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Abstract

We address the problem of label assignment in computer
vision: given a novel 3-D or 2-D scene, we wish to assign a
unique label to every site (voxel, pixel, superpixel, etc.). To
this end, the Markov Random Field framework has proven
to be a model of choice as it uses contextual information to
yield improved classification results over locally indepen-
dent classifiers. In this work we adapt a functional gradi-
ent approach for learning high-dimensional parameters of
random fields in order to perform discrete, multi-label clas-
sification. With this approach we can learn robust models
involving high-order interactions better than the previously
used learning method. We validate the approach in the con-
text of point cloud classification and improve the state of
the art. In addition, we successfully demonstrate the gener-
ality of the approach on the challenging vision problem of
recovering 3-D geometric surfaces from images.

1. Introduction
We consider the task of label assignment in which we

wish to assign a unique label to each site in a domain; we
define a site as the primitive entity in a domain. In computer
vision applications, pixels or superpixels often serve as the
sites in image applications, and points or voxels are used
when working with 3-D laser data. In this paper, we ap-
proach this problem as a supervised learning problem where
given hand-labeled data, we extract various types of features
that incorporate multiple levels of contextual information
and then discriminatively train a model that accounts for
the contextual interaction among sites. To model these in-
teractions, we use a Conditional Random Field (CRF) [14]
variant. The contribution of this paper is to adapt a recent
functional gradient technique [20] for learning such random
fields. As our experimental section will show, this approach
can learn robust models involving high-order interactions
more accurately than the previous learning method.

Functional gradient learning has recently been used to
learn binary score functions to estimate the quality of in-

Figure 1. Example results from our two applications: 3-D point
cloud classification (left) and geometric surface estimation (right).

puts for footstep and grasp planning [18] and path planning
[22]. In this work, we adapt these functional gradient tech-
niques to learn the potential functions of Markov Random
Fields for discrete multi-label contextual classification. We
validate the effectiveness of the approach on two applica-
tions. First, we improve the state of the art on 3-D point
cloud classification, a task known to work well with ran-
dom fields [1]. In the second, we illustrate the generality of
the model in a task where random fields with all potentials
jointly learned from features have not traditionally been
used: recovering 3-D surface from images as described by
Hoiem et al. [8]. We show that the model learned with the
functional gradient technique improves significantly over
the previously used learning method and is comparable with
the approach used in [8]. In Figure 1, we present example
classification results from these two applications1.

CRFs are a popular tool in computer vision [13] for prop-
agating contextual information among neighboring sites. In
contrast to maximum a posteriori (MAP) learning for CRFs,
we focus on max-margin learning, i.e. Max-Margin Markov
Networks (M3Ns), as proposed by Taskar et al. [26]. In-
stead of using a parametric gradient method, which has
been demonstrated to be the current state of the art learning
method for one of our applications [19], we use the func-
tional gradient algorithm to learn the M3N model. The al-

1This paper is best viewed in color. The following color code is used
through the paper. 3-D Point Clouds: orange = ground, green = vegeta-
tion, dark-blue = tree-trunks/poles, sky-blue = wire, red = facade. Geo-
metric Surface: turquoise = ground, red = vertical surface, purple = sky.

1



gorithm is simple to implement, needs no quadratic or linear
program solver, and its low memory requirements enable
learning over large datasets. Our experiments show that the
techniques we present here are viable for accurately learn-
ing large models with as many as 1,000 parameters.

Unlike MAP learning, max-margin learning optimizes
a different convex objective for structured prediction prob-
lems. Similar to MAP learning, max-margin learning also
requires performing inference when computing the gradi-
ent; however, as we will review, only the MAP labeling is
required. We believe it has not been definitely established
which learning objective is the best to optimize when us-
ing approximate inference as reported results are compara-
ble [29]. However, the presented max-margin approach fol-
lows the suggestion of Kumar et al. [12] to use the same
approximate inferences during both training and testing.
Since max-margin learning does not require computation of
marginals, we can learn by using efficient graph-cut infer-
ence, which are typically faster while as accurate as belief
propagation and variants [23].

Related work. Our approach uses a functional gradi-
ent boosting technique to learn M3Ns with cliques of many
variables. This technique is interpreted as boosting over
the space of the random field’s potential functions that we
would like to learn. From the perspective of learning CRFs,
this approach is similar to the works of Dietterich et al. [3],
Torralba et al. [27], and Liao et al. [15]. In [3], the au-
thors consider a form of gradient tree boosting [6] for only
1-D CRFs. In [27], the authors perform rounds of boost-
ing of weak learners that first learn to classify locally “eas-
ier” things and then focus on larger scale structures that are
harder to classify. And in [15], the authors use another form
of boosting for feature selection and model parameter learn-
ing in CRFs. The drawback with these three approaches is
that they all rely on the marginal probabilities or a form of
belief/confidence from inference at each stage during learn-
ing; hence they are intractable for learning random fields
with high-order interactions. Additionally, Szummer et al.
[24] and Franc and Savchynskyy [5] investigate optimizing
the pairwise M3N criterion using cutting-plane techniques
which require the use of a quadratic program solver. Fol-
lowing [19, 16], we use gradient-based techniques to op-
timize our unconstrained objective. This paper is also re-
lated to our work on performing classification with a spe-
cific high-order M3N onboard of a robot [17]; however, we
now investigate an improved learning approach, robust po-
tential interactions, and a new application.

The remainder of this paper is as follows. First, we
present a brief review of CRFs and M3Ns in Sections 2 and
3, respectively. We will use this as a basis to explain our
adaptation of the functional gradient boosting algorithm for
M3Ns in Section 4. Finally, we demonstrate the effective-
ness of our approach in Section 5 on the applications of 3-D
point cloud classification and geometric surface estimation.

2. Conditional random fields
We are interested in multi-label problems for computer

vision applications where each site Yi can take on K possi-
ble labels: Yi ∈ {`1, . . . , `K}. Denoting by Y = {Yi}Ni=1

the set of label assignments and by X the data variables,
a CRF is a probabilistic graphical model that defines the
joint-conditional distribution P (Y|X). This distribution is
represented as an undirected graph over nodes Y, in which
the edges indicate interactions between variables. In gen-
eral, the variables Yc = {Yi}i∈c in each clique c ∈ C of
the graph are associated with a potential function φc(Yc)
that measures the score or compatibility of an assignment
yc. In our problem, the potentials are dependent on the
extracted features xc ∈ Rd that describe clique c and the
model parameters (weights) w ∈ Rn we wish to learn.

We review these concepts first in terms of log-linear CRF
models, but we will discuss learning more general potential
functions in Section 4. Log-linear potential functions take
the form log φc(xc,yc; w) = wT f(xc,yc), where f(·, ·) ∈
Rn is a vector-valued feature function. Defining f(x,y) =∑

c∈C f(xc,yc), the distribution is given by

P (y|x; w) =
1
Z

exp(wT f(x,y)) =
1
Z

exp(Φ(x,y; w)),
(1)

where Z is the normalizing partition function given by Z =∑
y

∏
c∈C

φc(xc,yc; w).

3. Max-margin markov networks
We review the M3N learning framework, specifically we

examine a type of M3N called Associative Markov Net-
works (AMNs) [25]. These models are attractive as approx-
imate inference can be performed efficiently with graph-
cuts. We will use this model in our experiments and their
formulation will help guide the functional gradient deriva-
tion in Section 4.

3.1. Pairwise associative markov networks
An AMN is a generalization of the Pott’s model which

favors all nodes in a clique to be assigned the same label.
In the pairwise model, the model parameters consist of two
types of weight vectors that are specific to a group of cliques
and are shared within each group’s potential functions. One
type is shared by all the node potentials and another type
is shared by all the edge potentials w = [wn; we] ∈ Rn,
where the subscripts n and e denote “node” and “edge” to
specify the respective clique-type. Each clique-type weight
vector is a concatenation of different weight vectors for each
label {lk}Ki=1, for instance wn = [w1

n; . . . ; wK
n ]. The po-

tentials are defined in terms of extracted feature vectors
from the data that describe the cliques (nodes and edges)
that constitute the random field: xi and xij represent the



features that describe node i and edge (i, j), respectively.
Then, the node potentials are defined as

log φn(xi, yi = lk; w) = wT fn(xi, lk) = wk
n · xi,

where lk is the label assigned to node i. The feature func-
tion fn simply returns a vector with the clique (respectively,
node) features aligned in the dimensions of the weights cor-
responding to the clique-type (respectively, node-type) and
of the specified label (lk). Similarly, the edge potentials are
defined as

log φe(xij, yi = lk, yj = ll; w) = wT fe(xij , lk, ll)

=

{
wk

e · xij , lk = ll

0 , o/w,

where lk and ll are the labels of nodes i and j. By constrain-
ing the edge potentials to be non-negative, certain submodu-
larity constraints are satisfied and enables efficient inference
through the α-expansion graph-cut method [2].

3.2. Subgradient learning
Given labeled training data C = (x, ŷ), we wish to

discriminatively learn the weights w. Ratliff et al. [19]
provided an unconstrained formulation of the max-margin
criteria described by Taskar et al. [25] that enables much
more efficient optimization. Instead of solving a convex
program, we use the subgradient method to minimize the
convex function O(w) =

min
w

λ

2
||w||2 + max

y
(Φ(x,y; w) + L(y, ŷ))− Φ(x, ŷ; w),

(2)
where λ is a regularization term and L(y, ŷ) is a loss func-
tion that acts as the margin between any labeling (y) and the
true labeling (ŷ). Typically for structured prediction (and in
our applications) the Hamming distance between the two
labellings is used, as it does not affect submodularity.

Equation 2 is non-differentiable but its subgradients
gw ∈ ∂O(w) can be written as gw = λw + f(x,y∗) −
f(x, ŷ), where y∗ = arg maxy(Φ(x,y; w) + L(y, ŷ))
and is estimated through inference. A solution is obtained
through descent after T iterations with decaying step size
αt = c/

√
t (for some positive c) using the update rule

wt+1 ← P[wt − αgw]. The projection operator P[]
projects negative edge weights to zero in order to satisfy
the submodularity constraints.

3.3. Beyond pairwise potentials
In Kohli et al. [10], the authors show how to optimize

with graph-cut inference a potential function, called the Pn

Potts model, that encompasses many variables. This model
is of the same associative potential form, defined over large
cliques. That is, it assigns a high potential value if all nodes

in the clique are labeled the same and zero otherwise. Fol-
lowing the authors’ convention, we define our high-order
cliques as sets of points resulting from a clustering or seg-
mentation algorithm.

In our related work [17], we show how to incorporate
high-order parameters with the subgradient method. In this
work, we empirically demonstrate that functional gradient
learning is better suited for learning high-order interaction
models than the subgradient method. Quantitative and qual-
itative comparisons will be presented in Section 5.

Generalizing [17], we define a clique-set Ci as a group of
cliques that shares the same potentials. We associate the re-
sulting cliques (segments) from one or more segmentations
to a particular clique-set. Hence, the cliques’ orders in a
clique-set are not necessarily homogeneous. A random field
is then composed of S clique-sets,C = {Ci}Si , and its over-
all potential is Φ(x,y; w) =

∑S
i=1

∑
c∈Ci

log φCi
(xc,yc),

where

log φCi(xc,yc) = wT fCi(xc,yc) (3)

=

{
wk

Ci
· xc , yi = lk∀i ∈ c

0 , o/w.
(4)

For example, S = 2 in the simple model of Section 3.1.

4. Functional gradient boosting
We discuss our contribution of learning M3Ns using

functional gradient boosting as described by Ratliff et al.
[18], now in the context of multi-label structured prediction.

4.1. Intuition
Before proceeding with the functional gradient deriva-

tion, it is useful to examine the subgradient update in or-
der to provide intuition on the new approach. Consider
the update for a pairwise AMN objective with no regular-
ization (λ = 0) and unit step-size (αt = 1). The up-
date adds the negative subgradient to the model parameters:
w← w + (−gw), where −gw =

N∑
i=1

fn(xi, ŷi)−fn(xi, y
∗
i )+

∑
ij∈E

fe(xij , ŷij)−fe(xij ,y∗ij).

(5)
Consider the first summation term. In words, when node i
is truly lk but incorrectly inferred as ll, the update directly
adds xi to the parameters wk

n and subtracts xi from wl
n. If

the node was correctly classified, then the two terms cancel
and do not affect the subgradient. The second summation
similarly performs the same update over the edge clique-
set’s parameters (we) with the edge features xij . Note that
with associative potentials, all nodes in the clique must be
labeled the same to have a non-zero feature function vec-
tor fe and, hence, contribute to the subgradient. This in-



crease/decrease in the weights directly corresponds to an
increase/decrease in how the potential values will change.

Instead of clique potentials that are linear in the fea-
tures, we now assume potentials as more general func-
tions of features. That is, we define Ψ(x,y) =∑S

i=1

∑
c∈Ci

ψCi
(xc,yc) as our general clique potential

functions. With functional gradient boosting, the goal is
to search the space of potential functions that best models
the given training data. Intuitively, the functional gradient
will encompass the same type of effect as before. Instead of
directly modifying the parameters with the features at each
step t, we now fit a function ht() to the features that accord-
ingly increases/decreases the potentials. The following will
derive the potential functions as a composition of the func-
tions in the form of ψCi

(xc,yc) =
∑

t αtht(fCi
(xc,yc)).

4.2. Derivation
The AMN objective functional is defined as

O[Ψ] = max
y

(Ψ(x,y) + L(y, ŷ))−Ψ(x, ŷ). (6)

Using the tools in [18, 20], the negative functional gradient
of Equation 6 is defined as

−∇fO[Ψ] =
S∑

i=1

∑
c∈Ci

δfCi
(xc,ŷc) − δfCi

(xc,y∗c ), (7)

where δ is the dirac delta at the point of evaluation and ∇f

is the functional gradient operator.
In the space of potential functions, the negative func-

tional gradient is positive at clique feature locations where
cliques are assigned their ground truth label and negative at
the locations where they are assigned their inferred label. If
the ground truth and inferred label for a clique agree, the
impulses cancel as with the parametric gradient. As a form
of boosting, we incrementally augment our learned poten-
tial function with the function h∗t from a predefined class
of functions H that best correlates with the negative func-
tional gradient. That is, we add a function to our clique po-
tentials that maximizes its inner product with the negative
functional gradient based on the model’s misclassifications

h∗t = arg max
ht∈H

〈ht,−∇fO[Ψ]〉

= arg max
ht∈H

S∑
i=1

∑
c∈Ci

〈ht, δfCi
(xc,ŷc)〉-〈ht, δfCi

(xc,y∗c )〉

= arg max
ht∈H

S∑
i=1

∑
c∈Ci

ht(fCi
(xc, ŷc))-ht(fCi

(xc,y∗c )).

In general, this last step trains a predefined class of binary
classifiers or regressors with +1 and -1 targets. Similarly
to the parametric gradient, the update rule increases and

decreases the potential values by now fitting functions to
the ground truth (+1) and inferred (-1) feature locations, re-
spectively. After T iterations, the clique potentials are then
of the form ψCi(xc,yc) =

∑T
t αtht(fCi(xc,yc)) as pro-

posed. The entire learning algorithm and its sub-procedure
is given in Algorithms 1 and 2.

Any simple (non-linear) learner (decision trees, etc.)
could be used to fit the functional gradient direction. Be-
cause we are potentially interested in classification on-
board of a robot (as in [17]), we chose linear regres-
sion in order to compute the potential values more effi-
ciently than with a non-linear regressor. This approach
requires 1 instead of T computations to evaluate the po-
tential functions since we cumulatively update the the
model over time: ψCi(xc,yc) =

∑
t αtht(fCi(xc,yc)) =∑

t αtht
T fCi

(xc,yc) = wT fCi
(xc,yc).

A variant of this algorithm is to perform exponentiated
functional gradient descent, as described in [18]. When
evaluating the functional, these potentials are of the form
ψCi

(xc,yc) = exp(
∑

t αtht(fCi
(xc,yc))). Briefly, this

update places a different prior over the space of functions
considered and encourages functions emphasizing few re-
gions in feature space and little everywhere else. In our ex-
periments, we found the exponentiated version works better
in applications with a large number of features.

4.3. Learning robust potentials

So far we have only addressed learning models with as-
sociative clique potentials. In many applications, it is diffi-
cult to obtain a group of sites (i.e. a clique) that contain ho-
mogeneous labels. In the above framework, clique features
will be discarded and not used in learning, even if 1 out of a
clique of 50 pixels contains a different ground truth/inferred
label. Kohli et al. [11] remedy this problem and extend
the Pn Potts model into a robust version that enables a por-
tion of the nodes to disagree with the mode clique label, yet
still be solved with graphcut inference. The robustness of a
clique c is defined as the number of nodes Qc that disagree
with the mode label, with the constraint that it is fewer than
half the total nodes 2Qc < |c|. The clique’s potential value
is then proportional to the number of disagreeing nodes.

Since the features from cliques with inhomogeneous la-
bels are not as representative of a class as features from
cliques with homogeneous labels, we do not treat the two
cases in the same way. Instead of regressing to the target
value of 1 during learning, we regress to the value of the
proportion of the nodes with the mode label in the clique.
By doing this, we place less importance on the cliques with
mixed labels but the information is used and not ignored
during learning. We parameterize the robustness of cliques
c ∈ Ci by qi where Qc = qi|c|. Algorithm 2 presents this
modification.



Algorithm 1 Functional Gradient for Learning M3N
Inputs: Labeled training data: C = {Ci}Si=1 = (x, ŷ) =

{(xc, ŷc)}c∈C , Possible training labels: {`i}Ki=1, Step size: αt, Num-
ber of iterations: T
Output: Learned M3N model: Ψ(·, ·)
for t = 1 . . . T do

y∗ = arg maxy Ψ(x,y) + L(y, ŷ)

Initialize D+ = D− = ∅
for Ci ∈ {C1, . . . , CS} do

for c ∈ Ci do
`̂mode = mode(ŷc)
`∗mode = mode(y∗c )

if `̂mode 6= `∗mode then
ĝ = calcFuncGradContribution(`̂mode, ŷc)
g∗ = calcFuncGradContribution(`∗mode,y

∗
c )

if ĝ > 0 then
D+ ← D+ ∪ {(fCi

(xc, `̂mode), +ĝ)}
end if
if g∗ > 0 then
D− ← D− ∪ {(fCi

(xc, `∗mode), -g∗)}
end if

end if
end for

end for

ht ← trainRegressor(D+,D−)
Ψ← Ψ + αtht (or Ψ← Ψ · exp(αtht))

end for
return Ψ

Algorithm 2 calcFuncGradContribution(`,yc)
Inputs: Label of interest: `, List of labels of nodes in a clique: yc =
{yi}i∈c

Output: [0, 1] value indicating how much to contribute to the func-
tional gradient, depending on the interaction model and how many nodes
match `.
Define p =

∑
i∈c δ(yi = `) // Count the nodes labeled `

if Pott’s model then
(p = |c|) ? return 1 : return 0

end if
if Robust Pott’s model then
Q = q|c| // q is a robust truncation parameter
(p > (|c| −Q)) ? return p

|c| : return 0
end if

5. Experiments

We compare the performances of M3N models trained
with the subgradient method and functional gradient boost-
ing on two vision problems: 1) 3-D point cloud classifica-
tion from laser range finders and 2) 3-D geometric surface
estimation from images [8]. With the first experiment we
improve the state-of-the-art for 3-D point classification, an
application known to work well with AMNs. In the second
experiment, we demonstrate the generality of the approach
to an application where joint learning of the random field’s
potentials has not been typically done.

For both experiments, T = 300 and we estimated the
learning parameters (step size and regularization) for the al-

gorithms by classifying a validation dataset and picking the
parameters that resulted in the best precision rate for the
worst performing label.

5.1. 3-D point cloud classification

AMNs have been demonstrated to work well on the task
of 3-D point cloud classification [1, 28, 16]. We created
a dataset of 1.3 million hand-labeled points that were col-
lected from a laser scanner; we split the data into sets of
100, 000 points to facilitate a validation set and graph-cut
inference. We plan to publicly release this dataset as a
benchmark. The classification task is to assign each 3-
D point a label from the set {wire, vegetation, ground,
pole/tree-trunk, facade}.

Features. We implemented the features described in
Munoz et al. [17]. These features describe the local point
cloud topology around a point by assigning a saliency spec-
tral feature describing the degree of scatter, linearity, and
planarity of the neighboring points within a fixed radius. Di-
rection features that capture the orientation of these locally
estimated geometric objects are also used. The final type
of feature uses a 2.5-D elevation map to estimate a point’s
distance off the ground.

Random field structure. We create models using pair-
wise and high-order interactions. Each model uses the pair-
wise model described in [16] as a base configuration; we
then add the elevation features to each clique-set’s feature
set. For the high-order models the cliques are defined to be
the resulting clusters from two k-means segmentations [9]
over each nodes’ spectral features and locations. K-means
segmentation provides a fast method to cluster scenes with
over 100,000 points at a time. We experimentally chose
k1 = 0.026N and k2 = 0.042N by visual inspection of
the training data with the objective of producing relatively
compact clusters containing one label. The clique features
are the same type as computed for the nodes, except now
the neighborhood volume is defined within a 1.0 m radius
from the clique centroid.

Models. We compare the performances of three AMN
models: a pairwise model trained with the parametric
subgradient method (PAIR-SUB), and two models with
high-order cliques trained with the parametric (HOC-SUB)
and functional (HOC-FUNC) gradient techniques. The
HOC-FUNCmodel was trained using the non-exponentiated
version of the algorithm. We found that this produces
slightly better results than the exponentiated version and
attribute this to the relatively small number of features (at
most 11 dimensions) used to train the individual regressors.

Results. We trained our models on a point cloud with
37, 000 points and determined the learning parameters by
classifying a validation point cloud of 100, 000 points. Our
test set consisted of 1.3 million points. The overall accu-
racies of the HOC-FUNC, HOC-SUB and PAIR-SUB mod-



els are respectively 97.2%, 96.1%, and 95.7%. Though
the overall accuracy improvement is small, this can be at-
tributed to the law of diminishing returns and the over-
whelming number of vegetation, ground, facade labels
present in the data. However, Table 1 shows that there is
a clear precision rate improvement with HOC-FUNC over
the previous learning algorithm PAIR-SUB for the smaller
labels wire, pole/tree-trunk. The Macro-average Modified
[4] precision rate provides a metric to account for unbal-
anced classes when evaluating performance. Using the val-
ues in Table 1, the rates for the HOC-FUNC, HOC-SUB and
PAIR-SUBmodels are respectively 71.5%, 64.3%, 63.4%,
demonstrating that the functional gradient optimized the
learning objective better than subgradient method with the
high-order model. In addition, there is noticeable improved
recall rate with HOC-FUNC for the vegetation label with-
out HOC-FUNC sacrificing performance with the other la-
bels. Figure 2 qualitatively demonstrates this behavior
of HOC-FUNC producing improved classifications in chal-
lenging areas.

In principle, one would expect the robust potentials to
improve performance as there will always be segments
spanning multiple objects. However, in this application we
found that the number of such regions is small compared to
the number of regions with noisy data, as evident in Figure
2. The robust potentials caused a decrease in performance
because they allowed the noisy points to maintain the wrong
labels. The next experiment will demonstrate how robust
potentials can be used to improve classification when there
are many more segments containing inhomogeneous labels.

5.2. 3-D surface estimation

We applied this contextual learning approach to the prob-
lem of recovering 3-D geometric surfaces from from im-
ages, i.e., determining whether a pixel belongs on one of
three classes: Ground, Vertical (object standing on the
ground), Sky. We use the Geometric Context Dataset pro-
vided by Hoiem et al. [8], where the overall distribution of
pixels per class is: Ground = 31.4%, Vertical = 48.0%,
Sky = 20.6%. In [8], the authors extract features from over-
lapping segments in the image and average the independent
classifications from boosted decision tree classifiers. In this
experiment we compare the method used in [8] with the
M3N model using the two learning techniques. We note that
recent work from Saxena et al. [21], have also used random
fields to extract 3-D information from single images. How-
ever, our model is not best suited in that scenario since we
perform discrete label classification and they are estimating
continuous distances.

Features. In [8], the authors first group pixels into su-
perpixels to use as the sites in their classification. They then
perform 15 different segmentations: by increments of 5 seg-
ments between 5 and 50, and then by increments of 10 seg-

ments until 100. Each segment is composed of a group of
superpixels. For each superpixel and segment, they extract
50 and 94 features, respectively, which capture location,
shape, color, texture, and perspective. We implemented
these same features.

Random field structure. In the M3N model, the nodes
represent superpixels and the segments are the cliques. As
the sizes of the segments from segmentation-5 will dif-
fer with those from segmentation-100, the types of com-
puted features will also vary with respect to the segment
size. We model how these features vary per clique by cre-
ating different potentials based on segment size. In addi-
tion to the nodes, we defined three clique-sets. Clique-set
1 (C1) contains the cliques from the five largest segmen-
tations. Clique-set 2 (C2) contains the cliques from the
middle five segmentations. Clique-set 3 (C3) contains the
cliques from the five smallest segmentations. Hence, the
overall number of parameters we learn for this model is
996 = 3× 50 + 3(94× 3).

Models. We evaluate three different M3N models and
compare with the original learning algorithm of [8]. The
first model is learned using the subgradient method with
Potts model interactions (POTTS-HOC-SUB). The sec-
ond model uses the functional gradient learning with Potts
model interactions (POTTS-HOC-FUNC). Because many
cliques in this framework will contain multiple labels, we
train the final model using functional gradient learning with
Robust Potts interactions (ROBUST-HOC-FUNC). We de-
fine the robustness of the clique-sets corresponding to the
five largest (C1) and five second largest (C2) segments to
allow 20% (q1 = 0.2) and 10% (q2 = 0.1), respectively,
of the nodes within a clique to disagree with the mode la-
bel. We use a Potts model (q3 = 0) for the clique-set with
the smallest segments (C3). In contrast to the experiment
in Section 5.1, because the number of clique features is an
order of magnitude larger than in the point cloud applica-
tion, we found that we get better performance by training
the functional gradient models with the exponentiated ver-
sion of the algorithm. Finally, we make a small modifica-
tion to the functional gradient algorithm. Since the size of
the segment can be an indicator of the quality of features
extracted, we weight the clique features during regression
proportional to the number of pixels contained in the clique.

Results. In [8], the authors evaluate their algorithm by
performing five-fold classification on a dataset of 250 im-
ages where 200 random images are chosen for training and
the remaining 50 are used for evaluation. Since we need to
determine the learning rate for our algorithm, we validate on
a random 50 image subset and train on the remaining 150
images. In Table 2 (row-normalized), we give the quan-
titative classification results of the above three models. We
immediately see a clear improvement in performance across
all classes using the new POTTS-HOC-FUNC model over
the previous POTTS-HOC-SUB model. By incorporating



Figure 2. Two classification comparisons for 3-D point cloud classification: HOC-SUB (top row) and HOC-FUNC (bottom row).

Inferred label ↓ Recall
HOC-FUNC vegetation wire pole/tree trunk ground facade HOC-FUNC HOC-SUB PAIR-SUB

True label
−→

vegetation 240861 885 4620 3475 8101 0.93 0.88 0.87
wire 202 3126 135 0 16 0.90 0.90 0.89

pole/tree trunk 789 0 6150 222 391 0.81 0.80 0.83
ground 1408 0 2592 926515 654 > 0.99 0.99 0.99
facade 1302 2231 9973 175 96147 0.88 0.89 0.88

Precision
HOC-FUNC 0.99 0.50 0.26 > 0.99 0.91
HOC-SUB 0.99 0.26 0.22 > 0.99 0.88
PAIR-SUB 0.98 0.26 0.18 > 0.99 0.90

Table 1. Classification confusion matrix over 1.3 million point cloud using functional gradient with high-order interactions (HOC-FUNC).
Precision and recall values for HOC-SUB and PAIR-SUB models are also provided.

the robust potentials (ROBUST-HOC-FUNC), we can fur-
ther improve the performance of each class, especially the
preservation of the smallest class Sky, and achieve compara-
ble accuracy with [8]. Visual comparisons of the four mod-
els are presented in Figure 3. While we do not improve upon
the results of [8], it is worth noting that our model uses lin-
ear hypotheses in comparison to [8] who has the benefits of
nonlinear hypotheses; investigating non-linear regressors in
our contextual model is ongoing work.

5.3. Discussion

At first glance it may appear that this improvement is
solely due faster convergence since both models use lin-
ear potentials. However, we expect a difference in optima
because they optimize the objective over difference spaces
and with different regularization. A way to see that is to
note that the parametric objective (Equation 2) is not in-
variant to rescaling a single feature [7]. Were we to scale
a random feature dimension by 1,000, that scaled feature
would essentially determine the margin and the paramet-
ric optima would converge to a different solution, which is
not the equivalent rescaled solution (and most likely worse).
However, since the functional gradient parameterization is
terms of the regressors and not the features, the solution is
manifestly invariant to the scale.

6. Conclusion
In this paper, we adapted the functional gradient tech-

nique to learn M3N models in order to perform discrete,
multi-label classification. With this formulation, we demon-
strated with two distinct applications that we can learn im-
proved high-order models than with the previous learning
method. Additionally, we showed how the model can be
incorporated with robust potentials to preserve less domi-
nant labels. Future work will investigate using non-linear
potentials.
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