization can segment
shapes of non-zero genus. Right: Our approach captures
simple boundaries. More complex boundaries could be ad-
dressed in a refinement pass using, e.g. min-cuts or active
contours. Both models are segmented for convex parts.

The formulation of the objective functions is not an au-
tomated process. However, a single weighted combination
of simple objectives, once defined, can suffice to segment
and label an entire class of objects, as illustrated by Fig.
6, 7, and 9. While the objective functions we provide have
intuitive meaning and are easy to reuse, we acknowledge
that the choosing of these objectives and the fine tuning of
their weights can be made more user friendly, or perhaps
be learned using statistical methods from a set of human-
segmented models [CGF09]. We hope to address this in the
future.
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