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Abstract

In this paper we describe a body of work aimed at extending the
reach of mobile navigation and mapping. We describe how running
topological and metric mapping and pose estimation processes con-
currently, using vision and laser ranging, has produced a full six-
degree-of-freedom outdoor navigation system. It is capable of pro-

The International Journal of Robotics Research
Vol. 00, No. 00, 2009, pp. 000–000
DOI: 10.1177/0278364909341483
c� The Author(s), 2009. Reprints and permissions:
http://www.sagepub.co.uk/journalsPermissions.nav
Figures 1–11, 15, 16, 19–21, 23, 25–31 appear in color online:
http://ijr.sagepub.com

ducing intricate three-dimensional maps over many kilometers and
in real time. We consider issues concerning the intrinsic quality of the
built maps and describe our progress towards adding semantic labels
to maps via scene de-construction and labeling. We show how our
choices of representation, inference methods and use of both topolog-
ical and metric techniques naturally allow us to fuse maps built from
multiple sessions with no need for manual frame alignment or data
association.

KEY WORDS—Mobile robotics, navigation, mapping,
SLAM, laser, vision, stereo, visual odometry, semantic label-
ing, systems, topological navigation, loop closure, FABMAP
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1. Introduction

In this paper we describe the techniques that we are employ-
ing to build an end-to-end and infrastructure-free urban nav-
igation system. We wish to build an embedded system capa-
ble of repetitively and progressively (i.e. over multiple ses-
sions) mapping large urban areas time and time again in six
degrees of freedom (DOFs). Our concerns range from the low-
level control of sensors and filtering their output through to
perception, estimation and inference, longevity, introspection,
loop closing, data management, software architectures and up
to high-level semantic labeling of maps. In the spirit of the
International Symposium of Robotics Research (ISRR), we
aim to provide the reader with a technical panorama of how
these components work together and, while doing so, direct
the reader to more detailed technical accounts, to discuss their
strengths and weaknesses and, where applicable, any open
questions.

Recent years have seen wholesome progress in building ro-
botic systems that can navigate in outdoor settings. The re-
cent literature on the DARPA Grand Challenges (Iagnemma
and Buehler 2006a,b� Thrun et al. 2006� Urmson et al. 2008)
is a testament to the complexity of the problems involved@
problems that necessitate both a systems point of view and a
deep understanding of the perception and inference tasks in-
volved. This paper, submitted to the special issue on ISRR07,
describes our progress towards building a combination of hard-
ware and software which will enable a robot to operate in typ-
ical urban environments (with or without a priori information)
over extended periods of time with no reliance on the Global
Positioning System (GPS). For any particular session, in real
time, our software infrastructure is able to process stereo im-
ages (collected at 20 Hz), infer 6-DOF pose and dense dispar-
ity maps, detect and apply loop closures using images from a
panoramic camera, generate hi-fidelity three-dimensional (3D)
laser maps and shade them with reflectance and/or color image
data. Following this, we can annotate these maps with textual
semantic labels.

While this functionality is a good substrate for single-
session mobile autonomy, we have the additional goal of
supporting a “life long learning” paradigm. We learn, in an
unsupervised fashion, models of the appearance of typical
workspaces from large amounts of training data (thousands
of images). By logging all data (at around 60 Mb s�1) and
considering the totality of all datasets offline, this model, via
the Fast Appearance Based topological mapping framework
(“FAB-MAP”) described in Section 3, allows us to stitch to-
gether intersecting vehicle trajectories from sessions taken
days apart with no user intervention. Our loop closure appa-
ratus browses the union of recorded images and discovers in-
tersections and overlaps between sessions. With these topo-
logical constraints in hand, we are able to fuse chunks of
maps together, building ever larger metric and topological rep-
resentations of the workspace. We now outline the structure

of this paper by walking through the key components of our
system.

� Pose and trajectory estimation is a fundamental require-
ment for our work and we currently have two alterna-
tives. The first, discussed by Newman et al. (2006), Cole
and Newman (2006) and Ho and Newman (2007), is a
simultaneous localization and mapping (SLAM) system
driven by scan matching between 3D laser point clouds,
which is based on the Exactly Sparse Delayed State for-
mulation proposed by Eustice et al. (2005). The second,
which we focus on in this paper, is more suited to the ve-
hicle shown in Figure 2. It is based on the Sliding Win-
dow Filter of Sibley et al. (2007) and is driven by robust
inter-frame feature tracking across sequential stereo im-
age pairs. This vision system is described in Section 2.
Our motivation for pushing the vision-based system over
our 3D laser-based system is threefold: first, stereo cam-
eras are cheap� second, they capture the geometry of
the local scene orders of magnitude faster than scanning
lasers� finally, in contrast to many scan matching tech-
niques, the registration between sequential stereo views
(modulo correct feature tracking) uses the same real-
world artifacts rather than two different clouds of laser
points sampled from the workspace’s surfaces.

� Topology inference. However good the online pose esti-
mation engine is, without global information loop clo-
sure detection and prosecution (acting on the loop clo-
sure detection and altering trajectory and map esti-
mates) will always be a concern. Our loop closure de-
tection component, “FAB-MAP” (Cummins and New-
man 2007, 2008b,a) is probabilistic and solely appear-
ance based. Crucially for our needs, it is exceptionally
fast and has an extremely low false-positive rate� it is
discussed further in Section 3.

� Global optimization. Between them, the trajectory es-
timation and loop closing (FAB-MAP) processes pro-
duce a graph of poses where edges represent the metric
proximity between poses. The pose estimation system
directly provides high-quality interpose constraints. The
metric parameterizations of the loop closures are how-
ever very uncertain: all we know is that we are close to
a place we have been before. In Section 4 we describe
how this topological information is upgraded to a met-
ric constraint. We do so either using an iterative closest
point (ICP) match of local-region point clouds or using
two pairs of stereo images. Following that we perform
pose relaxation over the graph of poses and we discuss
the formulation of the optimization in Section 5.

� 3D map creation. In this paper, and in contrast to our
earlier work, we do not use lasers for pose estima-
tion� instead, given a high-quality 6-DOF vehicle tra-
jectory, we can capture the far-field 3D structure, color
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Fig. 1. Aerial photos of the data collection sites, “Begbroke” (left) and “New College” (right). The crisscross pattern in the figures
of the Begbroke dataset was executed in the vertical (green) wedge-shaped patch in the east and the large loop around the “C”
shaped building. The “quad” of New College, around which many small (circa 100 m) loops were made, can be seen in the North
West of the right image. The large “dog leg” shaped loop in the New College datasets runs East out of the quad and around the
perimeter of the gardens.

and surface reflectance properties of the workspace by
“trawling” a pair of vertically oriented lasers through the
workspace while taking a great deal of care regarding
time-stamping and system delay estimation. In Section 6
we present some of the maps we are able to produce and
go on to analyze their detail and quality.

� Dense stereo. We have a facility to compute dense dis-
parity maps from our stereo rig in real time. This can
be used for obstacle avoidance tasks but here it is used
to fill in the 3D structure of the workspace which is
not sampled by our laser scanners, thus producing total
scene coverage. In Section 6.2 we describe the approach
we use for disparity calculation and present statistics re-
garding its performance.

� Scene labeling. After map building comes our final step,
which is the addition of semantic labels to the maps.
Section 8 describes how by learning a generative model
of visual and geometric appearance we are able to clas-
sify regions of the point clouds into one of (currently)
seven classes using a support vector machine.

1.1. Data Sets

For reasons of clarity, figures and tables of the results will be
presented close to the text that describes the techniques that
generate them, rather than in a monolithic results section. We
therefore need to describe the datasets up front so they can be
referred to in individual sections. We collected data from two
principal sites in Oxfordshire, UK. We refer to them as “Beg-
broke” and “New College” and their characteristics are sum-
marized in Table 1. Aerial photos of both data collection sites
are shown in Figure 1, and the caption describes how to locate
the trajectories of the vehicle shown in this paper within these

Table 1. Summary of the Salient Properties of the Two
Datasets Used in This Paper

Name Measure Value

Begbroke Size 9.3 GB

Laser

Stereo 20 Hz at 512� 384 mono

Omnicam 2 Hz, five images color

Distance driven 1.08 km

Sessions single shot

New College Size Laser: 2.9 GB,
Images 53 GB

Laser 2� 75 Hz over 90� at
0�5� resolution

Stereo 20 Hz at 512� 384 mono

Omnicam 2 Hz, five images color

Distance driven 5.13 km

Sessions Multiple over three days

aerial images. In all 67.2 GB of data was logged, all of which
has been processed and presented in this paper. Much of the
New College data has been published as part of an IJRR Data
Paper and can be downloaded and used by interested readers
(Smith et al. 2009).

1.2. Platform

All of the algorithms, systems and results in this paper have
been applied to data gathered by the vehicle shown in Fig-
ure 2. While there is nothing vehicle-specific in our work, it
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Fig. 2. The results in this paper correspond to data gathered
from the modified Segway platform shown above. The vehicle
has a sensor payload of two SICK lasers, an XSens inertial
sensor, a GARMIN GPS, a Point Grey stereo “Bumblebee”
camera and a “Ladybug 2” panoramic camera. It carries four
small form factor PCs linked with a Gigabit internal network.
Total onboard storage is of the order of 1 TB.

is worth swiftly summarizing the vehicle’s characteristics. The
vehicle is actuated by a RMP200 base from Segway. It has four
internal PCs at 1.6 GHz with around 1 TB of total storage. Im-
ages streamed at 2 Hz from a Point Grey Ladybug camera (five
panoramic images) are used in our appearance-based loop clo-
sure (FAB-MAP) algorithm. Stereo pairs read at 20 Hz from a
Point Grey Bumblebee camera are used for the online pose es-
timation and dense stereo. Two vertically mounted LMS 291
lasers are used in 75 Hz mode to capture the far-field geom-
etry. The vehicle can run for approximately 90 minutes on a
single battery charge with all systems powered.

2. Real-time Pose Estimation from Stereo

To reveal the underlying structure of the pose estimation in
unknown environments problem, it is useful to approach it
from the non-linear least-squares optimization perspective.
This point of view is much more in line with traditional statis-
tical point estimation than state space filtering. This perspec-
tive is useful for a number of reasons. First, it highlights the
fundamental minimization principle at work in least squares,
which is sometimes harder to see from the state-space filtering
perspective. Second, starting with the underlying probability
density functions (PDFs) that describe our problem, it clearly
shows the probabilistic nature of the task, that is, tracking a
joint distribution through a large state space� a state space that
changes dimension as we undertake the fundamental proba-
bilistic operations of removing parameters via marginalization,
and adding parameters via error propagation and conditioning.
A third reason to use statistical point estimation is because it

Fig. 3. SLAM notation.

exposes a rich body of theory about the convergence of least-
squares estimators. Further, starting from least squares one can
easily see the connection to many important concepts such as
Newton’s method, Fisher information, and the Cramer Rao
lower bound, all of which have intuitive derivations starting
from traditional statistical point estimation.

2.1. Notation

We adopt the following notation as illustrated by Figure 3:

� the 6D robot poses will be denoted by xp �
[xT

p1
� � � � � xT

pm
]T
�

� the 3D landmarks will be written as xm �
[xT

m1
� � � � � xT

mn
]T
�

� zi j will indicate a measurement of the i th landmark ob-
served from the j th pose�

� an input command to the robot (or a motion model) from
a j th pose will be written u j .

The state vector, comprising the map and poses, is x �
[xT

m� x
T
p]T and has dimension dim�x� � 6m � 3n. The aim

is to estimate the state vector from the input commands and
measurements. The effect of the input command on the pose is
modeled by the process model and the effect of the measure-
ment appears through the sensor model.

� Process model. The process model describes how the
current pose can be estimated from the previous pose
using the input command f j : �6 	 �

6, xp j �
f j �xp j �u j�1� � w j�1, where w j�1 is the process noise
that we assume to be Gaussian (this is a common
assumption). The noise vector w j�1 is additive and
we assume it follows a normal distribution w j�1 

� �0�Q j�1�, so that xp j�1 
 � � f j � xp j � u j�1��Q j�1�.
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� Sensor model. The sensor model, hi j : �
dim�x� 	

�
dim�zi j �, returns the expected value the sensor will

give when the i th landmark is observed from the j th
pose: zi j � hi j � xmi � xp j � � vi j . We assume that
vi j 
 � �0�Ri j � so that zi j 
 � �hi j �Ri j �, where
Ri j is the observation error covariance matrix. Con-
catenating all of the observations, measurement func-
tions and measurement covariances together, z �
[zT

10� z
T
11� � � � � z

T
nm]T, h � [hT

10� h
T
11� � � � � hT

nm]T, and R �
diag�R10� R11� � � � � Rnm�, gives z 
 � �h�R�, which
defines the measurement likelihood p�z�x�. The first
pose xp1 is a hyper-parameter that fixes the first pose
and, thus, the entire system (this also removes the gauge
freedom).

To be concrete, in this paper which uses stereo vision, hi j

projects the i th 3D landmark into the image taken from the j th
pose and so zi j is a pixel position �u� ��.

We might also assume that we have prior information about
the map and landmarks that can be represented by a Gaussian.
Let �x� 
 � �x�� ����1� denote the prior information about the
first pose and the map

�x� �
�
� �xm

�xp1

�
� �

��� �
�
����m ���pm

���pm ���p

�
� �

By combining the process information with the prior informa-
tion, we obtain the prediction PDF:

p�x� � �
�
�
�
� x�

f �x�

�
� �
�
�����1

Q

�
�
�
	 � (1)

Under these Gaussian assumptions, the joint probability
p�x� z� � p�z�x�p�x� of the measurements and the state vector
is

p�z�x�p�x� � �

�



�
�
����

x�

f �x�

h�x�

�
���� �
�
����
����1

Q

R

�
����
�
	 � (2)

Our goal is to compute the value of x which maximizes this
density, with z being a fixed set of measurements.

Taking logs and ignoring constant terms that do not depend
on x, we see that maximizing p�x� z� is equivalent to minimiz-
ing

��x� � 1

2
�g�x�TC�1g�x�� � 1

2
��r�x���2� (3)

where

g�x� �

�
����

g��x�

g f �x�

gz�x�

�
���� �

�
����

x� � �x�
xp � f �x�

z� h�x�

�
���� �

C �

�
�����
����1

Q

R

�
����� �

and we have lumped the sensor model, process model and prior
information terms together.

The goal is to find the choice of x which minimizes the
quadratic non-linear cost functional ��x�. Writing the normal
equations associated with the Gauss–Newton method for solv-
ing non-linear least squares gives us an insight into the struc-
ture of the problem. Let gp and gm be the right-hand side vec-
tors corresponding to the robot path and map, respectively. The
Gauss–Newton update can be expressed as a 2 � 2 system of
equations:

�
� 			m 			mp

			mp
T 			p

�
�
�
�
xm


xp

�
� �

�
�gm

gp

�
� �

Taking advantage of this sparse structure, the system of
equations is typically solved by forward-then-backward sub-
stitution, either of the path-onto-the-map or of the map-onto-
the-path (Triggs et al. 2000).

Depending on the process noise and the prior, the system
matrix, 			, can take on different sparsity patterns that affect
the complexity of finding a solution. An infinite process noise
covariance would mean that the motion model does not con-
tribute information to the system, which would reduce the
process block of the system matrix to block diagonal, which
is O�m � n3� to solve. Similarly, without prior information
(i.e. ��� � 0) the map block is also block diagonal, which is
O�m3 � n� to solve. Without information from the motion
model and without prior information the problem is equiva-
lent to the bundle adjustment (BA) problem in photogramme-
try, which can be solved in either O�m3 � n� or O�m � n3�
(Brown 1976). It is interesting to note that in this form (no
motion model, no prior), the first optimal solution using cam-
eras appears to have been developed by Brown (1958). Brown
was also the originator of what has come to be known as the
Tsai camera model (Tsai 1987). When converted to a recursive
least-squares framework, the computational costs mentioned
above can typically be reduced to quadratic (Bar-Shalom and
Fortmann 1988).
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2.2. The Sliding Window Filter

For locally optimal trajectory and map estimation we employ
a Sliding Window Filter (SWF), which is an approximation
to the full feature-based batch non-linear least-squares SLAM
problem (Sibley et al. 2006, 2007). The SWF concentrates
computational resources on an accurate estimation of the spa-
tially immediate map and trajectory from a sliding time win-
dow of the most recent sensor measurements. To keep compu-
tation tractable, old poses and landmarks that are not visible
from the currently active sliding window of poses are mar-
ginalized out. After marginalization, the remaining non-linear
least-squares problem is solved via a sparse Gauss–Newton
method with a robust Huber-cost function.

Marginalizing out the parameters we wish to remove is
equivalent to applying the Schur complement to the least-
squares equations (Jordan 2003� Sibley 2006). For example,
given the system�

�			a 			b

			T
b 			c

�
�
�
�


xa




xb

�
� �

�
�ga

gb

�
� �

reducing the parameters xa onto the parameters xb gives�
�			a 			b

0 			c �			T
b			

�1
a 			b

�
�
�
�xa

xb

�
� �

�
� ga

gb �			T
b			

�1
a ga

�
� �

where the term 			T
b			

�1
a 			b is called the Schur complement of

			a in 			b. After this forward substitution step, the smaller
lower-right system

[			c �			T
b			

�1
a 			b][xb] � [gb �			T

b			
�1
a ga]

can be solved for updates to xb. The SWF solves incrementally
only for the smaller system, which is how it maintains constant
time operation. Using back-substitution, the full system can be
solved at any point, for instance, at loop closure if we desire a
global solution. However, we find the global solution is more
readily computed with pose-graph relaxation techniques de-
scribed in Section 5, and do not use the SWF for loop closure.

2.2.1. SWF Overview

We now give a brief synopsis of the SWF algorithm.

Adding New Pose Parameters. First, after completing m � 1
steps, the command um is used to drive the system forward
via the process model, xpm � f �xpm�1�um�, which adds
six new pose parameters to xp. Recall that in the Gauss–
Newton method the covariance matrix is approximated by the
inverse of the Hessian matrix (Bell and Cathey 1993). Thus,
after applying the process model but before incorporating any
new measurements, we can use the Gauss–Newton method

to compute an updated information matrix, which is simply
the Hessian associated with the maximum likelihood estimate
(MLE) solution. This operation is a linearized error propaga-
tion, affects only the process-block of the information matrix
and can be computed in constant time.

Removing Parameters. Next, if there are now more than k
poses active (for a k-step SWF), then the we marginalize out
the oldest pose parameters using the Schur complement. If
k � 1 then this step is algebraically equivalent to the extended
Kalman filter SLAM timestep, and there is only ever a single
active pose. Note that marginalizing affects the right-hand side
of the system equations. In conjunction with the error propaga-
tion described above, this step transforms the state and infor-
mation matrix identically to the first order discrete extended
Kalman filter timestep, i.e. error propagation to a new pose
followed by marginalizing old pose parameters is equivalent
to the extended Kalman filter timestep. At this point, to keep
the state vector size bounded, we also marginalize out invisible
landmarks that are no longer visible from the active poses.

Updating Parameters. Before a complete measurement up-
date is computed, parameters are added to xm to represent
any newly observed landmarks (initial values are computed
via stereo), and			m is extended (with zeros) appropriately. Fi-
nally, all of the measurements within the time window are used
to update the least-squares solution. This step requires solving
the non-linear least-squares problem, which we do via a sparse
robust Gauss–Newton method.

Depending on the number of poses in the sliding win-
dow, the SWF can scale from the offline, optimal batch least-
squares solution to a fast online incremental solution. For in-
stance, if the sliding window encompasses all poses, the so-
lution is algebraically equivalent to full SLAM� if only one
time-step is maintained, the solution is algebraically equiva-
lent to the extended Kalman filter SLAM solution (Lina María
Paz et al. 2008). If robot poses and environment landmarks
are slowly marginalized out over time such that the state vec-
tor ceases to grow, then the filter becomes constant time, like
visual odometry (VO). The sliding window method also en-
ables reversible data association (Bibby and Reid 2007), out-of
sequence measurement updates, and robust estimation across
multiple timesteps, all of which help the overall performance
of our system.

This approach allows us to decouple our loop closure sys-
tem from the core pose estimator, and hence concentrates com-
putational resources on improving the local result. With high
bandwidth sensors (such as cameras) focusing on the local
problem is clearly important for computational reasons� this
is especially true if we wish to fuse all of the sensor data (or a
significant portion thereof). However, even with this local fo-
cus, once a loop closure is identified, global optimization over
the sequence left behind can be a good match to the global
batch solution.
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Fig. 4. The average mean squared error performance for VO
compared with the batch solution, as well as the SWF solu-
tion. The SWF can be seen as strictly superior to VO with the
same computational complexity as VO but with near optimal
convergence.

It is interesting to note what happens if we simply delete pa-
rameters from the estimator instead of marginalizing them out.
For a sliding window of size k, the error converges as 1�k, just
as we would expect the batch estimator to do. However, after k
steps, the error stops converging as we delete information from
the back of the filter. With such deleting and a sliding window
of k � 1, we end up with a solution that is nearly identical
to previous forms of VO (Matthies and Shafer 1987� Olson et
al. 2001� Nister et al. 2004). The graph in Figure 4 shows the
average mean squared error (MSE) performance for this type
of VO compared with the batch solution, as well as the SWF
solution. Given this insight, the SWF can be seen as strictly
superior to VO: it has the same computational complexity as
VO, yet it (1) shows near optimal convergence and (2) does not
suffer from stationary drift. In practice, the SWF is most often
used in this constant-time regime.

The SWF is an approach that can scale from exhaustive
batch solutions to fast incremental solutions by tuning a time
window of active parameters. If the window encompasses all
time, the solution is algebraically equivalent to full SLAM� if
only one time-step is maintained, the solution is algebraically
equivalent to the extended Kalman filter SLAM solution. From
this point on we simply refer to the case of k � 1 with land-
mark marginalization as VO.

2.3. The Provenance of the SWF

The SWF is a non-linear least-squares approach to naviga-
tion and mapping inspired by results from the photogramme-
try community, dating back to the late 1950s (Brown 1958�
Mikhail 1983), and later derivatives such as the variable state
dimension filter (McLauchlan and Murray 1995� McLauchlan
1999), VO (Matthies and Shafer 1987� Nister et al. 2004), and
of course extended Kalman filter SLAM (Smith et al. 1990).
The techniques of photogrammetry were gradually adopted or
rediscovered as VO and shape from motion in the computer vi-
sion community (Matthies and Shafer 1987� Triggs et al. 2000�
Fitzgibbon and Zisserman 2004) and SLAM in the robotics
community (Lu and Milios 1997� Thrun et al. 2005). These
are all least-squares estimators, often expressing algebraically
equivalent solutions.

Since the original development of the SWF (Sibley et al.
2006), some similar techniques have been developed in the
computer vision literature based on BA (Engels et al. 2006�
Mouragnon et al. 2006). The high frame rates achieved in En-
gels et al. (2006) are largely due to short feature track lengths�
furthermore, the effect of marginalization and including prior
information is not addressed, and it is assumed that fixing old
frames is reasonable. As frames are removed and only certain
keyframes are kept, the results cannot converge to the opti-
mal batch solution. Similarly, the results of Mouragnon et al.
(2006) do not include all of the data, but instead only use a
selected sub-set of keyframes, and hence cannot match full
SLAM. In contrast, the SWF attempts to match the full so-
lution by rolling parameters into prior information.

Brown’s photogrammetric BA is the original image-based
batch maximum likelihood solution to the full SLAM problem
from the iterative non-linear least-squares perspective (Brown
1958). Brown’s sparse (and therefore fast) solution to BA does
not include dense prior information or a process model, which
can be useful for SLAM. The work by Mikhail (1983) gives
an incremental/recursive algorithm that can include arbitrary
functional relationships between parameters (e.g. a process
model) as well as including prior information matrices. How-
ever, to facilitate faster run-times Mikhail employs the same
sparse optimizations as Brown. Brown’s sparse system of
equations does not capture the temporal evolution of the PDF
if there is prior information induced by marginalization.

GraphSLAM (Thrun et al. 2005), exactly sparse delayed
state filters (ESDSFs) (Eustice et al. 2005), smoothing and
mapping (SAM) (Dellaert and Kaess 2006), and recent work
of Konolige and Agrawal (2007) are all examples of non-linear
least-squares techniques similar to BA. SAM solves the system
equations efficiently by variable re-ordering, which is also a
well-known technique in photogrammetry (Triggs et al. 2000).
The success of this approach depends critically on the struc-
ture of the least-squares system matrix, which generally cannot
be known beforehand since it depends on how the robot goes
about observing the world. General re-ordering algorithms that
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are optimal for arbitrary system equations are known to be NP-
complete (Yannakakis 1981). GraphSLAM is an offline solu-
tion and is typically tackled with available numerical sparse
solvers.

Both GraphSLAM and ESDSFs factor the map onto the
path, thereby producing a “pose-graph”, which can then be
solved for the optimal robot trajectory. Fast pose-graph opti-
mization methods are a recent development (Frese and Duck-
ett 2003� Olson et al. 2006� Grisetti et al. 2007). By finding
the maximum likelihood configuration of a sequence of inter-
related poses, these approaches can solve impressively large
problems. Note, however, that pose-graph methods do not
compute an optimal structure estimate and instead focus on
computing the optimal vehicle trajectory.

ESDSFs are a view-based approach inspired by both the
Variable State Dimension Filter (VSDF� see later) and Sparse
Extended Information Filters (Thrun et al. 2002� Eustice et al.
2005). ESDSFs are efficient approximations to the full SLAM
solution, although they rely on view-matching raw data, so the
assumption of independent measurement noise in the sensor
model may be violated: an eye must be kept on the “double
counting data” issue.

In some sense, SWFs are the opposite of GraphSLAM and
delayed state filters: where these methods factor the map onto
the path, the SWF slowly factors the path onto the map. This
has important implications for the run-time complexity as the
algorithm progresses. In GraphSLAM, as the map is factored
onto the path, the induced structure in the path block,			p, can
grow to be arbitrarily complex. This stems from the fact that
there are an infinite variety of paths through an environment,
and usually we will not know how the robot is going to move
beforehand. On the other hand, marginalizing the path onto the
map only ever induces a structure with a bounded complexity
as there is a limited number of landmark-to-landmark condi-
tional dependencies induced. Fundamentally, while there is an
infinite variety of paths through the environment, there is just
one environment. This point is a crucial distinction between
methods that factor onto the path and methods that do not.

The VSDF (McLauchlan and Murray 1995� McLauchlan
1999) combines the benefits of batch least squares with those
of recursive estimation. Interestingly, both the SWF and the
VSDF are very similar to Mikhail’s “Unified Adjustment”
technique (Mikhail 1983). Mikhail’s work is a general and
complete treatment of least-squares adjustment, whereas the
SWF and VSDF are specific examples applied to SLAM and
structure from motion (SFM). The VSDF is a mixed formula-
tion, taking inspiration from the sparse Levenberg–Marquardt
method used in BA (More 1978�Hartley and Zisserman 2000),
and also from the traditional extended Kalman filter used in
SLAM (Smith et al. 1990). For computational efficiency, the
VSDF ignores conditional dependencies that are induced from
marginalizing out old parameters, and, similarly to Brown’s
BA, it also ignores conditional dependencies that exist be-
tween adjacent pose parameters, especially the block tridi-

agonal matrix structure of the process block. In comparison,
the least-squares formulation for full SLAM captures this in-
formation naturally. Neglecting conditional dependencies can
be detrimental� in SLAM it will lead to divergence (Newman
1999).

The recent work of Deans (2005) is also inspired by the
least-squares approach, and similarly to VSDF and SWF aims
at online implementation by focusing the computation on the
most recent set of measurements by removing parameters from
consideration. However, instead of incrementally marginaliz-
ing the solution pose by pose, the formulation breaks the prob-
lem into sets of adjacent batch problems.

2.4. Feature Selection and Matching: The Image Processing
Front-end

This section describes the underlying image processing for a
feature-based visual tracker essential for tracking features be-
tween stereo frames, and is joint work with Mei and Reid of
the Active Vision Lab at Oxford. The steps have similarities
with other works in the field, e.g. Eade and Drummond, but
here are adapted to the processing of stereo images. We begin
with a top-level view. For each incoming frame, the following
steps are undertaken.

(i) Feature extraction. The features used in this work are
provided by the FAST corner extractor (Rosten and
Drummond 2005). This extractor provides good repeata-
bility at a small computational cost. FAST corners are
extracted at different “pyramid levels” (scales). The
pyramid provides robustness to motion blur and enables
point matching in larger regions of the image.

(ii) Pose initialization. To provide robustness to strong inter-
frame rotation, a sum of squared difference (SSD) gra-
dient descent algorithm (Mei et al. 2008), applied at the
highest pyramid level, is used to estimate the 3D rotation
between two time-steps. The assumption of pure rota-
tion is valid if the inter-frame translation is small with
respect to the landmark depths and at 20 Hz frame rate
this is indeed the case.

(iii) Temporal feature matching. The 3D landmarks (the
map) are projected alternatively into the left and right
images and matched in a fixed-sized window to the ex-
tracted FAST corners using mean SAD (sum of absolute
difference with the mean removed for better resilience
to lighting changes). A maximal accepted score is set to
provide a first pass robustness to outliers. Point corre-
spondences between image pairs are obtained by a scan
line search in the already rectified images.

(iv) Localization. After the map points have been matched,
a localization step minimizes the 6-DOF of the cam-
era pose using m-estimators for robustness. After the
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Fig. 5. VO results for the four datasets detailed in Tables 2 and 3.

minimization, the landmark measurements with strong
reprojection errors are removed from the system. This
step proved important to enable early removal of out-
liers and the possibility of adding new, more stable
landmarks.

(v) Left–right matching. To achieve a high frame rate with
good accuracy around 50–100 features are tracked at
each time-step. The feature selection process follows
the assumption that we desire distinctive features with
a uniform distribution in the image (irrespective of the
underlying tracking uncertainty). A quadtree is used to
represent the distribution of the measurements at each
time-step. It contains the number of measurements in
the image and the maximal amount of points allowed

in the different parts of the image to ensure a uni-
form distribution of features. It is used in the following
way.

(a) During temporal matching, the matched map
points are inserted into the quadtree according to
their measurement image locations.

(b) To add new features, FAST corners are extracted
from the left and right images and ordered by a
distinctiveness score (in this work we used Harris
scores). To decide which features to add, the best
features are taken in order and their image location
is checked in the quadtree to ensure the maximal
amount of allowed points has not been exceeded.
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Table 2. VO Results for Begbroke and New College 1 Datasets

Begbroke New College 1

Average Minimum Maximum Average Minimum Maximum

Distance travelled (km) — — 1.08 — — 2.26

Frames processed — — 23,268 — — 51,263

Velocity (m s�1) 0.93 0.00 1.47 0.94 9�46� 10�4 1.53

Angular velocity (� s�1) 9.49 0.0 75.22 7.08 4�12� 10�3 69.00

Frames per second 22.2 10.6 31.4 20.6 10.3 30.0

Features per frame 93 44 143 95 37 142

Feature track length 13.42 2 701 11.59 2 717

Reprojection error 0.17 2�74� 10�3 0.55 0.13 0.03 1.01

Table 3. VO Results for New College 2 and New College 3 Datasets.

New College 2 New College 3

Average Minimum Maximum Average Minimum Maximum

Distance travelled (km) — — 2.05 — — 0.82

Frames processed — — 49,114 — — 29,489

Velocity (m s�1) 0.83 4�55� 10�4 3.05 0.56 1�63� 10�4 1.26

Angular velocity (� s�1) 7.13 8�23� 10�3 62.56 4.83 5�24� 10�3 59.75

Frames per second 21.5 7.4 29.8 20.3 7.4 28.6

Features per frame 91 45 142 93 49 146

Feature track length 14.43 2 622 27.76 2 1363

Reprojection error 0.12 0.028 0.91 0.10 0.024 0.29

If it passes the test, the corresponding point in the
other stereo pair is searched along the same scan-
line.

2.5. Visual Odometry Results

We present results from two venues, “Begbroke” and “New
College”, the latter taken over multiple days. The datasets are
summarized in Tables 2 and 3 and the estimated trajectories
are shown in Figures 5(a)–5(d).

3. Closing Loops with FAB-MAP

Loop closure detection is a well-known difficulty for metric
SLAM systems. Our system employs an appearance-based ap-
proach to detect loop closure, i.e. using sensory similarity to
determine when the robot is revisiting a previously mapped
area. Loop closure cues based on sensory similarity are inde-
pendent of the robot’s estimated position, and so are robust

even in situations where there is significant error in the met-
ric position estimate, for example after traversing a large loop
where turning angles have been estimated poorly.

Our approach, FAB-MAP, previously described in Cum-
mins and Newman (2007, 2008b,a, 2009), is based on a prob-
abilistic notion of similarity and incorporates a generative
model for typical place appearance which allows the system to
correctly assign loop closure probability to observations even
in environments where many places have similar sensory ap-
pearance, a problem known as perceptual aliasing.

Appearance is represented using the bag-of-words model
developed for image retrieval systems in the computer vision
community (Sivic and Zisserman 2003� Nister and Stewenius
2006) which has recently been applied to mobile robotics for
loop closure detection by several authors (Filliat 2007� An-
geli et al. 2008). More generally, appearance has been used
in loop closure detection and localization tasks by many au-
thors (Kröse et al. 2001� Lamon et al. 2001�Wang et al. 2005�
Wolf et al. 2005� Chen and Wang 2006� Schindler et al. 2007).
At time k, our appearance map consists of a set of nk discrete
locations, each location being described by a distribution over
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which appearance words are likely to be observed there. In-
coming sensory data is converted into a bag-of-words repre-
sentation� for each location, we can then ask how likely it is
that the observation came from that location’s distribution. We
also find an expression for the probability that the observation
came from a place not in the map. This yields a PDF over loca-
tion, which we can use to make a data association decision and
either create a new place model or update our belief about the
appearance of an existing place. Essentially, this is a SLAM
algorithm in the space of appearance, which runs parallel to
our metric SLAM system.

3.1. A Bayesian Formulation of Location from Appearance

Calculating position, given an observation of local appearance,
can be formulated as a recursive Bayes estimation problem.
If Li denotes a location, Zk the kth observation and �k all
observations up to time k, then

p�Li ��k� � p�Zk �Li ��k�1�p�Li ��k�1�

p�Zk��k�1�
� (4)

Here p�Li ��k�1� is our prior belief about our location,
p�Zk �Li ��k�1� is the observation likelihood, and p�Zk ��k�1�
is a normalizing term. An observation Z is a binary vector, the
i th entry of which indicates whether or not the i th word of
the visual vocabulary was detected in the current scene. The
key term here is the observation likelihood, p�Zk �Li ��k�1�,
which specifies how likely each place in our map was to have
generated the current observation. Assuming current and past
observations are conditionally independent given location, this
can be expanded as

p�Zk �Li � � p�zn�z1� z2� � � � � zn�1� Li � � � �

p�z2�z1� Li �p�z1�Li �� (5)

This expression cannot be evaluated directly because of the
intractability of learning the high-order conditional dependen-
cies between appearance words. The simplest solution is to use
a naive Bayes approximation� however, we have found that re-
sults improve considerably if we instead employ a Chow Liu
approximation (Chow and Liu 1968) which captures more of
the conditional dependencies between appearance words. The
Chow Liu algorithm locates a tree-structured Bayesian net-
work that approximates the true joint distribution over the ap-
pearance words. The approximation is guaranteed to be opti-
mal within the space of tree-structured networks. For details of
the expansion of p�Zk�Li � using the Chow Liu approximation
we refer readers to Cummins and Newman (2007).

3.2. Loop Closure or New Place?

One of the most significant challenges for appearance-based
loop closure detection is calculating the probability that the

current observation comes from a place not already in the
map. This is particularly difficult due to the repetitive na-
ture of many real-world environments: a new place may look
very similar to a somewhere visited previously. While many
appearance-based localization systems exist, this extension be-
yond pure localization makes the problem considerably more
difficult (Gutmann and Konolige November 1999). The key
is a correct calculation of the denominator of Equation (4),
p�Zk ��k�1�. If we divide the world into the set of mapped
places M and the unmapped places M , then

p�Zk ��k�1� �
�
mM

p�Zk �Lm�p�Lm ��k�1�

�
�
uM

p�Zk �Lu�p�Lu ��k�1�� (6)

where we have applied our assumption that observations are
conditionally independent given location. The first summation
is simply the likelihood of all of the observations for all places
in the map. The second summation is the likelihood of the ob-
servation for all possible unmapped places. Clearly we cannot
compute this term directly because the second summation is
effectively infinite. We have investigated a number of approx-
imations. A mean field-based approximation has reasonable
results and can be computed very quickly� however, we have
found that a sampling-based approach yields the best results.
If we have a large set of randomly collected place models Lu

(readily available from previous runs of the robot), then we can
approximate the term by

p�Zk ��k�1� �
�
mM

p�Zk �Lm�p�Lm ��k�1�

� p�Lnew��k�1�

ns�
u�1

p�Zk�Lu�

ns
� (7)

where ns is the number of samples used, p�Lnew��k�1� is our
prior probability of being at a new place, and the prior proba-
bility of each sampled place model Lu with respect to our his-
tory of observations is assumed to be uniform. Note here that
in our experiments the places Lu do not come from the current
workspace of the robot, rather they come from previous runs of
the robot in different locations. They hold no specific informa-
tion about the current workspace but rather capture the proba-
bility of certain generic repeating features, such as foliage and
brickwork. Figures 6 and 7 show typical loop closure results
obtained using our method. Note the high degree of confidence
despite marked changes in scene and lighting. Figure 8 shows
the compute time per new image added as a function of topo-
logical map size. Note that these results are generated with a
FAB-MAP implementation described by Cummins and New-
man (2008a) and much faster compute times are reported in
Cummins and Newman (2009).
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Fig. 6. Place recognition results generated by FAB-MAP. Probability of loop closure is calculated to be 0.9986. (Note that a
stitched panorama view is shown here� the algorithm is applied directly to the unstitched frames.)

Fig. 7. Example place recognition result generated by FAB-MAP under markedly different lighting conditions. Probability of
loop closure is calculated to be 0.9519.

Fig. 8. Inference time for FAB-MAP. Generating the SURF
features adds a fixed overhead of 716 ms on average. The mean
inference time is 56 ms, so the total mean processing time per
panoramic image is 772 ms. The robot collects a panoramic
image on average every 1.7 seconds, so this is faster than real
time.

In this paper we have used a Ladybug panoramic camera
because the 360� views it provides allow loop closure detec-
tions when revisiting a place in the opposite direction. How-
ever, there is nothing about our system that explicitly requires
360� views. Indeed, we could (and have) use the relatively nar-
row field of view images from the stereo pair but we would
expect an increase in the false negative rate.

4. Upgrading from Topological Loop Closures to
Metric Constraints

The FAB-MAP algorithm takes a collection of images as in-
put (each image in our case is a five-image panorama taken

from a Ladybug camera). Images are presented sequentially
and at each time-step the algorithm returns a �N � 1� bin PDF
over places (images) representing the probability that the lat-
est image corresponds to each of N previous places (images)
or a “new place”. This allows us to generate topological loop
closure notification when the probability of a match becomes
substantial. The precision-recall and spatial regularity of the
detected loop closures is shown in Figures 10 and 11. There
is a marked difference in recall performance between the Beg-
broke and New College runs. The Begroke sequence was well
lit and diverse in appearance. In contrast, the New College
dataset (Smith et al. 2009) is far more challenging containing
marked changes in lighting and many opportunities for spatial
aliasing (false positives) something which FAB-MAP is de-
signed to be resistant to. Note however that for both datasets
one in two poses are within 2 m of a correctly identified loop
closure constraint.

Loop closures are detected using a multi-view camera giv-
ing 360� of view. They take the form of a tuple �ta� tb�where ta
and tb are two times at which the vehicle appeared to be in the
same place. We refer to a and b as “loop closure ends”. Fig-
ure 9(a) illustrates the distribution of loop closures detected on
the Begbroke dataset. Only loop closures with a 99% proba-
bility are indicated.

The question now is how does one apply this loop closure
constraint to our metric VO derived trajectory. For any loop
closure �ta� tb� we require a metric parameterization of the 6-
DOF transformation aTb between the poses of the vehicle at
the times ta and tb. We currently use two options: pose re-
covery from two pairs of stereo images and laser point cloud
matching.
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Fig. 9. VO results for the four datasets detailed in Tables 2 and 3 with detected loop closures shown in green. Only loop closures
with a 99% probability are indicated. Note that in contrast to the Begbroke dataset where lighting was ideal, there are false
positives in the processing of the New College 1 dataset, which must be removed with geometric consistency checks.

Fig. 10. Quality evaluation of the FAB-MAP loop closure detections. The precision-recall curve for FAB-MAP loop closure
detection for the Begbroke dataset is shown in (a)� 74% of possible loop closures are detected correctly, without false positives.
The spatial distribution of the loop closure detections is shown in (b). For parts of the trajectory where loop-closing occurs
(defined as the paths being within 7.5 m), 85% of poses are either detected as loop closures or are within 2 m of a detected loop
closure.
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Fig. 11. Quality evaluation of the FAB-MAP loop closure detections. The precision-recall curve for FAB-MAP loop closure
detection for the New College 1 dataset is shown in (a)� 16% of possible loop closures are detected correctly, with 99.5%
precision. The spatial distribution of the loop closure detections is shown in (b). For parts of the trajectory where loop-closing
occurs (defined as the paths being within 7.5 m), 50% of poses are either detected as loop closures or are within 2 m of a detected
loop closure.

4.1. Pose Recovery from Stereo Pairs

A version of our VO front-end is used to verify loop-closures
from FAB-MAP. The approach described in Section 2.4 is used
to select 500 well-distributed image points. Scale-invariant
feature transform (SIFT) descriptors are then extracted (with
scale provided by depth from stereo), and n-to-n matching
is performed between left images to establish temporal corre-
spondence. RANSAC is used to find the initial transformation
between frames (with three 3D points used to produce poten-
tial models). The final RANSAC estimate is then used to seed a
Gauss–Newton MLE estimate with a Huber kernel for further
robustness. Typical stereo loop closure images are shown in
Figures 12 and 13. Estimates that have more than 50 matches
and a reprojection error less than 0.2 pixels are kept as valid.
These uncertain loop-closure transforms are used during pose
graph relaxation as described in Section 5. Figure 14 shows
an interesting and important case in which the FAB-MAP al-
gorithm gives a false positive which is caught by this visual
geometry test.

4.2. Pose Recovery via Point Cloud Matching

Recovering the relative pose from stereo yields excellent re-
sults, however it cannot be run on all loop closures. It is not
always the case that loop closures bind points in the vehicle’s
trajectory in which the vehicle is travelling in the same direc-
tion, for example the first pass through a region may have been

a north–south traversal, while the second is south–north. The
FAB-MAP loop closure is insensitive to changes in the direc-
tion of travel, it considers all the visual words seen in a 360�
panorama, but the two views from the stereo rig are wildly dif-
ferent and there is little hope of finding an alignment between
the two poses. In these cases we resort to using iterative closest
point (ICP) (Besl and McKay 1992) between two point clouds
generated from short (a few seconds) segments of the vehicle’s
motion around each end of the loop closure.

ICP is not guaranteed to converge, especially if the initial
guessed alignment between the point clouds is in gross error
(often the case with loop closures). A technique capable of
matching 2D point clouds under such conditions was proposed
by Bosse and Zlot (2008) and it is our intention to extend this
to the 3D case which we need here. However, for the results
given in this paper we implemented a simple (conservative)
threshold-based classifier capable of rejecting incorrect align-
ments based on the final absolute residual norm, inlier to out-
lier ratio and rate of change of residual norm over the optimiza-
tion. Figures 15(a) and 15(b) show the effect of scene shape on
the outcome of the ICP alignment. Convergence problems with
ICP are well known and we do not dwell more on them here.
However, were it not for an ICP fall back, we would not be
able to deduce the metric loop closures in the New College 1
dataset.

Before moving on to discussing how metric loop closure
measurements are used, Figure 16 shows the loop closures
which were upgraded from topological to metric form by both
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Fig. 12. Feature correspondences at loop closure are found and
verified by relative stereo pose estimation. Loop closures pre-
sented by FAB-MAP must pass a geometric check: we typi-
cally require 50 correspondences with an average reprojection
error less than 0.2 pixels before we accept the metric loop clo-
sure measurement as valid. Note that this does not mean the
output of the FAB-MAP process is false, just that there are
not enough geometric features to upgrade from a topological
to metric constraint. Such inferred uncertain relative poses are
used in the pose-relaxation technique described in Section 5.
The figure shows the intra-pair matches (left, right) and the
inter-pose matches (top, bottom).

stereo and ICP. Note that point cloud matching was only in-
voked for the cases in which the stereo method failed, gener-
ally because of a reverse traverse.

5. Pose Graph Relaxation

The VO subsystem produces a chain of 6-DOF vehicle poses
linked by relative transformations which should be thought of
as uncertain metric constraints. The combination of the FAB-
MAP output and metric pose recovery methods just described
provides additional constraints between poses, resulting in a
graph of vehicle poses. Figure 17 illustrates the structure of a
typical pose graph.

We wish to “relax” this graph, perturbing the edges to ac-
commodate, in a minimum error sense, the metric information
in both VO and loop closure constraints. Several authors have
examined methods for pose graph relaxation in recent years,
e.g. Thrun and Montemerlo (2006) and Grisetti et al. (2007).
The particular size and structure of our graphs motivated us to
use classical non-linear optimization techniques taking care at
implementation time to make full use of the sparse properties
of the problem. We note with reference to Figure 17 that the

Fig. 13. A FAB-MAP true positive rejected by stereo registra-
tion due to lack of correspondences. It is possible to generate
more matches� here we chose to err on the conservative side
when it comes to computing metric information from loop clo-
sure notifications: incorrect loop closures are dire.

Fig. 14. FAB-MAP false positive rejected by stereo registration
due to lack of correspondences. The two scenes are clearly not
identical although they do share a common appearance.

VO system produces a chain of relative transformations (and
poses) through the center of the graph. This chain corresponds
to the vehicle’s smooth trajectory through the workspace. Loop
closure constraints pinch this chain together via single edges
between disparate poses. We chose to optimize not over the
set of poses in the graph but rather over the relative poses be-
tween them. Define � � ��1� �2� � � �� to be the set of inter-pose
transformations along the trajectory chain such that �i is the
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Fig. 15. Scenes with rich geometry commonly lead to excellent 6-DOF alignment but when presented with largely flat scenes
ICP commonly converges to a local minima. Here the boughs of the tree (final loop around the ground of the New College 1
dataset) provide a well-defined minima and an excellent match between two point clouds (red and blue). In the case of a facade
of a building the alignment has snapped to an incorrect alignment, understandable as a spatial aliasing problem.

Fig. 16. The successful stereo-metric and laser ICP-metric
loop closures that survived the geometric verification stages.
Stereo successes are in dashed green and “fall back” laser cases
are in solid purple. The direction of travel of the vehicle has
been indicated with arrows.

transformation between pose i � 1 and pose i . Furthermore,
define V � [�T

1 � �
T
2 � � � �]

T to be a stacked vector of parameter-
izations of these relative transformations, this will be our state
vector which we wish to optimize.

Consider now Figure 18 which shows a loop closure con-
straint between two poses m and q. We note that the trans-
formation, m Tq between two poses m and q is simply the

Fig. 17. A section of a typical pose graph. Poses (e, f. . . l)
are denoted as nodes (circles) and edges are relative transfor-
mations. There is a chain of relative transformations flowing
through the graph created by the VO system. Loop closure
transformations i L j are single edges linking disparate nodes
(i and j) of this chain.

Fig. 18. A section of pose graph showing a loop closure be-
tween vehicle poses m and q and a state of interest �r . Note
that the pose graph optimization is over transformations be-
tween vehicle poses and not the poses themselves. The dotted
circles represent an arbitrary number of poses.
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integration of all of the individual transformations between
poses:

m Tq � �m�1 � �m�2 � � � � � �q� (8)

where � denotes the transformation composition operator.
This then constitutes a prediction of the loop closure con-
straint m Lq and �m Lq �m Tq�2 is a measure of the com-
patibility of the graph edges with the loop closure measure-
ments. More generally, if we have a set of n loop closures
� � �L1 � � � Ln� where Li is between pose a�i� and b�i� (a
and b are look up functions), and m interpose VO measure-
ments �� � ��o1 � � � �om�, then the cost metric we wish to
impose on the whole graph and then minimize is

C�V ������ �
n�
i

�Li �a�i� Tb�i��2 �
m�
i

��oi � �i�2 (9)

where we note that the prediction a�i�Tb�i� is itself a function of
V . The quadratic cost function in Equation (9) is well suited
to classical non-linear minimization techniques. Many of these
techniques require the calculation of the derivative of the mea-
surement prediction with respect to the state vector being op-
timized. We now consider the form of this derivative.

Consider again Figure 18 which shows one loop closure be-
tween pose m and pose q. We can write an incremental change
in the prediction of m Tq as


 mTq �
q�

r�m�1

� m Tq

� �r

�r � (10)

where 
�r is an incremental change in the r th component of the
state vector V : the relative transformation between pose r � 1
and pose r . Considering the partial derivative in the summation
and substituting Equation (8) we have

� m Tq

� �r
� �

�
�m�1 � �m�2 � � � � � �q

�
��r

(11)

� �
�

m Tr�1 � �r �r Tq
�

��r
� (12)

where m Tr�1 and r Tq are rigid kinematic chains. This allows
us to write via the chain rule

� m Tq

� �r
� �1�

m Tr�1 � �r �
r Tq��2�

m Tr�1� �r �� (13)

where

�1�x� y� � �x � y

�x
� (14)

�2�x� y� � �x � y

�y
� (15)

are the Jacobians of the composition operator � for arbitrary
transformations x and y.

Equation (10) can be written in matrix form


 m Tq � hm�q
V� (16)

where 
V is a vector of small changes in V and h is a row-
matrix where the kth sub block (m  k  q) is given by
Equation (13) and zero for all k outside this range. Writing the
error between predicted transformation m Tq and the measured
value of the loop closure m Lq as 
m Lq we seek a change in V ,

V , such that

hm�q
V � 
m Lq � (17)

If we have n loop closure constraints we will have n such con-
straints to fulfill each in the form of Equation (17) yielding

H
V � 
L (18)

where 
L is a stacked vector of loop closure measurements.
As it stands this system of equations is almost certainly under-
constrained� there will typically be many fewer loop closures
than poses (we typically drop a pose every 50 ms). The sys-
tem is made to be observable by adding in the visual odometry
measurements between poses such that the complete problem
becomes �

�H

I

�
� 
V �

�

L

Z

�
(19)

where Z � [�oT
1 � �oT

2 � � � �]
T is a stacked vector of visual odom-

etry measurements between poses. This linear form can then
be solved swiftly using standard techniques (we use precondi-
tioned conjugate gradient because

�
HTI

�T
is large and we do

not wish to create or store it in memory) to yield incremen-
tal adjustments in the pose graph’s edges. Optimization ceases
when the perturbations in V become small.

Figure 19(a) shows the results of applying our relaxation
approach to the trajectory shown in Figure 5(b) using only
stereo metric constraints. The final loop around the grounds
was made in the opposite direction to those that came before
and so no FAB-MAP loop closures could be upgraded met-
rically. Figure 19(b) shows the advantages of being able to
fall back on laser-based ICP matching. Where no stereo met-
ric constraints could be found, point clouds rendered from the
VO trajectory are matched in 6 DOFs and used to constrain the
pose graph. Figures 20(a) and 20(b) show relaxed trajectories
for the New College 2 and New College 3 datasets.

6. Map Generation and Quality Assessment

The trajectory estimation described in this paper is entirely
vision-based (apart from cases where we need to fall back
to ICP registration to infer loop closure geometry� see Sec-
tion 4.2). We map the 3D structure of the workspace by render-
ing laser range data and stereo depth maps from the estimated
trajectory.
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Fig. 19. Left: the optimized trajectory of the New College 1 dataset (2.3 km) using only visual constraints (no laser ICP). Note
the final loop around the ground appears to be in error because no stereo matching was possible due to the opposite traversal
direction. Right: the optimized trajectory using both visual constraints and ICP matching. Note how in comparison to Figure 19(a)
the final excursion around the grounds is properly constrained.

Fig. 20. The optimized trajectory of the New College 2 dataset (2.1 km) and the New College 3 dataset (0.8 km).

6.1. Laser Map Generation

Our vehicle is equipped with two LMS 291 lasers mounted
vertically on its sides. The lasers are set to 0�5� resolution re-
sulting in an “angel wing” beam pattern. By capturing the in-

tensity of the reflected laser pulses and careful time synchro-
nization (Tables 2 and 3 indicate the angular velocities expe-
rienced by our vehicle) we are able to generate detailed 3D
point clouds. Figure 21 shows the typical detail produced in
real time from our full 6-DOF platform.
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Fig. 21. Close detail of a point cloud built by rendering range
and reflectance data from the estimated trajectory of a moving
Segway platform (New College dataset).

Fig. 22. View of the buildings in the quad of the New College
dataset rendered from the 6-DOF estimated trajectory.

Figure 22 shows a view of part of the map built from the
New College dataset (Smith et al. 2009) (front quad) rendered
from the estimated trajectory. The “up” gravity vector has been
aligned using the ground plane detection described in Sec-
tion 6.2. Figure 24 shows a thinned point cloud of the entire
New College 1 dataset.

With an assembled 3D point cloud in hand, it is possible
to produce a colored version like that shown in Figure 23 by
back-projecting laser points into the view of a camera and
looking up the required color. It is at this point that the im-
portance of high-quality lens distortion removal, timing and
6-DOF pose estimation becomes evident: poor spatial and tem-
poral alignment lead to disappointing results. While this pro-
duces appealing results it is not an end in itself. Rather it is an
important precursor to the semantic labeling step described in
Section 8.

Fig. 23. A view of the New College dataset with color derived
from back-projecting laser points into the images taken by the
panoramic camera used for loop closure detection.

Fig. 24. A complete “bird’s eye” view of the New College 1
dataset with the map rendered from an optimized pose-graph.

6.2. Dense Stereo Map Generation

As well as using the stereo rig to estimate vehicle motion, we
are able to generate disparity maps in real time. This will en-
able us to undertake obstacle avoidance and motion planning
tasks. At present we use the disparity maps to fill in the 3D
structure of the scene not observed by the scanning lasers on
our vehicle shown in Figure 2. The orientation and field of
view (90�) of the lasers means that a stripe of workspace is un-
observed underneath the vehicle and near each side (note the
black stripe in Figure 23).

We implement a local, window-based stereo algorithm em-
ploying a number of disparity refinement and error detection
stages. Stereo images from the Point Grey BumbleBee2 cam-
era are undistorted and rectified using the factory calibration
stored onboard the camera. To compensate for any photometric
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Fig. 25. The result of disparity map calculation on a stereo pair
from the New College dataset. The color of pixels in the dis-
parity map indicate depth: red pixels are close to the camera,
dark blue are far away. Pixels for which no disparity could be
calculated are black.

variation between the two images, we process the images using
a Laplacian of Gaussian filter (Marr and Hildreth 1980). Tak-
ing the left image as the reference image, we calculate corre-
lation scores using a sum of absolute differences over the cor-
relation window (typically 11 � 11 pixels2). These disparities
are refined using the multiple supporting windows technique
described by Hirschmüller et al. (2002). This helps to compen-
sate for errors introduced by a correlation window which over-
laps depth discontinuities. Five supporting windows are used
for speed of computation and the best (lowest) three scores
contribute to the refined correlation score.

For each pixel, a search of the corresponding discrete cor-
relation curve is performed, looking for the minimum correla-
tion score. A left/right consistency check, as proposed by Fua
(1993), performs the correlation search twice by reversing the
roles of the two images. A disparity is marked as invalid if the
two correlation curve minima do not agree.

A sharply defined minimum is strongly indicative of a cor-
rect correspondence match. A flat, or close to flat correlation
curve indicates a region of low texture in which it is inher-
ently difficult to find a correct match using a window-based
stereo algorithm. We therefore disregard disparities for pixels
where the relative difference between the lowest and second
lowest points of the curve falls below an empirically deter-
mined threshold.

Subpixel interpolation is performed by fitting a parabola to
the correlation minimum and the two neighboring values: the
minimum of this curve is taken to be the subpixel disparity.
Finally, we consider the eight-way connected components of
each pixel in the resulting refined disparity map, discarding
pixels which are not connected to a minimum number of pix-
els with similar disparities. This step helps to remove isolated
incorrect pixels. An example result of our disparity map calcu-
lation is shown in Figure 25.

We convert the disparity maps into 3D point clouds and,
using the 6-DOF poses from VO (Section 2), orient them in

Fig. 26. Dense 3D point cloud from stereo using the New Col-
lege 1 dataset rendered from the VO trajectory, with the ground
plane in green. An average of 79% of possible pixels in each
512� 384 input image are given valid disparity values by our
implementation, and of these 58% fall within 5 m of the cam-
era.

a global coordinate frame. A simple RANSAC (Fischler and
Bolles 1981) plane fitting method is used to detect the ground
plane in each point cloud. Results are shown with the ground
plane highlighted in Figure 26. We choose to only store 3D
points which are located within 5 m of the camera. This is
due to the triangulation uncertainty in the conversion from dis-
parity to depth becoming more pronounced with more distant
points (Matthies and Shafer 1987). An average of 79% of pos-
sible pixels in each 512 � 384 input image are given valid
disparity values by our implementation, and of these 58% fall
within our 5 m threshold.

6.3. Assessing Map Quality

Although the 3D point clouds are visually compelling, it is
important to assess their intrinsic quality. In the long term we
want to use measures of map quality to deduce additional pose
graph constraints required to create a high-quality model of
the workspace. In this section we analyze the quality of the
map built inside the New College quad. The quadrangle was
circumnavigated four times and a perfect map would have all
four walls lining up perfectly after each orbit. Our approach
is to measure how far from this ideal our map really is. We
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begin by finding planar sets of points from walls which were
observed on multiple loops using the following two steps.

� Region of interest selection. The user is presented with a
3D point cloud of the initial pass of a environment and
selects k test points, 1 p1:k , on a wall and expands a cap-
ture radius ri round each such that the set of points, 1�i

within ri of pi lie within a plane. Here we are using a su-
perscripted prefix to indicate the pass of the workspace:
1 being the first pass, 2 being the second and so on.

� Interest expansion. A script is run which searches over
the entire map to find additional planar point sets that
correspond to the same patch of wall but from subse-
quent passes. If there were N complete passes through
the environment we would expect N point sets for each
of the k user-selected test points 1:N�i , i � 1 : k. We
are assuming here that the maps being analyzed are not
in gross error, otherwise finding correspondences across
passes will be hard.

We are now able to calculate statistics on how consistent the
geometry of the wall patches are as they are mapped again and
again. First we calculate the normal j �ni of each wall patch j�i

via a singular value decomposition of its scatter matrix and
also the centroids j ci , j � 1 : N , i � 1 : k. For each possible
pairing of planes corresponding to the same physical patch of
wall we calculate the angle between the surface normals and
the distance between centroids. We refer to these quantities
as intra-cluster alignment and displacement. Table 4 presents
statistics of these quantities.

The results are promising although not perfect, and this is
an area requiring further work. In particular it would be ad-
vantageous and interesting to add extra constraints to the pose
graph as a function of the measured quality of the maps — this
is an area of current research.

7. Multi-session Mapping

The FAB-MAP architecture can easily be applied across data
gathered from multiple outings. The input to the algorithm can
be batch or sequential. Presented with a collection of images,
it generates a list of loop closure notifications between images
which are themselves time-stamped. This that means loop clo-
sures can be found between datasets gathered days apart and
because the operation is purely appearance-based, we need
not worry about aligning metric coordinate frames. Figure 28
shows loop closures found between the New College 2 and
New College 3 datasets.

Section 5 shows how the graph relaxation can be viewed
as relaxing a chain of poses laid down by the vehicle’s motion
which is pinched together by loop closure edges. This notion
can be simply extended to multi-session scenarios by modeling
the change of location between the end of day k and the start of

Fig. 27. In the left image a user has selected a point on a wall
(beside a tree) using laser points only from the first pass past
it and a planar region has been detected and selected around it.
The right-hand image shows, with red crosses, where these test
points were selected to generate the statistics shown in Table 4.

day k � 1 as a single link joining two trajectory chains, but of
which we have infinite uncertainty. Figure 28 shows the result
of applying this technique to the co-joined trajectories shown
in Figure 29.

The optimization of our pose graphs is an offline process: it
takes about 20 minutes to optimize a 50,000 node graph with a
few hundred loop closures. The question of finding the correct
weighting between loop closure interpose constraints is deli-
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Table 4. Analysis of the Quality of New College Quad Point
Cloud

Property Value

Maximum intra-cluster angle over all� 9�1�

Minimum intra-cluster angle over all� 0�32�

Maximum of the average intra-cluster angle over
all�

4�86�

Minimum of the average intra-cluster angle over
all�

0�66�

Average intra-cluster angle over all � 3�6�

Maximum intra-cluster displacement over all� 0�6 m

Minimum intra-cluster displacement over all � 0�02 m

Maximum of the average intra-cluster
displacement over all�

0�33 m

Minimum of the average intra-cluster
displacement over all�

0�14 m

Average intra-cluster displacement over all� 0�21 m

Fig. 28. Loop closure links found within and between the New
College 2 and New College 3 datasets. Inter-day loop closures
are shown in green.

cate and needs further research. Certainly, one must model the
correlations between linear and rotational motion for a non-
holonomic vehicle. Also, if the optimization is seeded with an
atrocious first guess then convergence to a reasonable trajec-
tory is far from assured. As always, local minima are a hazard
and these often take the form of tight knots in the vehicle tra-
jectory. To undo one of these knots (and from there reach a

Fig. 29. Relaxed multi-session trajectories between the New
College 2 (blue) and New College 3 (pink) datasets. Note that
fusion and relaxation is done with no manual alignment of co-
ordinate frames: the alignment is discovered automatically by
applying loop closure constraints.

global minima) appears to require a temporary increase in the
cost C�V ������ as defined in Equation (9), something that
gradient-based optimizers are unable to do.

8. Semantic Labeling

The maps we produce are agglomerations of laser points: at
this point they are well registered and colored and make for
appealing images such as Figure 23, but we wish to do more.
We want to move towards understanding what is in the map,
where it is and what that might mean to a user and for the oper-
ation of the vehicle. Particularly when navigating in an urban
context, a more informative, higher-order representation of the
environment is indispensable: if only because self-preservation
dictates avoidance of highly dynamic regions such as roads.
Robust localization can be helped by distinguishing features
beyond the recognition of ubiquitous general objects such as
“ground”, “wall” or “house”. This motivates the definition of
desired classes: in an urban environment places can be distin-
guished by the type of ground that is present, the color and
texture of surrounding houses (or, more appropriately, of sur-
rounding walls) and the presence or absence of other features
such as bushes or trees. Our goal is to add value to maps built
by mapping algorithms by augmenting them with such higher-
order, semantic labels. We achieve this by using both scene
appearance and geometry to produce a composite description
of the local area. The following presents an overview of the
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Fig. 30. The classification hierarchy employed in this work employing both a Bayesian classifier (to separate ground and non-
ground classes) and a bank of SVMs.

classification framework employed as well as the data process-
ing involved. The system was first introduced and evaluated
extensively by Posner et al. (2008). It is worth noting that
the classifiers employed here originate from a different vehi-
cle with a different sensor payload and setup: the classifiers
were trained originally on an ATRV-Junior vehicle using data
from a forward-looking LMS 200 unit mounted in a recip-
rocating cradle. However, the general nature of the features
used for classification provide for acceptable classification
performance without necessitating a customization of the clas-
sification framework or even retraining of the classifiers for
the Segway-based platform in Figure 2.

8.1. The Labeling Pipeline

Our scene labeling engine is based on both appearance and
geometric features extracted from cross-calibrated camera–
laser pairs. In this case, on both sides of the vehicle one of
the sideways-looking cameras of the Ladybug unit was cali-
brated against the LMS unit on that same side. This allows
for the projection of gathered laser data into the correspond-
ing images. Thus equipped, the processing pipeline proceeds
by first performing a plane segmentation on a laser point cloud
associated with a particular scene. The choice of a plane as a
geometric primitive is tolerable because of its ubiquitous use
in man-made environments, but it is something our latest work
does not require. This segmentation provides us with a robust
estimate of local 3D geometry associated with every laser da-
tum identified as part of a plane in the environment. These data
are then projected into the corresponding camera images.

While the next section provides a more detailed outline
of the classification framework employed, we mention here
our choice of a majority voting scheme in the resulting clas-
sifications to motivate the next step in the processing pipeline.
As described in detail by Posner et al. (2008), the initial
plane segmentation in laser space is refined based on an off-
the-shelf image segmentation algorithm. The result of this
processing step are image patches, or superpixels, which, by
way of containing laser data, have 3D geometric informa-
tion associated with them. For each of these superpixels, stan-
dard appearance features are associated with each of the pro-
jected laser data. In this case, a histogram for both the hue
and saturation channel is calculated over a fixed-size neigh-
borhood around each interest point. The laser data associ-
ated with each superpixel as well as the corresponding fea-
ture vectors form the input to the classification stage of the
system.

8.2. Classification Framework

The classification framework adopted here operates on indi-
vidual laser data grouped by superpixel membership and re-
sults in the classification of entire superpixels in an image by
means of majority consensus of individual classifications. In
order to classify individual laser data, we employ a hierarchi-
cal combination of two distinct discriminative approaches. An
illustration is given in Figure 30. At the top of the hierarchy a
threshold classifier is employed to distinguish between ground
and non-ground classes, based on the Bayes decision rule. The
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Table 5. Classification Results for an Independent Validation Set (Reproduced with permission from (Posner et al. 2008))

Class details Performance

Name Number of patches Number of points Precision (%) Recall (%)

Grass 99 5,393 96.6 98.1

Tarmac/paved 1,373 77,256 97.7 89.0

Dirt patch 147 7,988 46.4 84.8

Textured wall 2,240 69,541 82.7 73.5

Smooth wall 906 29,881 56.9 64.4

Bush/foliage 181 8,364 60.6 62.8

Vehicle 169 4,499 43.7 80.1

decision is based on the height (from the ground) of an individ-
ual laser datum as well as the orientation of the plane segment
of which the datum is a member. The appropriate thresholds
for this classification stage were learned from labelled training
data.

The second level of the classification hierarchy consists of
a bank of support-vector machines (SVMs) for the ground
and the non-ground classes, respectively. SVMs are a popu-
lar choice where the model parameters are found by solving
a convex optimization problem. This is a desirable property
since it implies that the final classifier is guaranteed to be the
best feasible discriminant given the training data.

While SVMs are inherently binary decision makers, multi-
class classification within a bank of classifiers is performed
by comparing the outputs of the individual SVMs trained
as one-versus-all. This is a common extension to the binary
case (Burges 1998). In order to ensure that the classifier out-
puts are of the same scale, and are thus comparable, a proba-
bilistic calibration is performed in which the class posterior
from the raw SVM output is estimated such that the final
classification amounts to a maximum a posteriori decision
amongst the individual classes (Platt 2000). Finally, majority
consensus amongst all of the individual laser classifications
within an image patch provides the label for that superpixel.

The system was trained and evaluated on an ATRV Junior
platform using laser and vision data from over 16 km of track
through an urban environment. Individual SVMs were trained
using a Gaussian kernel, which is a common choice and has
been found to perform well in a variety of applications. The
kernel width as well as a trade-off parameter specifying a tol-
erance for misclassifications during training were determined
using five-fold cross-validation over a grid in parameter space.
To provide an indication of typical system performance clas-
sification results on a validation set are presented in Table 5.
For this dataset scene classification was carried out on average
in 4.8 s per frame. For a detailed description and analysis of
the performance of the classification framework the reader is
referred to Posner et al. (2008).

Typical output from this system when applied to data gath-
ered by the Segway at various positions around the New Col-
lege Quad (dataset 1) is shown in Figure 31.

9. Future Work

This paper documents our progress in producing a reliable
large-scale navigation system. While very few published meth-
ods tackle the trajectory lengths we do here (Konolige and
Agrawal (2008) and Nister et al. (2006) being clear exceptions)
and at our frame density, much remains to be done. While we
certainly have the parts in place to achieve our aims, we are
not at the stage at which long-term operation is reliable. If we
were to pick one aspect of this research that needs attention
it would be introspection: the ability to look back over past
decisions, measurements and optimizations and, armed with
several metrics, decide that all is not well and, ideally, plan
and execute remedial action. This goes beyond the common-
place day-to-day data association problem where we search for
the best way to interpret a given set of measurements (includ-
ing rejecting them). We should be looking at the final global
properties of maps and trajectories (for example, compatibil-
ity between camera pixels and laser range images) to assess
online performance and drive exploration strategies. Our work
on map quality analysis is a start down this path, but much re-
mains to be done to provide SLAM systems with the nagging,
persistent self-doubt that we believe will lead to the robust im-
plementations we desire. Looking to the future, our motivation
is to move up from pixels and laser pulses through geome-
try and image patches and up to useful structural and seman-
tic labels of workspaces. We wish to generate symbols with
sufficient diversity and richness that allow a connection with
computational linguistics. Indeed, a mid-term goal is to reach
a state of systems maturity in which it becomes sensible to en-
gage in problems of life-long learning and principled human
machine communication via natural language. We have some
way to go before achieving this, but we believe the bedrock
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Fig. 31. Typical output from the scene labeling engine employed around the New College quad. The top row presents the original
images. The bottom row presents the corresponding superpixel classifications and shows the projected laser data for each image.
The labels are generated automatically. While not all of the classes mentioned in the legend are represented in the images, the
full legend has been provided to give an intuition as to the classes catered for by the current system. A more detailed evaluation
of the system employed here can be found in Posner et al. (2008).

must be a robust, long-lived ability to localize, map and label
workspaces from a moving platform.

Acknowledgments

The work reported in this paper undertaken by the Mobile Ro-
botics Group was funded by the Systems Engineering for Au-
tonomous Systems (SEAS) Defence Technology Centre estab-
lished by the UK Ministry of Defence, by Guidance Ltd, and
by the UK EPSRC (CNA and Platform Grant EP/D037077/1).
Christopher Mei and Ian Reid of the Active Vision Lab ac-
knowledge the support of EPSRC grant GR/T24685/01. The
authors would like to extend their thanks to Rohan Paul and
Ian Baldwin for their cold wanderings collecting data around
New College.

References

Angeli, A., Filliat, D., Doncieux, S. and Meyer, J.-A. (2008). A
fast and incremental method for loop-closure detection us-
ing bags of visual words. IEEE Transactions On Robotics,
24: 1027–1037.

Bar-Shalom, Y. and Fortmann, T. E. (1988). Tracking and Data
Association. New York, Academic Press.

Bell, B. M. and Cathey, F. W. (1993). The iterated Kalman
filter update as a Gauss–Newton method. IEEE Transac-
tions on Automatic Control, 38(2): 294–297.

Besl, P. J. and McKay, N. D. (1992). A method for registra-
tion of 3-d shapes. IEEE Transactions Pattern Analysis and
Machine Intelligence, 14(2): 239–256.

Bibby, C. and Reid, I. (2007). Simultaneous localisation and
mapping in dynamic environments (SLAMIDE) with re-



26 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / 2009

versible data association. Proceedings of Robotics: Science
and Systems, Atlanta, GA.

Bosse, M. and Zlot, R. (2008). Map matching and data associa-
tion for large-scale two-dimensional laser scan-based slam.
The International Journal of Robotics Research, 27(6):
667–691.

Brown, D. (1958). A solution to the general problem of
multiple station analytical stereotriangulation. RCP-MTP
Data Reduction Technical Report No. 43, Patrick Air
Force Base, Florida (also designated as AFMTC 58-
8).

Brown, D. (1976). The bundle adjustment—progress and
prospects. XIIIth Congress of the International Society for
Photogrammetry.

Burges, C. J. C. (1998). A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge Dis-
covery, 2(2): 121–167.

Chen, C. and Wang, H. (2006). Appearance-based topological
Bayesian inference for loop-closing detection in a cross-
country environment. The International Journal of Robot-
ics Research, 25(10): 953–983.

Chow, C. and Liu, C. (1968). Approximating discrete probabil-
ity distributions with dependence trees. IEEE Transactions
on Information Theory, 14(3): 462–467.

Cole, D. and Newman, P. M. (2006). Using laser range data
for 3d SLAM in outdoor environments. Proceedings of the
IEEE International Conference on Robotics and Automa-
tion (ICRA), Orlando, FL.

Cummins, M. and Newman, P. (2007). Probabilistic ap-
pearance based navigation and loop closing. Proceedings
IEEE International Conference on Robotics and Automa-
tion (ICRA’07), Rome.

Cummins, M. and Newman, P. (2008a). Accelerated ap-
pearance-only SLAM. Proceedings IEEE International
Conference on Robotics and Automation (ICRA’08),
Pasadena, CA.

Cummins, M. and Newman, P. (2008b). FAB-MAP: prob-
abilistic localization and mapping in the space of ap-
pearance. The International Journal of Robotics Research,
27(6): 647–665.

Cummins, M. and Newman, P. (2009). Highly scalable
apppearance-only SLAM—FAB-MAP 2.0. Proceedings of
Robotics Science and Systems, Seattle, WA.

Deans, M. C. (2005). Bearings-only localization and mapping.
PhD Thesis, School of Computer Science, Carnegie Mellon
University.

Dellaert, F. and Kaess, M. (2006). Square Root SAM: si-
multaneous location and mapping via square root informa-
tion smoothing. The International Journal of Robotics Re-
search, 25(12): 1181.

Eade, E. and Drummond, T. (2008). Unified loop closing
and recovery for real time monocular SLAM. Proceed-
ings of 19th British Machine Vision Conference, Leeds,
UK.

Engels, C., Stewenius, H. and Nister, D. (2006). Bundle ad-
justment rules. Proceedings of Photogrammetric Computer
Vision.

Eustice, R., Singh, H., Leonard, J., Walter, M. and Ballard, R.
(2005). Visually navigating the RMS Titanic with SLAM
information filters. Proceedings of Robotics: Science and
Systems, Cambridge, MA.

Filliat, D. (2007). A visual bag of words method for interac-
tive qualitative localization and mapping. Proceedings 2007
IEEE International Conference on Robotics and Automa-
tion pp. 3921–3926.

Fischler, M. A. and Bolles, R. C. (1981). Random sample con-
sensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communica-
tions of the ACM, 24: 381–395.

Fitzgibbon, A. W. and Zisserman, A. (2004). Automatic Cam-
era Recovery for Closed or Open Image Sequences. Berlin,
Springer.

Frese, U. and Duckett, T. (2003). A multigrid approach for
accelerating relaxation-based SLAM. Proceedings IJCAI
Workshop on Reasoning with Uncertainty in Robotics (RUR
2003), Acapulco, Mexico, pp. 39–46.

Fua, P. (1993). A parallel stereo algorithm that produces dense
depth maps and preserves image features. Machine Vision
and Applications, 6(1): 35–49.

Grisetti, G., Stachniss, C., Grzonka, S. and Burgard, W.
(2007). A tree parameterization for efficiently computing
maximum likelihood maps using gradient descent. Pro-
ceedings of Robotics: Science and Systems, Atlanta, GA.

Gutmann, J. and Konolige, K. (November 1999). Incremental
mapping of large cyclic environments. Proceedings of the
IEEE International Symposium on Computational Intelli-
gence in Robotics and Automation (CIRA), Monterey, CA,
pp. 318–325.

Hartley, R. and Zisserman, A. (2000). Multiple View Geome-
try in Computer Vision. Cambridge, Cambridge University
Press.

Hirschmüller, H., Innocent, P. R. and Garibaldi, J. (2002).
Real-time correlation-based stereo vision with reduced bor-
der errors. International Journal of Computer Vision, 47(1–
3): 229–246.

Ho, K. L. and Newman, P. (2007). Detecting loop closure with
scene sequences. International Journal of Computer Vision,
74(3): 261–286.

Iagnemma, K. and Buehler, M. (eds) (2006a). Special issue
on the DARPA Grand Challenge, Part I. Journal of Field
Robotics, 23(8): 461–652. ISSN 0741-2223.

Iagnemma, K. and Buehler, M. (eds) (2006b). Special issue
on the DARPA Grand Challenge, Part II. Journal of Field
Robotics 23(9): 655–835.

Jordan, M. (2003). An Introduction to Graphical Models (un-
published).

Konolige, K. and Agrawal, M. (2007). Frame–frame matching
for realtime consistent visual mapping. Proceedings 2007



Newman et al. / Navigating, Recognizing and Describing Urban Spaces With Vision and Lasers 27

IEEE International Conference on Robotics and Automa-
tion, Rome, Italy.

Konolige, K. and Agrawal, M. (2008). FrameSLAM: from
bundle adjustment to real-time visual mapping. IEEE
Transactions on Robotics, 24(5): 1066–1077.

Kröse, B. J. A., Vlassis, N. A., Bunschoten, R. and Motomura,
Y. (2001). A probabilistic model for appearance-based ro-
bot localization. Image and Vision Computing, 19(6): 381–
391.

Lamon, P., Nourbakhsh, I., Jensen, B., and Siegwart, R.
(2001). Deriving and matching image fingerprint sequences
for mobile robot localization. Proceedings of the IEEE In-
ternational Conference on Robotics and Automation, Seoul,
Korea.

Lina María Paz, J. D. T., Piniés, P. and Neira, J. (2008). Large-
scale 6-DOF SLAM with stereo-in-hand. IEEE Transac-
tions on Robotics, 24(5): 946–957.

Lu, F. and Milios, E. (1997). Globally consistent range scan
alignment for environment mapping. Autonomous Robots,
4(4): 333–349.

Marr, D. and Hildreth, E. (1980). Theory of edge detection.
Proceedings of the Royal Society of London. Series B, Bio-
logical Sciences, 207(1167): 187–217.

Matthies, L. and Shafer, S. (1987). Error modelling in stereo
navigation. IEEE Journal of Robotics and Automation,
3(3): 239–248.

McLauchlan, P. F. (1999). The variable state dimension filter
applied to surface-based structure from motion. Technical
Report, University of Surrey.

McLauchlan, P. F. and Murray, D. W. (1995). A unifying
framework for structure and motion recovery from image
sequences. Proceedings of the International Conference on
Computer Vision, pp. 314–320.

Mei, C., Benhimane, S., Malis, E. and Rives, P. (2008).
Efficient homography-based tracking and 3-D reconstruc-
tion for single viewpoint sensors. IEEE Transactions on Ro-
botics, 24: 1352–1364.

Mikhail, E. M. (1983). Observations and Least Squares. Row-
man & Littlefield.

More, J. (1978). The Levenberg–Marquardt Algorithm: Im-
plementation and Theory (Lecture Notes in Mathematics,
Vol. 630). Berlin, Springer, pp. 105–116.

Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyse, F. and
Sayd, P. (2006). Real time localization and 3D reconstruc-
tion. Proceedings of Computer Vision and Pattern Recogni-
tion.

Newman, P. (1999). On the structure and solution of the simul-
taneous localisation and map building problem. PhD The-
sis, The University of Sydney.

Newman, P. M., Cole, D. M. and Ho, K. (2006). Out-
door SLAM using visual appearance and laser rang-
ing. Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), Orlando,
FL.

Nister, D., Naroditsky, O. and Bergen, J. (2004). Visual odom-
etry. Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, Washington, DC, pp. 652–
659.

Nister, D., Naroditsky, O. and Bergen, J. (2006). Visual odom-
etry for ground vehicle applications. Journal of Field Ro-
botics, 23(1): 3–20.

Nister, D. and Stewenius, H. (2006). Scalable recognition with
a vocabulary tree. Proceedings of the Conference on Com-
puter Vision and Pattern Recognition, Vol. 2, pp. 2161–
2168.

Olson, C. F., Matthies, L. H., Schoppers, M. and Maimone,
M. W. (2001). Stereo ego-motion improvements for ro-
bust rover navigation. Proceedings of the IEEE Conference
on Robotics and Automation, Washington, DC, pp. 1099–
1104.

Olson, E., Leonard, J. and Teller, S. (2006). Fast iterative align-
ment of pose graphs with poor initial estimates. Proceed-
ings of the IEEE International Conference on Robotics and
Automation, pp. 2262–2269.

Platt, J. (2000). Probabilistic outputs for support vector ma-
chines and comparison to regularized likelihood meth-
ods. In: Advances in Large Margin Classifiers, A. Smola,
P. Bartlett, B. Schoelkopf, and D. Schuurmans (eds), MIT
Press, pp. 61–74.

Posner, I., Schroeter, D. and Newman, P. (2008). Online gener-
ation of scene descriptions in urban environments. Robotics
and Autonomous Systems, 56(11): 901–914.

Rosten, E. and Drummond, T. (2005). Fusing points and lines
for high performance tracking. Proceedings IEEE Interna-
tional Conference on Computer Vision, Vol. 2, pp. 1508–
1511.

Schindler, G., Brown, M. and Szeliski, R. (2007). City-Scale
Location Recognition. IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 1–7.

Sibley, G. (2006). Sliding window filters for SLAM. Techni-
cal Report CRES-06-004, University of Southern Califor-
nia, Center for Robotics and Embedded Systems.

Sibley, G., Matthies, L. and Sukhatme, G. (2007). A Sliding
Window Filter for Incremental SLAM (Lecture Notes in
Electrical Engineering, Vol. 8). Berlin, Springer.

Sibley, G., Sukhatme, G. and Matthies, L. (2006). The iter-
ated sigma point Kalman filter with applications to long
range stereo. Proceedings of Robotics: Science and Sys-
tems, pp. 263–270.

Sivic, J. and Zisserman, A. (2003). Video Google: a text re-
trieval approach to object matching in videos. Proceedings
of the International Conference on Computer Vision, Nice,
France.

Smith, M., Baldwin, I., Churchill, W., Paul, R. and Newman,
P. (2009). The new college vision and laser data set. The In-
ternational Journal of Robotics Research, 28(5): 595–599.

Smith, R. C., Self, M. and Cheeseman, P. (1990). Estimat-
ing uncertain spatial relationships in robotics. Autonomous



28 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / 2009

Robot Vehicles, I. J. Cox and G. T. Wilfong (eds). Berlin,
Springer, pp. 167–193.

Thrun, S., Burgard, W. and Fox, D. (2005). Probabilistic Ro-
botics. Cambridge, MA, MIT Press.

Thrun, S., Koller, D., Ghahmarani, Z. and Durrant-Whyte, H.
(2002). Simultaneous mapping and localization with sparse
extended information filters: Theory and initial results. Pro-
ceedings of the Workshop on Algorithmic Foundations of
Robotics.

Thrun, S. and Montemerlo, M. (2006). The graph SLAM al-
gorithm with applications to large-scale mapping of urban
structures. The International Journal of Robotics Research,
25(5–6): 403–429.

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron,
A., Diebel, J., et al. (2006). Stanley: the robot that won the
DARPA Grand Challenge. Journal of Field Robotics, 23(1):
661–692.

Triggs, B., McLauchlan, P., Hartley, R. and Fitzgibbon, A.
(2000). Bundle adjustment—a modern synthesis. Vision Al-
gorithms: Theory and Practice, W. Triggs, A. Zisserman
and R. Szeliski (eds) (Lecture Notes in Computer Science).
Berlin, Springer, pp. 298–375.

Tsai, R. Y. (1987). A versatile camera calibration technique for
high-accuracy 3D machine vision metrology using off-the-
shelf TV cameras and lenses. IEEE Journal of Robotics and
Automation, 3(4): 323–344.

Urmson, C., Anhalt, J., Bae, H., Bagnell, J. D., Baker, C., Bit-
tner, R. E., et al. (2008). Autonomous driving in urban en-
vironments: Boss and the urban challenge. Journal of Field
Robotics Special Issue on the 2007 DARPA Urban Chal-
lenge, Part I, 25(1): 425–466.

Wang, J., Cipolla, R. and Zha, H. (2005). Vision-based global
localization using a visual vocabulary. Proceedings of the
International Conference on Robotics and Automation.

Wolf, J., Burgard, W. and Burkhardt, H. (2005). Robust vision-
based localization by combining an image-retrieval system
with Monte Carlo localization. IEEE Transactions on Ro-
botics, 21(2): 208–216.

Yannakakis, M. (1981). Computing the minimum fill-in is NP-
complete. SIAM Journal of Algebraic and Discrete Mathe-
matics, 2: 77–79.


