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Abstract
The notion ofpartsin a shape plays an important role in many geometry problems,including segmentation, cor-
respondence, recognition, editing, and animation. As the fundamental geometric representation of 3D objects in
computer graphics is surface-based, solutions of many suchproblems utilize a surface metric, a distance function
defined over pairs of points on the surface, to assist shape analysis and understanding. The main contribution
of our work is to bring together these two fundamental concepts: shape parts and surface metric. Specifically,
we develop a surface metric that is part-aware. To encode part information at a point on a shape, we model its
volumetric context – called the volumetric shape image (VSI) – inside the shape’s enclosed volume, to capture rel-
evant visibility information. We then define the part-awaremetric by combining an appropriate VSI distance with
geodesic distance and normal variation. We show how the volumetric view on part separation addresses certain
limitations of the surface view, which relies on concavity measures over a surface as implied by the well-known
minima rule. We demonstrate how the new metric can be effectively utilized in various applications including mesh
segmentation, shape registration, part-aware sampling and shape retrieval.

Categories and Subject Descriptors(according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Boundary representations, Geometricalgorithms, languages, and systems

1. Introduction

The fundamental geometric representation of 3D objects in
computer graphics is surface-based. Solutions of many prob-
lems involving the analysis and understanding of a 3D object
utilize a metric, which prescribes a distance function overthe
boundary surface of the object. Shape decomposition, con-
struction of shape signatures, sampling, and surface param-
eterization are all examples where a surface metric would
play a role. Typically, finding the right metric which cap-
tures the essence of the problem at hand is the key.

Well-known surface metrics include geodesic [Car76] and
isophotic [PHHH04] distances, where the latter measures
angles between surface normals; a combination of the two is
also common [LZH∗07]. Anisotropic geodesic metric based
on curvature tensor is also considered in [SJC08] for para-
metric surfaces. Another metric receiving recent attention
is diffusion distance [dGGV08], which accounts for the de-
gree of connectedness, over the surface, between two points.
Moreover, one can always derive a discrete distance func-

tion for mesh primitives by assigning attributes to primitives,
defining edge weights between adjacent attributes, and fi-
nally computing distances over the shortest paths in the pri-
mal or dual graph of the mesh, such as the one employed
in [KT03] for segmentation. We adopt this strategy in this
paper. Since the resulting distance function is the shortest
graph distances, it is indeed ametric that satisfies positive
definiteness, symmetry, and the triangle inequality.

1.1. Motivation and contribution

In this paper, we develop a surface metric that is part-aware.
Our work is motivated both by the wide-ranging use of sur-
face distance functions in geometry processing and the im-
portance of shape parts in object recognition [Heb49,HR84].
Beyond recognition tasks, the ability to infer part informa-
tion from a shape has proven to be useful in a variety of
other applications, e.g., segmentation [Sha08], skeleton ex-
traction and animation [dGGV08,SSCO08], and mesh edit-
ing [GSP∗07,KJS07]. However, no surface metric employed
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(a) geodesic (b) diffusion

(c) geodesic+angular (d) part-aware metric

Figure 1: Iso-contours for four metrics: 10 contours sam-
pled up to maximum distance from source (red dot). (a)-(b)
Geodesic and diffusion [dGGV08] distances are insensitive
to curvature and the perceived part boundary over the flat
region indicated by the arrow. (c) Angular distance [KT03]
senses concavity, but not part boundary over flat region. (d)
Part-aware metric senses the whole part boundary.

so far explicitly encodes part information. Figure1 presents
a comparison between some previous surface metrics and
ours, on a synthetic “T” shape. The iso-contour plots clearly
show that only our metric fully senses the boundary of the
bottom part of the shape.

Our part-aware metric is able to improve the performance
of shape analysis algorithms which rely on a surface metric;
its advantages are shown via several example applications.

1.2. Overview of approach

As the concept of a “part” is not well-defined, the definition
of a part-aware metric is challenging. Popular techniques to
capture parts are based on theminima rule[HR84], which
induces part boundaries alongconcave creases. A standard
realization of the minima rule is based on measuring surface
properties, such as curvature or dihedral angles. However,
these measures are limited by their local surface nature. In
particular, local surface concavities do not completely char-
acterize part boundaries, as exemplified by the flat region
(indicated by the arrow) shown in Figure1(a): we see no
surface concavity over the perceived part boundary.

Our key observation is that although separation between
parts inevitably involves concavity, to capture it one is not re-
stricted to surface measurement. The inherent limitation of
surface measurement can be addressed from a more global
and volumetric view for part analysis. This leads to the re-
alization that shape concavity can be manifested inside the
shape’s volume via occlusion or visibility considerations.

Specifically, we examine a 3D object from within its en-
closed volume and measure the visibility of the object sur-
face from appropriately chosen reference points in the vol-

Figure 2: Plot (blue curve) of VSI differences as a point
(red dot) moves along the white curve on the surface. Visible
regions at reference points (blue dots) are painted in green.
(a)-(b): Gradual change of visible region and VSI (difference
≈ 0) while in the bottom part. (c)-(d): Large change near
part boundary. (d)-(e): Gradual change while in top part.

ume. Unlike a “part”, a visible region is clearly defined.
Since parts are generally convex, the visible regions from
within a part remain stable or change only gradually while
moving inside the part. In contrast, when moving across a
part boundary to another part, the visible region undergoes
large change due to concave regions separating the two parts.
To quantify the visible regions, we define a surface attribute,
the Volumetric Shape Image(VSI), by linking surface ele-
ments to inner reference points and measuring surface visi-
bility at those points. In Figure2, we show how visible re-
gions and VSIs change for the “T" shape along a path on the
surface. Employing VSI as a signature to measure distances,
we are able to build a part-aware surface metric.

2. Related work

One can find many uses of surface metrics in geometry pro-
cessing. Gatzke et al. [GGGZ05] rely on geodesic distances
to construct the curvature map signature for shape match-
ing. Lai et al. [LZH∗07] combine geodesic and isophotic dis-
tances into a feature-sensitive metric for sampling, remesh-
ing, and multi-scale feature selection. In shape retrieval, dif-
ferent metrics have been used to derive global shape de-
scriptors, such as shape distribution [FMK∗03] and average
geodesic field [GSCO07].

A classical application of surface metrics is mesh segmen-
tation [Sha08]. Both region growing [PKA03] and cluster-
ing, e.g., fuzzy [KT03] or spectral clustering [LZ04], rely
on a surface metric. Spectral clustering is representativeof
a class of algorithms where intrinsic metrics are used to set
up an affinity or Laplacian matrix. Eigenvectors of the ma-
trix then transform the original shape into particular embed-
dings suitable for the application at hand. Examples include
bending-invariant signature for shape retrieval [EK03], spec-
tral shape correspondence [JZvK07], and intrinsic symmetry
detection [OSG08].
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Recently, de Goes et al. [dGGV08] adopt diffusion dis-
tance to segment articulated bodies. The diffusion distance
considers more global information than the geodesic and
isophotic distances. Modeled using random walk, it mea-
sures the connectedness between points over the surface,
making itself suitable for segmentation. However, it is still
purely surface-based and does not account for volumetric
information explicitly. The latter goal is partially accom-
plished by the local reach [DZM08] and theshape diame-
ter function(SDF) [GSCO07,SSCO08]; both are scalar at-
tributes. However, unlike VSI, local reach reflects only the
thicknessof local volume and SDF does not capture the gen-
eral volumetric context either. An existing volume-oriented
surface metric is inner distance [LJ07], which measures the
shortest distance between two surface points inside the vol-
ume; it is pose-invariant but not part-aware.

Any work on shape segmentation has to face the ques-
tion of how to define a part or part boundary. Besides requir-
ing approximate convexity of parts [LA07], one of the best
known rules for part analysis is the minima rule [HR84];
it characterizes part boundaries as negative curvature min-
ima. By definition, the minima rule is typically realized via
curvature measurements, which have so far been predomi-
nantly surface-based [KT03, LZ04, LLS∗05, PKA03]. Vol-
umetric considerations for part analysis on the other hand,
e.g., the SDF [SSCO08], appear to be more closely linked to
skeletal shape representations [CM07,SP08].

Shape parts can be identified from a 1-D skeleton based on
its branching structures and local radii [LTTH01,ATC∗08].
However, defining and computing such a skeleton are not
easy tasks [CM07]. Also, the skeleton and radius function
typically only induce a rough partition and the final cut still
needs to be computed on the surface [ATC∗08].

3. Geodesic and angular distances

Our part-aware metric combines three measures: geodesic,
angular, and VSI distances. As we are interested in a surface
metric, the input shape is assumed to be a manifold triangle
mesh. However, our algorithm tolerates meshes with bound-
aries, as long as their volume is reasonably well-defined.

We first describe the angular and approximate geodesic
distances, following the treatment of Katz and Tal [KT03]. In
the following, we develop the concept by making use of the
dual graph of a mesh, whose nodes are the mesh faces. Note
that we can also work on the mesh primal graph similarly,
when an application needs to deal with vertices.

Denote byG̃ the dual graph and ˜ei j the edge incident to
nodespi and p j , which represent the centroids of facefi
and f j , respectively. Letpc be the midpoint of ˜ei j . The edge
weight of ẽi j is given by ||pi − pc||+ ||p j − pc||. We call
the resulting weighted graph the geodesic graphG̃g. The
geodesic distance between two faces is approximated by the
graph distance between their corresponding nodes inG̃g.

(a) geodesic (b) angular (c) VSI (d) VSI

Figure 3: Distance field plots on a synthetic “snake" model,
where red dots indicate sources. In (b), the blue curve shows
how the shortest path between the two parts can bypass the
concave region. This is the leakage problem and it makes an-
gular distance “part-unaware”, in contrast to VSI distance.

Angular distances can be obtained similarly by defining
an angular graph̃Ga. Given two adjacent facesfi and f j with
normalsni andn j , respectively, the weight of ˜ei j is given by
acos(ni · n j)/π, if fi and f j form a concave dihedral angle,
or 0 otherwise. Thus edges only assume weights in concave
regions: the more concave a region is, the larger the weights,
roughly in accordance with the minima rule [HR84].

However, the angular distance suffers from what we call
the leakageproblem, caused by defining edge weights us-
ing only local surface properties. Figure3 shows several
distance field plots on a synthetic “snake” model. In this
figure and throughout the paper we color plot scalar fields
by linearly interpolating the hue values in the HSL color
space; blue corresponds to small field values. Indicative of
the leakage problem, geodesic and angular distances pro-
duce almost indistinguishable results. In contrast, part-aware
distances measured by VSI exhibit clear separation between
parts. The leakage problem also causes the iso-contours, in
Figure 1(c), to cross the flat part boundary without “real-
izing" it. More comparisons between angular and VSI dis-
tances can be found in Figure7.

4. Part-aware metric

To better capture part information, we resort to another dis-
tance between faces that is defined via volumetric shape im-
ages (VSIs). To this end, we rely on a third graph, the VSI
graphG̃v. It is defined similarly toG̃g andG̃a, with the ex-
ception that its edge weights are derived using the VSIs,
from a more global and volumetric point of view. OnceG̃v is
obtained, we blend the three graphs together to produce the
final metric; see Section4.4.

4.1. Overview

The main observation is that visible regions as observed in-
side a shape’s volume provide strong hints for part transition;
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(a) (b) (c) (d)

Figure 4: Plots of visible regions as a point (red dot) travels
inside a shape. There is a large change in the shape of the
visible region as the point crosses the part boundary (b)-(c).

see Figure4 as well as Figure2 for example. While moving
inside a shape part, the visible region should remain stable
or only change gradually. We do not capture visible regions
from the surface, which may offer significantly different per-
spectives. We first normalize the perspective of these surface
points by mapping them to reference points inside the shape.
Such a normalization also alleviates problems of computing
visible regions from the surface due to surface noise. We
have found mapping surface points onto the medial sheet to
be a good choice; see Section4.2for details.

To measure differences between visible regions, merely
using their volumes is insufficient. We need a more descrip-
tive signature. There are many possible shape descriptors
one can consider [PSF04] or a straightforward approach is
to compute the actual visible regions and examine how much
they overlap. However a constraint we face is that the visible
region, generally a complex 3D polyhedron, is expensive to
compute. We thus resort to a sampling approach, to roughly
capture the shape of the visible region and arrive at a simple
signature that is efficient to handle.

Figure5 summarizes the steps to compute the VSI dis-
tance between two adjacent faces,fi and f j . In step 1, both
faces are mapped to their reference pointsr i andr j . In step
2, the visible regions atr i andr j are sampled into their VSIs,
Si andSj . In step 3,Si andSj are used to derive the distance
betweenfi and f j in graphG̃v.

4.2. Reference point construction

Give a point on the surface, its corresponding medial cen-
ter is the center of the maximal sphere inside the shape and
tangent to the surface at the point. To compute the reference
point r i for face fi , which is the medial center correspond-
ing to the centroid offi , we adopt the simple ray-shooting
technique of Shapira et al. [SSCO08].

Given a facefi with normalni , as shown in Figure5 (step
1), we use a cone with apex at the centroidci of fi and center
its axis along−ni . Multiple rays inside the cone, including
one along−ni , are cast into the shape. Denote byl j one of
the rays, and‖l j‖ its length inside the mesh. The approxi-
mate diameter of the maximal inscribed sphere touchingci

Figure 5: Three steps to compute VSIs and their difference.

at the surface isdi = argminj{‖l j‖/cosθ j}, whereθ j is the
angle betweenl j and−ni . The reference pointr i is the center
of that sphere with radiusdi/2, andr i = ci −0.5∗di ∗ni .

The ray casting approach can be sensitive to noise. To alle-
viate this problem, we restrict the cone opening angle to 80◦.
In addition, the resulting reference points are smoothed us-
ing Laplacian smoothing over a neighborhood graph, which
connects two reference points if their corresponding faces
are adjacent on the mesh or the points themselves are close
Euclidean neighbors to each other.

Note that we only compute the medial points roughly as
the reference points need not to strictly reside on medial
sheets. Computing rigorous medial sheets [CKM99, DZ02]
of polygonal shapes is quite involved and is not necessary
for our purpose. Figure6 shows two reference point sets.

4.3. Volumetric shape images

We sample the visible regions as seen from the reference
points and quantify their differences. From a reference point
r i , we send outm rays uniformly sampled on a Gaussian

c© 2008 The Author(s)
Journal compilationc© 2008 The Eurographics Association and Blackwell Publishing Ltd.



R. Liu & H. Zhang & A. Shamir & D. Cohen-Or / A Part-aware Surface Metric for Shape Analysis

Figure 6: Reference points (blue dots) computed for the
horse (40K faces) and dragon (50K faces) models.

sphere and collect the intersection points,s( j)
i ’s, between

the rays and the surface. Each intersection point is normal-

ized with respect to its reference point, i.e.,s( j)
i ← s( j)

i − r i .
The normalized intersection points are stored in a setSi =

{s(1)
i , . . . ,s(m)

i }, called the volumetric shape image (VSI) of
r i (or of fi). A largerm leads to better approximation of vis-
ible regions by VSIs, but at a higher complexity. We found
that settingm= 100 achieves a good trade-off between ac-
curacy and efficiency. Figure5 (step 2) shows the VSIs,Si
(red) of r i and Sj (green) ofr j . To avoid cluttering in the
figure, only 8 sampling rays are drawn.

Since the sampling ray directions are fixed in a global
coordinate system, two VSIs are naturally registered. We
may define the difference between two VSIs simply as:

diff(Si ,Sj) = 1
m ∑m

k=1‖s
(k)
i − s(k)j ‖

2, which tends to possess
large values near boundary regions due to dramatic visi-
ble region changes. Albeit meaningful, such a measure fails
to accommodate accumulated translation errors. Consider a
reference point moving within a large part. Though the slight
translations between adjacent moves generate only small
VSI differences, such small differences are easily accumu-
lated up along the way. This can be observed from the signif-
icant difference betweenSi andSj , as illustrated in Figure5
(step 2), despite that bothr i andr j are within the same part.

We have observed that the reach of a local volume along a
certain direction, measured from reference points, is in gen-
eral a more stable measurement. Figure5 (step 3) attests to
this observation, in which we see that the reach of the vol-
ume of the lower part along the four directions are almost the
same, even thoughr i andr j are distant. To exploit this prop-
erty, we pickm sampling rays in opposite directions (m/2
ray pairs). Suppose that the two intersection points of a pair
of rays are arranged consecutively inSi , we define the dif-
ference between the VSIs as

diff(Si ,Sj ) =
1

∑k wk

m/2

∑
k=1

wk

(

l (k)i − l (k)j

)2
, (1)

wherel (k) = ‖s(2k−1)−s(2k)‖ is the local reach along thek-
th direction. Weightswk’s are designed to penalize outliers:

as VSI is discrete, not all(l (k)i − l (k)j )2 may truthfully reflect
the difference of the visible regions. To tackle this problem,

(a) hand (b) horse (c) dragon

Figure 7: Angular (top row), SDF (middle row), and VSI
(bottom row) distance fields on various models.

we fit a Gaussian to the distribution of such values and set

wk =

{

e−(dk−u)2/(2σ2) if dk < u+2σ
0 elsedk ≥ u+2σ

, (2)

wheredk = (l (k)i − l (k)j )2, u is the mean, andσ is the standard
deviation. Accordingly, values are weighted based on their
frequencies. Outliers falling two deviations above the mean
are ignored.

With edgeẽi j in graphG̃v weighted by diff(Si ,Sj), the
VSI distance is merely the shortest graph distance inG̃v.
Two such distance fields have already been shown in Fig-
ure 3(c, d). In Figure 7, we compare VSI distance to
both the angular distance and the shape diameter function
(SDF) [SSCO08]. Faces with similar SDF values tend to be-
long to the same part. Hence, it is natural to consider an
SDF distance in a similar way, by defining the weight of ˜ei j
as|sdf( fi)− sdf( f j )|, where sdf( fi) denotes the SDF value
at face fi . From these examples, we see that the VSI dis-
tance stays fairly stable within parts, and induces large jumps
across part boundaries. It outperforms both the angular dis-
tance and the SDF distance.

Note that the VSIs can be computed for open meshes as
well, so long as the mesh volume is reasonably well-defined.
This is achieved by simply ignoring rays that do not intersect
the surface. The hand model in Figure7 is an open mesh.

To speed up the intersection tests required by computing
reference points and VSIs, we voxelize the space. When a

c© 2008 The Author(s)
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input mesh is dense, we further speed up the processing by
computing VSIs for only a small set of reference points and
interpolating for nearby ones. For example, computing VSIs
for the dragon model (Figure6) takes about 15 seconds.

4.4. Combining distances

With the geodesic graph̃Gg, angular graphG̃a and VSI
graphG̃v, we build the combined graph̃Gc as

G̃c =
(

α⊗ G̃g
)

⊕
(

β⊗ G̃a
)

⊕
(

γ⊗ G̃v
)

, (3)

whereα+β + γ = 1 and 0≤ α,β, γ≤ 1. Operator⊗ multi-
plies the edge weights of a graph by a scalar, and⊕ blends
two graphs by summing up the weights of corresponding
edges. Our final part-aware metric is defined as the short-
est graph distances between the nodes ofG̃c. Note that as
the three graphs encode different types of information, their
edge weights must be normalized first. To this end, we lin-
early normalize the edge weights of each graph to[0,1].

For the part-aware metric, the parameters,α, β andγ, con-
trol the relative importance of the three distances, and their
setting is application-dependent. For example, in mesh seg-
mentation, we are primarily interested in a shape’s part struc-
ture; therefore we should emphasize the VSI distance. For
shape registration, however, the importance of the geodesic
distance ought to be increased, as both invariance to stretch-
ing (merit of VSI distance) and invariance to pose (merit of
geodesic distance) are desired. Note that the edge weights
in G̃g are biased towards 1 after the normalization, since the
majority of the edges or the faces of a mesh typically tend
to have similar sizes. However, this is not true for the edge
weights inG̃a andG̃v. For this reason,α will typically be set
to a small value in order for the other two distances to take
their effect.

5. Applications

In the this section, we apply the part-aware metric to several
geometry processing applications to illustrate its effective-
ness. Note that in each application, the weights,α,β, γ, of
the part-aware metric are fixed. Also, our goal herein is not
to design new algorithms, but to evaluate the effectiveness
induced by our part-aware metric to existing algorithms.

5.1. Shape segmentation

Shape segmentation [Sha08] is an important geometry pro-
cessing operation that has received a great deal of attention
in recent years. In this experiment, we show how our part-
aware metric helps improve the performance of certain seg-
mentation algorithms [KT03,LZ04].

Consider fuzzy clustering [KT03] as an example. The suc-
cess of the algorithm depends onfuzzyregions that cover in-
tended cut boundaries, as a cut is only extracted from within
fuzzy regions. Figure8 compares the fuzzy regions (red)

(a) geodesic+angular (b) part-aware metric

Figure 8: Fuzzy regions (red) produced by part-aware met-
ric tend to enclose the intended part boundary more tightly.

computed on two models using the original distance metric
from [KT03] and our part-aware one. In this experiment, we
compute a smallest fuzzy region which covers any intended
boundary. Thanks to its part-awareness, the fuzzy regions
obtained using our metric are smaller and more constrained
to the desired boundary regions. A smaller fuzzy region is
preferred as it facilitates the subsequent graph cut operation.

Spectral clustering [Wei99] is a popular clustering ap-
proach and its success relies on the quality of the distance
measure used. To test our metric in this aspect, we apply
it to spectral mesh segmentation [LZ04]. Briefly, we de-
rive pair-wise distances between mesh faces using our met-
ric, and compute an affinity matrix from these distances. The
eigen-structure of the affinity matrix is then utilized to build
an Euclidean embedding – called aspectral embedding– of
mesh faces, in which the standardK-means clustering algo-
rithm is applied to obtain a segmentation result. Since our
distance metric better reflects part structure in a shape, seg-
mentation quality is expected to be improved.

Figure9 shows several comparative segmentation results.
For sub-plots (a), (b) and (c), one can refer to the models’
VSI distance fields in Figure7. Pay attention to how the
boundary regions, either between the small finger and the
palm, between the horse’s front leg and the body, or between
the dragon’s tail and the body, induce significant distance
changes when VSI distance is used. Clearly, the part-aware
metric helps improve the segmentation quality in those re-
gions. For all these tests, we setα = 0.01, β = 0.195, and
γ = 0.795, to emphasize VSI distance. Geodesic distance is
not completely discarded since it helps produce smoother
part boundaries and prevents undesirably large parts from
being formed as well.

5.2. Shape registration

Shape registration or correspondence [CH03,JZvK07] is an-
other good example where a surface metric can become

c© 2008 The Author(s)
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(a) hand (b) horse (c) dragon (d) camel (e) cat (f) dilo

Figure 9: Segmentation results on various models. The top row shows results obtained using geodesic and angular distances
as described in [LZ04]; while the bottom row shows results achieved using our part-aware metric.

(a) homer (b) geodesic only (c) geodesic + VSI (g) registration of (b) and (e)

(d) stretched (e) geodesic only (f) geodesic + VSI (h) registration of (c) and (f)

Figure 10: Spectral embeddings and registration of the original (a) and stretched (d) homer models. Plots (b), (c) and (e),
(f) show, each from two different angles, the embeddings of the original and stretched homer with and without VSI distance.
The coloring implies the mapping between original mesh vertices and their embeddings. We see the embeddings in (c) and (f)
are much more similar to each other than those in (b) and (e) (especially for the feet), thanks to the stretch-invariance of VSI
distances. This helps the subsequent registration task, whose results are shown in (g) and (h).

useful. For such a task, bending-invariance [EK03] has
been successfully addressed, while stretch-invariance still
remains challenging. We consider the spectral correspon-
dence framework from [JZvK07] to investigate how the part-
aware metric could potentially improve shape registration.
We embed mesh vertices in Euclidean space and the regis-
tration is established by corresponding the embeddings using
the iterative closest point algorithm described in [BM92].

Figure 10 shows the derived embeddings of two homer
models. To focus on stretching, we purposely stretched the

left arm and the right leg of one homer. As stretching
changes the geodesic distance between vertices, the resulting
embeddings in (b) and (e) with geodesic distance are quite
different. In contrast, the VSI distance is more stable against
stretching. When it is combined with geodesic distance, the
embeddings in (c) and (f) are made similar, facilitating the
registration in sequel. We setα = 0.1, γ = 0.9 and note that
this setting places sufficient emphasis on geodesic distances
as per the weight distribution iñGg (see Section4.4).

In practice, we believe that both geodesic and VSI dis-
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(a) (b)

Figure 11: Feature-sensitive (a) vs. part-aware sampling
(b). The sampling rate is10%.

tances should be considered simultaneously for registration,
since the former contributes to bending-invariance, whilethe
latter contributes to stretch-invariance. Also, the geodesic
distance imposes certain distances between neighboring ver-
tices and keeps them adequately spread-out in the embed-
ding. Their weights may be tuned to strike the balance be-
tween the two. It is worth investigating how their weights
can be set automatically based on the input data.

5.3. Part-aware sampling

The max-min sampling scheme can be used for uniform
sampling on surfaces. It iteratively places a sample that max-
imizes the minimum distance, measured by the geodesic
metric, from all previously found samples. Beyond uniform
sampling, it is often desirable to distribute samples basedon
certain feature criteria. In typical feature-sensitive remesh-
ing, more samples are placed near high curvature regions, re-
sulting in higher triangle density therein. This can be accom-
plished via max-min sampling, but with the isophotic met-
ric [LZH∗07]. Figure 11(a) shows a feature-sensitive sam-
pling on the pliers model. When our part-aware metric is
applied, the feature regions tend to be part boundaries, even
if a boundary region is locally flat (different from feature-
sensitive sampling). This is shown in Figure11(b). In this
test, we setα = 0.01,β = 0, andγ = 0.99, similar to those for
segmentation while ignoring angular distance, so that sam-
ples would not concentrate in concave regions.

A straightforward use of a part-aware surface tessella-
tion is in neighborhood traversal: part-aware neighborhood
can be traced simply by following topological distances in
the mesh graph. Also, more granularity near part boundaries
enables more refined deformation behavior over those non-
rigid regions. In contrast, having large triangles which cut
across part boundaries would be undesirable in this context.

5.4. Shape retrieval via part-aware shape distribution

We also study the potential benefits that our metric can of-
fer for shape retrieval. Osada et al. [OFCD02] consider using

kangaroo Geodesic D2 Part−aware

cat

camel

wolf

dinopet

kitten

duck

venus

octopus

T

Figure 12: Ten models used for our shape retrieval test. The
last three columns show the distance histograms of each
model, obtained using geodesic, D2 and part-aware dis-
tances, respectively.

the probability distribution sampled from a shape functionas
the shape descriptor. It is suggested that theD2 shape func-
tion, namely the pair-wise Euclidean distances between sur-
face points, serves as a good candidate. Geodesic distance
shape function is investigated in [MS08]. Although it is in-
variant to bending, the probability distribution functionof
geodesic distances is not sufficiently discriminative in gen-
eral. We plan to add more discriminating power to this de-
scriptor, while preserving sufficient bending-invariance.

In our experiment, we select ten models shown in Fig-
ure12. The first five of them (kangaroo, cat, camel, wolf and
dinopet) are animals with similar part structures, but under
different articulation and stretching. In retrieval, the ideal re-
sult should be that when using each of these five shapes to
query, the other four come on top. We consider three shape
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Figure 13: Retrieval results using geodesic, D2 and our
part-aware distances. In each block, we run6 queries and
the query shapes sit in the first (shaded) row. In each column,
the 4 most similar shapes are shown, and the non-optimally
retrieved shapes are marked by squares.

functions: geodesic,D2, and our part-aware distances. For
each sampled shape function, we compute its histogram,
which serves as the shape descriptor. During retrieval, the
χ-square distances between histograms are used to rank the
matches. Figure13shows the retrieval results using the three
shape functions. We see that only our part-aware metric is
able to consistently achieve the ideal results for all the five

similar shapes. Note that in the last column, we query us-
ing the octopus simply for comparison purpose, in which the
ideal ranking is hard to judge.

We setα = 0.02, β = 0, andγ = 0.98, makingγ≫ α to
showcase our goal. From Figure12, we observe that the his-
tograms of geodesic andD2 distances stay relatively stable.
Contrastingly, the part-aware metric produces more discrim-
inating histograms. Meanwhile, due to the geodesic ingredi-
ent in the metric, bending invariance is also preserved to a
certain extent; this is exemplified by the similarity among
the first four histograms in the last column. This experi-
ment highlights an advantage of our metric: by combining
geodesic and VSI distances, it provides an effective compro-
mise between bending-invariance and discriminating capa-
bility. However, this is a rather preliminary test and we plan
to expand the database and investigate more in this issue.

6. Conclusion and future work

A metric defined on mesh surfaces is of fundamental in-
terest when dealing with geometry. Well-known metrics in-
clude geodesic, isophotic, and diffusion distances; otherex-
tensions to these metrics also exist. Part is an important no-
tion for shape analysis and has been studied in a variety of
domains, ranging from 2D to 3D, from psychology to geom-
etry processing. Although isophotic and diffusion distances
have been successfully applied to mesh segmentation, the
distances themselves do not explicitly take part information
into consideration.

In this paper, we develop a surface metric specifically for
encoding part information. Our key observation is that the
visible region of a point inside the shape volume is sensitive
to part boundaries. Such a property is realized into an effec-
tive part-aware metric, via sampling and volumetric shape
image. The effectiveness of our metric is testified by several
concrete experiments.

In future work, we plan to explore more applications
that can exploit our part-aware metric, and study intelli-
gent and application-dependent ways to tune the weights for
the three distances. We also plan to further investigate into
shape retrieval, expand the test database, and compare with
other metric-based shape signatures [OFCD02,BCG08]. Fi-
nally, we wish to take the volumetric view for part analy-
sis [AMSF08] further. Since the current metric still evaluates
distances between points along surface, it does not recognize
parts consisting of disconnected surface regions.
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