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Abstract

In this paper we address the problem of automated three
dimensional point cloud interpretation. This problem is im-
portant for various tasks from environment modeling to ob-
stacle avoidance for autonomous robot navigation. In addi-
tion to locally extracted features, classifiers need to utilize
contextual information in order to perform well. A popu-
lar approach to account for context is to utilize the Markov
Random Field framework. One recent variant that has suc-
cessfully been used for the problem considered is the Asso-
ciative Markov Network (AMN). We extend the AMN model
to learn directionality in the clique potentials, resulting in
a new anisotropic model that can be efficiently learned us-
ing the subgradient method. We validate the proposed ap-
proach using data collected from different range sensors
and show better performance against standard AMN and
Support Vector Machine algorithms.

1. Introduction
Three-dimensional (3-D) point clouds are easier than

ever to collect with the development of laser scanners and
positioning systems. Accurate and dense point clouds can
now be collected over large scale environments for numer-
ous applications such as surveying, inspection, asset inven-
tory, vegetation management, and autonomous scene under-
standing [7].

In this paper, we address the problem of automated inter-
pretation of 3-D point clouds from scenes of urban and nat-
ural environments; our analysis is performed offline, from
data acquired by a mobile mapping system. An example of
our approach is illustrated in Figure 1 with five commonly
found object classes1: ground, facade, scatter, pole/trunk,
wire. We are interested in context-based 3-D point clas-
sification where, in addition to local features, a point’s la-
bel is based on its neighboring points’ label configuration.
Markov Random Fields (MRFs) [8] constitute one of the

1This paper is best viewed in color. Unless otherwise noted, the same
color code labeling is used throughout the paper: brown for ground, red
for facade, green for scatter, dark blue for pole/trunk, skye blue for wire.

options to account for neighboring information [14]. Such
techniques proved to outperform classifiers based only on
local features but tend to smooth out small components in
the scene. To address this problem, we are interested in us-
ing a MRF variant called an Associative Markov Network
(AMN) [11].

Figure 1. Urban environment classification with our approach.

AMNs and its variants in the literature [12, 1, 13] rely on
local features and isotropic contextual information. With
the isotropic model, the influence from surrounding points
is only based on their label, regardless of their relative di-
rection. We propose to extend the AMN to account for lo-
cal directional information, thus producing an anisotropic
model. The directional information can come from the rel-
ative position of the two points, or from a non-geometric
feature, or from the local point topology. Our proposed ap-
proach is different, as we will show, from using local di-
rectional features. This natural extension is enabled by uti-
lizing the recently proposed subgradient method shown to
solve AMNs efficiently [10]. Originally, learning for AMNs
was formulated as quadratic program which is very memory
intensive when applied to 3-D point cloud processing; how-
ever, with the subgradient method, memory constraints are
only linear in the amount of training data, thus allowing the
development of a more expressive model. We compare the
improvement in our model against the standard AMN and a
linear Support Vector Machine (SVM) [5].

The paper is structured into five sections. In the next,
various notations are introduced and background on the
AMN and subgradient method is presented. The contribu-
tions of the paper follows in Section 3 and results in Section



4. Section 5 concludes the paper.

2. Associative Markov Network
2.1. Problem

Following the notation from [11], our classification task
can be formalized as follows. Given a set of N random
variables Y = {Y1, . . . ,YN}, where each variable can obtain
a value Yi ∈ {1, . . . ,K}, find the assignment of values of
y = {y1, . . . ,yN} to Y that maximizes some scoring func-
tion. In the context of 3-D point classification, each random
variable represents a 3-D point and its value corresponds
to the label it can be assigned. Formulating the classifica-
tion task as a supervised learning problem, we want to learn
a discriminative model that conditions the joint distribution
on the features x that we can extract from the scene Pw(y|x),
where w are the model parameters. The classification pro-
cedure is then broken into two steps: (1) learning the model
parameters given labeled data (x, ŷ) and then (2) inferring
the best assignments of a novel scene given its features.

2.2. Standard AMN formulation

A MRF, also called a Markov Network, defines a joint
distribution for random variables Y; it is represented as
an undirected graph with N nodes for each random vari-
able and edges E = {(i, j)}|(i < j) that define the interac-
tions between variables. Generally, a non-negative potential
function is defined for cliques of arbitrary size in the graph;
however, due to the requirement of efficient inference tech-
niques, focus is generally on pairwise Markov Networks.
This model only defines a node potential φi(yi) for each
node i and an edge potential φi j(yi,y j) for linked nodes i
and j. These potentials measure the affinity2 of the assign-
ment to the variables in the cliques. A log-linear model is
used to represent the dependence of the potentials on the
features x = {xi,xij} where xi ∈ Rdn and xij ∈ Rde are the
features that describe node i and the relationship between
nodes i and j, respectively. The log of the node potential is
defined as logφi(k) = wk

n · xi where k = yi (the label value
of node i) and wk

n ∈ Rdn are the weights used when a node
is assigned k.

Under the AMN framework, a variant of the Pott’s model
is used that penalizes differing assignments across an edge:
∀k 6= l, logφi j(k, l) = wk,l

e · xij = 0 and logφi j(k,k) ≥ 0,
where wk,l

e ∈ Rde are the weights used when linked nodes
are assigned k and l. In order to ensure non-negativity in
the edge potentials, the feature and weight vectors are con-
strained by xij ≥ 0 and wk,k

e ≥ 0. Finally, changing the rep-
resentation of an assignment y with a vector of K ·N indica-
tor variables where y = {yk

i ,k, i|yk
i = I(yi = k)}, the log of

the joint-conditional probability logPw(y|x) is given by:

2The affinity value is also referred to as the energy of the clique.

N

∑
i=1

K

∑
k=1

(wk
n ·xi)yk

i + ∑
(i j)∈E

K

∑
k=1

(wk,k
e ·xi j)yk

i yk
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where Zw(x) = ∑y′∏
N
i=1 φi(y′i)∏i j∈E φi j(y′i,y

′
j) is the parti-

tion function. Note although this value is intractable to com-
pute, it does not depend on y which is essential for perform-
ing inference.

To abbreviate notation, define a K(dn + de) length row
vector w = {wn,we} with wn = {w1

n, . . . ,wK
n } and we =

{w1
e , . . . ,wK

e }. Also redefine y to be a K(N + |E|) col-
umn vector y = {yn,ye}T with yn = {. . . ,y1

i , . . . ,y
K
i , . . .}

and ye = {. . . ,y1
i j, . . . ,y

K
i j, . . .} where yk

i j = yk
i ∧ yk

j. Finally,
construct X to be a K(dn + de)×K(N + |E|) matrix such
that logPw(y|x) = wXy− logZw(x). This matrix will con-
tain the features repeated multiple times in the columns and
padded with zeros appropriately.

Note that the inference task y∗ = argmaxy Pw(y|x) =
argmaxy wXy is an integer program and is NP-hard. In [11],
the authors show how to relax the integral constraints on y,
resulting in a linear program that finds the optimal solution
when K = 2. For K > 2, a rounding procedure is performed
that achieves an approximation. The authors also state that
when K = 2, exact inference can be done by finding the min-
cut of a specially constructed graph because the associative
constraints on the negative edge potentials define a submod-
ular3 function [6]. For K > 2, performing an iterative min-
cut algorithm, called α-expansion [3], also achieves an ap-
proximation. We refer to [11] and [3, 6] for more details.

Finding the optimal w is formulated as a max-margin
learning problem. Given labeled data (x, ŷ), the goal is to
find the weights that maximize the margin of confidence in
Pw(ŷ|x) versus Pw(y|x) ∀y 6= ŷ. This learning problem is
formulated as the following convex program:

min
w,ξ

1
2‖w‖

2 +ξ

s.t wXŷ+ξ≥max
y

wXy+L(y)
(2)

where ξ is a slack variable that represents the gap in the to-
tal energy between the optimal and achieved solutions and
L(y) is a loss function which measures the error of classifi-
cation. As in [11] and [1], we use the Hamming distance be-
tween the true and achieved assignments for our loss func-
tion. In [11], the authors show how to substitute the dual of
the inference LP to bound the non-linear constraint which
then results in a valid quadratic program and can then be
solved by optimization software. Again, we refer to [11]
for more details.

3A function of two binary variables E(α,β) is submodular if and only
if E(0,0)+E(1,1)≤ E(0,1)+E(1,0)



2.3. Subgradient method for learning

In [9, 10], the authors show that it is possible to solve
Program 2 by writing the constraint in the objective func-
tion, due to the slacks being equal at the optimal condition,
and then taking the subgradient of the resulting objective
function. Thus, the AMN regularized cost function is:

c(w) =
λ‖w‖2

2
+max

y
(wXy+L(y))−wXŷ (3)

The key to compute the subgradient of Equation 3
is to use the property: if f (a,b) is differentiable in a,
then ∇a f (a,b∗) is a subgradient of the convex function
maxb f (a,b) for b∗ ∈ argmaxb f (a,b). Therefore, a subgra-
dient gw ∈ ∂c(w) is:

gw = λw+Xy∗−Xŷ

As previously mentioned, solving maxy(wXy + L(y))
can be done with graph cuts or an LP. Starting with w = 0,
the solution is then achieved through descent until conver-
gence, or T iterations, using the update rule at time t:

wt+1 = PW [wt−αgwt ]

where PW projects w onto a convex set W formed by any
specific convex constraints on w; for AMNs, this projection
enforces any negative we to become 0. Typical step-sizes
are α = c

t and α = c√
t , for some positive c.

3. Directional Associative Markov Network
3.1. Motivation

Applications of AMNs for 3-D point cloud classifica-
tion have proved to do well when classifying large, dom-
inant structures in the scene such as vegetation, buildings or
walls, and the ground plane [12, 1]. However, in most ur-
ban environments, there exist finer objects such as branches,
posts, utility poles, and power-lines that are harder to per-
ceive with laser scanners. In addition, these labels prove
more challenging to classify when in the vicinity of data
from more dominant labels, such as vegetation, because the
AMN prefers to spatially maintain the same labels. Observe
that Equation 1 is maximized when the labels of two nodes
in an edge potential agree and the combination of the fea-
tures and corresponding chosen weights is highest. Thus,
when indicative features for the label cannot be computed,
the label assignment is chosen to agree with its surround-
ings which may smooth away these small structures we are
interested in.

3.2. Directionality

By accounting for directional information when comput-
ing our edge potentials we propose to address the limitations

presented above. A basic way to accomplish this is to utilize
the edge orientation when computing the energy. However,
for 3-D point cloud processing the edge orientation is not
expressive enough as the created edges will depend on the
point density. Fortunately, most objects in the world of-
ten have an associated and well-defined direction that we
can estimate. For example, tree trunks generally grow ver-
tically, power-lines usually lie horizontally and we can esti-
mate a local tangent vector at each point for both labels. Our
goal is utilize this intrinsic information in our model so that
a node’s context accounts for its neighbors’ local directions
in addition to the labels. The idea behind this approach is to
create a more expressive model that learns how to classify
the data correctly when the estimated features, and conse-
quentially the estimated local direction, are in a less separa-
ble or in a lower density region of the feature space. That is,
we do not learn a single set of weights that tries to, overall,
best model one class’ features. Instead, we want to account
for variation in feature estimation and learn multiple sets
of weights for different locations in feature space that best
model the class. By incorporating directional information in
the AMN framework, we show how we can better preserve
these smaller structures and improve the overall classifica-
tion rate.

3.3. Anisotropic model

The standard AMN formulation is an isotropic model,
that is, regardless of the orientation of the edge, the poten-
tials are computed in the same manner. We propose using an
anisotropic model where the weights chosen to compute the
edge potentials depend on its label and defined direction;
we call this new model a Directional AMN. We note that
our approach extends to cliques of arbitrary size and is not
limited to those of size two. The directional information is
obtained by comparing a clique’s intrinsic direction against
a predefined reference direction when the clique is labeled
k. The resulting angle between the intrinsic and reference
directions is then binned. In addition to the label, the binned
angle determines the sets of weights used to compute the
clique potential, thus producing an anisotropic model. Fig-
ure 2 illustrates the following explanation of computing an
anisotropic edge potential when its nodes are labeled k. For
the two linked nodes (ni, n j) an intrinsic direction (~DI

i j) is
computed that describes the direction of the clique (edge)
when its nodes are labeled k. This intrinsic direction can
be defined arbitrarily. For example, the intrinsic direction
could simply be the direction of the edge (~de), however, as
previously mentioned, this would not provide much utility.
Another example is to define a local feature direction for
each node (~di) that describes the local direction when la-
beled k, such as the normal vector when fitting a plane, and
then define the clique’s intrinsic direction to be a function of
each node’s feature direction. The reference direction can



be an absolute direction (~DA), such as the vertical axis, or
based on the local point cloud topology.

Figure 2. Directionality illustration.

It is important to note that the anisotropic model is dif-
ferent from an isotropic model with directional information
in the features space; Figure 3 illustrates this claim. In this
example, two artificial data sets were generated that contain
two intersecting lines, parallel to the x-y plane, and are sur-
rounded by randomly generated scattered points at two dif-
ferent locations. Note that this synthetic point cloud config-
uration mimics a common natural scene where power-lines
are embedded in the vegetation. In the training set, illus-
trated in Figure 3-(a), the scattered points lie at the extrem-
ity of the lines, and for the testing set, illustrated in Figure
3-(b), the scattered points are moved to the intersection of
the lines. In this example we use a standard and Directional
AMN with the features defined in Section 4.4. Figure 3-(c),
shows that the standard AMN smoothes out the classes we
are interested in, while Figure 3-(d) shows that the Direc-
tional AMN performs a better job of preserving the small
linear structure while increasing overall classification rate.

(a) (b)

(c) (d)
GT/Test linear scatter
linear 394 88
scatter 0 315

GT/Test linear scatter
linear 481 1
scatter 72 243

(e) (f)
Figure 3. Difference between directional features and directional
potentials, with the lines/scatter points in blue/green. (a) Train-
ing data. (b) Ground truth for the testing data. (c) Standard
AMN. (d) Directional AMN. (e)/(f) Confusion matrix for stan-
dard/Directional AMN.

3.4. Directional AMN formulation

Incorporating the anisotropic potentials involves modi-
fying the higher-order clique potentials from the original
formulation, that is, modifying the edge potentials in the
pairwise model. These clique potentials must now consider
a direction term when computing the potential. For each
label k, we parameterize a direction by binning the possi-
ble angle-space formed by the intrinsic direction against the
reference direction when all nodes in the clique are labeled
k. Remember that the intrinsic and reference directions are
specific to each label. We denote the set of bins that con-
stitute this space for label k as Θk. Note that the number
of bins |Θk| for each label’s angle-space are not necessarily
equal. Therefore, the weight vector chosen when computing
the clique potential is dependent on the clique’s label k and
the computed bin θ ∈ Θk that the angle between the intrin-
sic and reference directions falls under, for label k. In the
pairwise model, the anisotropic edge potentials are then de-
fined logφi j(k,k) = wk,θ

e ·xij ≥ 0 where θ ∈ Θk is the com-
puted bin, and ∀k 6= l, logφi j(k, l) = 0. Incorporating these
changes, logPw(y|x) is proportional to:

N

∑
i=1

K

∑
k=1

(wk
n ·xi)yk

i + ∑
(i j)∈E

K

∑
k=1

∑
θ∈Θk

(wk,θ
e ·xi j)yk

i yk
jΩ

θ

i j,k (4)

where Ωθ

i j,k is an indicator function defined to be one if the
nodes in edge/clique (i j) are both labeled k and the angle
between its intrinsic and reference direction lies in bin θ ∈
Θk.

As done with the standard AMN, we can relax Equation
4 into a linear combination. First, the set of edge weights
we is redefined to be a K · de ·∑K

k=1 |Θk| = H length vec-
tor: we = {. . . ,wk,1

e , . . . ,we
k,|Θk|, . . .}. Intuitively, we would

like to introduce indicator variables yk,θ
i j = yk

i ∧ yk
j ∧Ωθ

i j,k to
represent when the clique is labeled k and the extracted bin
when labeled k is θ. However, this would require further
constraints to ensure only one variable is ”on” for each la-
bel and to prevent impossible extracted bins4. Instead, by
defining xi j to be a zero vector for impossible extracted bins,
we can represent Equation 4 as wXy by redefining X to be
a H ×K(N + |E|) matrix. The new model can be solved
using the subgradient method as before. Inference is eas-
ily performed through the min-cut framework with the α-
expansion algorithm [3, 2, 6]. At each expansion step, we
compute the potential of each clique. If all the nodes’ labels
in a clique agree, then the associated intrinsic and reference
directions are determined for that clique and label. Using
the resulting computed bin and label, the appropriate set of
weights are then selected to compute the potential.

This new anisotropic model is related to, though sig-
nificantly different from, [4] where the authors use an

4For a clique and label combination, only 1 bin can be computed.



anisotropic MRF. Their edge potential is dependent on the
angle between the principal direction of the structure ten-
sor and the edge defined by two nodes. No parameters are
learned in their model. In contrast, we use the directionality
to define an indicator function on how to compute the po-
tential. We also learn multi-dimensional weights associated
with the binned directions and the labels.

4. Experiments
4.1. Data sets and features

The results presented below were obtained using data
collected from two Sick-based laser sensors. The first data
set, coined the ”sweeping” data set, was acquired using a
sweeping Sick scanner from various static locations. A 400
x 800 range image is produced, with centimeter range res-
olution, and quarter degree angular resolution. The second
data set, coined the ”push-broom” data set, was produced
using a static Sick laser mounted on a moving platform
equipped with a navigation system. The vehicle drove in an
urban environment at up to 20 km/h. The maximum range
for the sensor for both data sets is approximately 60 m for
vertical targets and 20 m along the ground with a sharp vari-
ation in point density.

The various data sets were hand labeled systematically
into more than fifty different classes (See Figure 4). Labels
were filtered out or collapsed into one of five labels (wire,
pole/trunk, scatter, ground and facade). A total of half mil-
lion 3-D points were labeled and used to produce results
with ground truth for this paper. A total of more than five
millions 3-D points corresponding to more than two kilo-
meters traversed were classified and analyzed.

Figure 4. ”Push-broom” data set. Example of ground truth data
with vehicle (pink), pole (dark blue), wires (skye blue), paved road
(grey), load bearing but not paved road (brown), buildings (dark
red), bush (light green), and canopy (dark green).

We implemented three geometric features commonly
used in spectral analysis of point clouds. We define λ2 ≥
λ1 ≥ λ0 to be the eigenvalues of the scatter matrix M de-
fined over a local neighborhood Np around point p. These
features capture the {point, surface, linear}-”ness” of the

local geometry: {σp = λ0,σs = λ1−λ0,σl = λ2−λ1}, re-
spectively. We will refer to these as the spectral features.
Next, we estimate the local tangent ~vt and normal ~vn vec-
tors for each point by using the principal and least principal
eigenvectors of M, respectively. We then compute the co-
sine and sine of the angles formed between the directions of
~vt and ~vn against the vertical and horizontal plane, resulting
in four values. Though, depending on the local neighbor-
hood, the estimated directions may be arbitrary. We esti-
mate a confidence by scaling the values when using {~vt ,~vn}
by {σl ,σs}/max(σl ,σp,σs), respectively. We will refer to
these scaled values as the directional features. The actual
node and edge features used for each experiment will be
defined in their upcoming and respective subsection.

4.2. Model parameters and timing

Optimal parameters were obtained by maximizing the
classification rate of various labeled data sets. For results
reported on both data sets, we obtained the subgradient pa-
rameters λ = 0.005 and α = 1

2t . For the ”sweeping” data,
T = 500 and for the ”push-broom” data, T = 800. The Np
was defined with a radius of 0.4 m for the ”sweeping” data
and 0.6 m for the ”push-broom” data; we disregard points
where |Np|< 4.

Results were computed on a Intel(R)-based 2.40 GHz
processor with 4 GB RAM. We present timing analysis on
the ”push-broom” data set. The training set consisted of a
graph with 18 898 nodes and 55 507 edges. Training took
151 minutes for the Directional AMN versus 148 minutes
for the standard AMN. The ground truth testing set con-
sisted of a graph with 385 611 nodes and 1 077 968 edges;
4 690 points were disregarded due to neighborhood size. On
the test dataset, feature computation and graph construction
completed in under 6.5 minutes, combined. Inference for
the Directional AMN required 9.3 minutes versus 9 minutes
for the standard AMN.

We constructed the graphs by iterating over the nodes
and linking each node to its five nearest neighbors. We
observed that the facade had the least amount of interac-
tions with the other labels while scatter had the most. On
the ”push-broom” test set, the data was distributed as fol-
lows among the labels: 19.76% for scatter, 0.76% for wire,
0.67% for pole/trunk, 68.15% for ground, and 10.62% for
facade.

4.3. Classifying the ”sweeping” data set

In the first result, we collapsed the labels into three ge-
ometric labels: linear, surface, scatter. For the standard
AMN, we found using only the spectral features as the node
features and the concatenation of linked node features for
the edge features gave the better results than when using the
directional features. We also added a bias term for both fea-
tures. For the Directional AMN we used the same features



(a) (b) (c)
Figure 5. Classification results on ”sweeping” data set for three labels (linear/scatter/surface). (a) AMN classification. (b) Directional
AMN (linear, surface) classification. (c) Directional AMN (linear) classification.

Linear SVM Standard AMN Dir. AMN (linear) Dir. AMN (linear, surface)
linear surface scatter linear surface scatter linear surface scatter linear surface scatter

Recall 0.797 0.997 0.080 0.948 0.966 0.721 0.892 0.995 0.816 0.876 0.934 0.839
Precision 0.172 0.794 0.986 0.187 0.998 0.985 0.295 0.997 0.981 0.312 0.999 0.838

Table 1. ”Sweeping” data set. Confusion matrices with three classes and three features.

but experimented with two different anisotropic potentials
for the linear and surface labels. For both the linear and
surface potentials, we bin the angle between ~vt and the hor-
izontal plane, and the angle between ~vn and the vertical into
bins {[0,π/6],(π/6,π/2]}. We suffix in parenthesis which
labels have anisotropic potentials.

In Table 1 we present recall and precision for classifica-
tion results of a given scene using four different approaches:
linear SVM, standard AMN, Directional AMN (linear), and
Directional AMN (linear, surface). The overall error rates
are 27.13, 10.48, 5.82, and 9.42 percent, respectively. Note
the increase in the overall classification when using the Di-
rectional AMN (linear) versus the other classifiers. The
difference between Directional (linear) and (linear, surface)
AMN is most likely due to the training data containing no
rough and angled terrain as seen under the pole in the test-
ing data. The visual5 classification results for only three of
the classifiers are in Figure 5 due to the AMNs performing
significantly better than the SVM.

In the next result, the linear class is separated into
a wire (skye blue) and a pole/trunk (dark blue) class
with the remaining linear points filtered out, such as thin
branches. Anisotropic potentials are defined for both the
wire and pole/trunk label to bin the space between ~vt and
the horizontal plane and vertical, respectively, into bins
{[0,π/6],(π/6,π/2]}. We illustrate that with the same
training set and only spectral features, we can perform clas-
sification of four classes due to directionality. Results with
the Directional AMN (wire, pole/trunk) are presented in
Figure 6 and the confusion matrix is presented in Table 2.

5Color code: red = surface, blue = linear, green = scatter

Figure 6. Four label classification on ”sweeping” data using Di-
rectional AMN (wire, pole/trunk) with three geometric features.

Directional AMN (wire, pole/trunk)
Error rate: 10.5%

wire pole ground scatter Recall
wire 446 0 0 46 0.906
pole 0 407 6 36 0.906

ground 2662 0 34087 5 0.927
scatter 196 79 5 15185 0.981

Precision 0.134 0.837 0.999 0.994
Table 2. ”Sweeping” data set. Confusion matrix with four classes
and three features.

4.4. Classifying the ”push-broom” data set

For the ”push-broom” data we used five labels: ground,
pole/trunk, wire, scatter, and facade. We compare Direc-
tional AMN (facade, pole/trunk, wire) against the stan-
dard AMN, where facade binned the angles between ~vn
and the horizontal plane into bins {[0,π/6],(π/6,π/2]} and
pole/trunk and wire use the same bins from the ”sweeping”
data experiment. For these results we found using the direc-
tional features in both models increased performance, and
we note that the Directional AMN performed better in both.
For the edge features, we concatenate two linked nodes’
spectral features and compute a similarity feature for the



Figure 7. ”Push-broom” data set. Classification of part of the ground truth subset into five labels. Right: Close-up view of pole and wire
junction correctly classified.

directional features. This similarity feature is defined to be
1/(1+ |d fi−d f j|) where d fi is a directional feature of node
i.

Figure 7 shows results on part of the section used for
quantitative performance evaluation. Note the close-up
view of the pole and wires correctly labeled. Points not
belonging to the five labels used for this evaluation were fil-
tered out from the fully labeled ground truth data. We chose
this approach to be able to correctly compare the classifica-
tion results of the standard and Directional AMN with dif-
ferent features.

Table 3 presents the confusion matrix, recall and preci-
sion, for the Directional AMN computed over the subset
with ground truth, over 390 000 points. The precision and
recall for the standard AMN are also provided for compar-
ison. As shown the Directional AMN is producing better
precision and recall than the standard AMN for all labels.
The most common error in classification is due to point
density variation. This is clear with the precision of the
wire and pole/trunk labels. Sections of ground far from the
sensor tend to be mislabeled as wire. Low density coupled
with occlusions, generate facade points being mislabeled as
pole/trunk. The second common source of error is the in-
ability of the features to capture the scene. For example
bundle wires are misclassified as facade in Figure 7. Note
that the quantitative performance evaluation presented here
is on a much larger data set than usually reported in the lit-
erature. We processed the non-ground truth subsection of
the ”push-broom” data set, over 4.5 millions 3-D points.
In such a case, all scene elements from the raw data are
present. We present results for the best classifier, the Di-
rectional AMN (facade, pole/trunk, wire); qualitatively the
classifier performs well, as shown in Figure 8. Objects not
part of the training data, such as traffic lights and their sup-
port post are actually assigned to the closest geometrical
label, respectively facade and linear. This is illustrated in
Figure 9.

Figure 9. ”Push-broom” data set. Classification on raw data.

5. Conclusions

In this paper we present a contribution to the problem
of automated 3-D point cloud classification for scene in-
terpretation. We extend the standard Associative Markov
Network model to account for directional information, thus
producing a new anisotropic model capable of represent-
ing accurately more complex scene structures than before.
Recent developments in optimization with the subgradient
method have allowed us to develop and learn this more com-
plex model. We show how the proposed Directional AMN
is different from using directional features with the standard
AMN formulation. The approach is validated using several
scans from a static ground scanner and using data accumu-
lated by a push-broom sensor on a mobile platform. We pro-
duced performance evaluations on a very large manually la-
beled set, over four hundred thousand points in total. Qual-
itative evaluation was presented over the remaining data of
over five millions 3-D points. The classification rate of the
proposed approach was compared advantageously against
SVM and the standard AMN, specifically for junctions and
small components.

The limitations of the anisotropic model are restricted to
classes where meaningful intrinsic and reference directions
can be defined. For classes, such as scatter, where there ex-
ists no dominant direction, it is unclear how to define an



Figure 8. ”Push-broom” data set. Classification on raw data.

Dir. AMN scatter wire pole/trunk load bearing facade Recall Std. AMN Recall
scatter 67187 3623 617 2059 2748 0.881 0.856
wire 145 2334 26 0 454 0.789 0.778

pole/trunk 92 38 2423 9 54 0.926 0.899
load bearing 1129 12342 0 249337 21 0.949 0.945

facade 440 394 5377 2570 32192 0.786 0.672
Precision 0.974 0.125 0.287 0.982 0.908

Std. AMN Precision 0.973 0.124 0.230 0.963 0.865
Table 3. ”Push-broom” data set. Confusion matrix for classification with five labels on 390 000 labeled points. The overall classification
rate is 91.66% versus 89.67% for the standard AMN on the same features.

intrinsic direction that is representative of the class. Fur-
thermore, this approach does not address typical errors due
to point density that will disable the ability to accurately es-
timate local features and directions. Utilizing work from
scale-space theory for feature estimation would be bene-
ficial in our approach. Finally, constructing the graph in
a smarter way to require fewer edges will limit inference
time and step towards a real-time implementation; we are
currently exploring alternative methods.
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