
Abstraction of Man-Made Shapes

Ravish Mehra†⋆ Qingnan Zhou† Jeremy Long§ Alla Sheffer† Amy Gooch§ Niloy J. Mitra⋆‡

†Univ. of British Columbia ⋆IIT Delhi ‡KAUST §Univ. of Victoria

Figure 1: Given three-dimensional models of man-made objects, often containing multiple self-intersecting components, we extract charac-
teristic curve networks along with auxiliary normal information providing a compact vector representation of the main model features and
use those to generate 3D abstractions capturing the essence of the inputs.

Abstract

Man-made objects are ubiquitous in the real world and in virtual
environments. While such objects can be very detailed, captur-
ing every small feature, they are often identified and characterized
by a small set of defining curves. Compact, abstracted shape de-
scriptions based on such curves are often visually more appealing
than the original models, which can appear to be visually cluttered.
We introduce a novel algorithm for abstracting three-dimensional
geometric models using characteristic curves or contours as build-
ing blocks for the abstraction. Our method robustly handles mod-
els with poor connectivity, including the extreme cases of polygon
soups, common in models of man-made objects taken from online
repositories. In our algorithm, we use a two-step procedure that first
approximates the input model using a manifold, closed envelope
surface and then extracts from it a hierarchical abstraction curve
network along with suitable normal information. The constructed
curve networks form a compact, yet powerful, representation for
the input shapes, retaining their key shape characteristics while dis-
carding minor details and irregularities.

Keywords: curve network, shape analysis, perception, NPR

1 Introduction

Engineered objects constitute a large fraction of the models popu-
lating virtual environments such as games, movies, or simulations.
In recent years, easy access to 3D modeling tools and the rapid

growth of online modeling communities have resulted in large col-
lections of such models. Most models of man-made objects present
in such collections do not satisfy the notion of “good” geometry
processing models [Kraevoy et al. 2008]. They frequently con-
sist of numerous disconnected components, have self-intersections,
and lack accurate information about part junctions and interconnec-
tions. From a processing point of view, such models can at best be
considered to be polygon soups (Figure 5).

Figure 2: (Left to right) Detailed 3D model, an artist’s drawing, a
crystal souvenir, and our abstraction of the Eiffel Tower.

Models of man-made objects can be very detailed, capturing every
hole and protrusion. However, such shapes are often characterized
and identified by just a few defining features (Figure 2). Shape de-
scriptions based on those features, commonly involving a handful
of characteristic curves, potentially mimic the minimalist represen-
tations that we, as humans, possibly store and use for our inference
needs [Poggio et al. 1985]. These compact, abstracted descrip-
tions are visually more appealing than the detailed original ones,
which may appear visually cluttered (Figure 2-left). Using this ob-
servation, artists frequently create recognizable images or icons of
known objects by employing only a few brush strokes (see drawing
in Figure 2). Such stylization is also common in tourist maps (Fig-
ure 3), where landmark buildings are depicted by just a few strokes
that highlight their main features (see also [Grabler et al. 2008]).

In this paper, we introduce a novel algorithm for abstracting three-
dimensional shapes. Inspired by human shape perception litera-

Figure 3: (Left to right) Tourist map depicting landmark buildings,
Picasso’s famous abstraction of a bull (c© Succession Picasso), and
a wooden toy designed by Calder (c© Calder Foundation) all make
use of distinctive attributes to generate minimalist, yet powerful,
abstractions.

ture [Attneave 1954; Costa and Cesar 2001] and artistic techniques,
we use characteristic curves or contours as building blocks for the
abstraction. The choice is motivated by the observation that the
shape of many man-made objects is clearly delineated by contour
lines and can be faithfully modeled as a union of smooth patches
welded together along these junction curves. Specifically, our
method extracts a sparse network of space curves and associated
normals as an abstraction of input models. This compact repre-
sentation makes explicit the main features of the shape, which are
challenging to identify from a polygon mesh or other low-level rep-
resentations.

While shape abstraction can be attempted at the rendering level by
developing suitable NPR tools, applying it directly to the models
has a number of advantages. Model-level abstraction allows con-
sistent rendering of a shape from a variety of views and is indepen-
dent of the rendering resolution or zoom level. The set of extracted
curves forms a minimalist representation, or an icon, of the mod-
eled object. By maintaining the extracted curve network’s proper-
ties, subsequent processing can generate new models that automati-
cally retain the defining characteristics of the original one [Gal et al.
2009]. Analogous to the diffusion curves for images [Orzan et al.
2008], our curve network, along with suitable normal information,
presents a vectorized representation of the input models.

Our abstraction method operates in two stages. First, it maps the
given geometry to a voxel grid of suitable resolution, and extracts
a corresponding closed, manifold envelope surface, that wraps
around the input model while smoothing out minor details (Figure 7
middle). This allows us to robustly handle non-manifold meshes
and multiple component meshes, including the extreme case of
polygon soups. In the second stage, the method extracts a network
of curves or vectors from the envelope. After extracting the network
connectivity using a mesh segmentation approach, it establishes the
network geometry using a combination of regularization and ap-
proximation criteria (Figure 7 right).

An alternative approach for filtering out insignificant shape details
is simplification, which, operating at triangle-vertex level, aims to
reduce polygon count while controlling the deviation of the sim-
plified object from the original one. Unfortunately, in the process,
characteristic shape curves are likely to be disturbed, especially un-

Figure 4: (Left to right) Input model, model simplified to 200 trian-
gles, simplified envelope surface with 200 triangles. While the sim-
plified envelope surface fares better, it does not preserve the core
features of the Arc de Triomphe.

der extreme simplification [Garland and Heckbert 1997], see Fig-
ure 4. Additional artifacts arise when the input is a polygon soup
instead of a well-formed manifold mesh. In contrast, abstraction
attempts to directly extract the high-level structure of objects, in-
tentionally removing insignificant visual details and potentially al-
lowing significant topological changes. Abstraction, by attempting
to perform a higher level of shape understanding, can prove to be a
better candidate for low bit budget representations where simplifi-
cation results may be unsuitable.

Abstraction, which involves shape analysis and is strongly linked to
human perception and cognition, is more of a qualitative rather than
a quantitative operation. Hence, when considering the degree of ab-
straction, or the search for the right abstraction of a given object,
the answer often lies in the area of perception, relating to the ob-
server’s prior knowledge. Researchers have studied questions like
“where do humans draw lines” to achieve similar results algorith-
mically [Cole et al. 2008]. Our goal is to understand shape abstrac-
tions from a human perception viewpoint. Based on the perception
studies, we hypothesize that an abstracted shape should have its
minor details stripped off, while retaining its major characteristic
features. The emphasis on characteristic features implicitly links
the effectiveness of abstraction with the degree of user familiarity
with the object.

In addition to the main contribution of providing a method to per-
form abstraction of 3D geometric shapes, our two secondary con-
tributions are: a novel vector-based representation of 3D geometry,
which can be used for a variety of mesh editing tasks; and a simple
yet robust mechanism for approximating polygon soup models by
a manifold surface envelope.

2 Related Work

Abstraction, the process of identifying characteristic properties and
extracting their mutual relationships and topology [Falcidieno and
Spagnuolo 1998], has been studied in many fields and disciplines
including art, non-photorealistic rendering and modeling, and hu-
man perception, for purposes such as shape analysis, generation of
compact descriptors, and recognition.

Artistic and human perception of shape. In the twentieth cen-
tury, artists like Kandinsky, Mondrian, and Picasso pushed the
boundaries of geometric abstraction in 2D representations of the
surrounding world to the extremes. Alexander Calder ingeniously
used wires in addition to sheet metal, wood, and bronze to create
abstract 3D sculptures. While automatically generating abstraction
levels like those created by Kandinsky and Mondrian is unrealistic,
we draw motivation from the curve-based abstraction portrayed by
Calder in his 3D wire sculptures.

Koenderink and Doorn [1979] hypothesized that humans internally
represent shapes as functions that measure the visual complexity of
shapes. Later, Nackman and Pizer [1985] differentiated between
representation and description of an object where an object rep-
resentation contains enough information to enable an approximate
reconstruction, while an object description needs only to contain

Figure 5: Commonly available man-made models often have mul-
tiple connected components, self-intersections, and triangles with
bad aspect ratios.

enough information to identify an object as a member of some ob-
ject class, which is exactly what abstraction aims to do.

Non-realistic rendering and modeling. A major goal of non-
photorealistic rendering (NPR) is to highlight or amplify defining
object characteristics. Since low-level geometry does not provide a
natural prioritization of the shape features (Figure 6), NPR tech-
niques strive to identify view-specific important features, which
should be rendered or exaggerated to convey form [Cole et al.
2008]. Significant research has been devoted to identifying can-
didate feature lines including silhouettes, ridge or valley lines [Na
et al. 2005], contours, and suggestive contours [DeCarlo et al.
2003]. The curve networks extracted by our abstraction method
can be used to create view-independent NPR effects, which remain
persistent across motion and animation.

Little work exists for stylizing or creating iconic representations of
3D models. A notable exception is the research by Gal et al. [2007],
which creates 3D collages on top of target shapes using a database
of objects as primitive building blocks. In a parallel thread of work,
Theobalt et al. [2007] generate collages from mesh animation. The
resulting collages, though artistically powerful, are not intended for
other uses.

Shape analysis and reverse engineering. Motivated by proce-
dural modeling and constructive solid geometry, researchers have
long proposed to approximate a given 3D model with parametric
parts [Várady and Martin 2002; Attene et al. 2006]. Such para-
metric descriptions enable creation of different abstraction levels
by direct part manipulation, for instance by removing some of the
parts while preserving others. However, most discrete digital mod-
els lack such semantic information and reverse engineering struc-
ture and regularity from 3D geometry is a difficult problem [Pauly
et al. 2008], with algorithmic solutions unlikely to reach human
performance levels in the near future. Instead, we present a method
that uses low-level analysis of the models to automatically extract
the main feature curves, providing a compact vector representation
of the model at a desired abstraction level. Our approach bypasses
the difficult reverse engineering task of detecting the global struc-
ture, while implicitly preserving the main characteristic features of
the models.

In the domain of 2D shapes, Bengtsson et al. [1991] obtained ab-
stractions by studying contours at different scales and recently at-
tempts have been made to learn abstractions using a set of exem-
plars [Demirci et al. 2009]. Other avenues explored for abstrac-
tion include rule-based simplification [Brown et al. 1993], tracking
a symbolic representation while the user constructs a parametric
model [Falcidieno and Spagnuolo 1998], or topology-based infer-
ence [Biasotti et al. 2002].

While the general shape analysis problem is difficult even for man-
ifold, connected meshes, we show that for man-made objects, due
to their inherent regularity and structure, creating effective abstrac-

Figure 6: Eiffel tower rendered using crease lines (left), suggestive
contours (middle), and crease lines in our 3D abstraction (right).

Figure 7: (Left to right) Input model with 353 components, enve-
lope surface, vector representation, and reconstructed model.

tion, even from polygon soups, is possible. Our abstraction comes
in the form of a curve network, which can be used as input for mod-
eling and editing systems like FiberMesh [Nealen et al. 2007] and
iWires [Gal et al. 2009].

3 Algorithm Overview

Our goal is to extract a vector representation for three-dimensional
shapes, targeted specifically toward abstraction of man-made ob-
jects, i.e., objects whose main features can be captured by a few
smooth surfaces glued together along characteristic curves. Our
representation satisfies the following properties:

Reconstruction: The network of curves, or vectors, combined with
the normals prescribed along them, is sufficient to define the ab-
stracted shape, encoding both the connectivity and the geometry of
the reconstructed model (Section 6). To describe the connectivity,
the network is required to be a connected B-Rep representation, as
this significantly simplifies the reconstruction step. To adequately
reconstruct the geometry we define the surface normals across the
model as weighed combinations of the curve normals.

Abstraction: Depending on the desired level of abstraction, our
representation controls which geometric features are appropriate,
while smoothing out the less significant ones.

Structure: Regularity and structure, which lead to simplicity of
design, fabrication, and installation, are properties common to
most man-made objects [Merrell and Manocha 2008]. Viewers are
known to be sensitive to breakup of regular structures present in the
input models when those are processed [Kraevoy et al. 2008], and
they seem to remember or identify shapes based on symmetry and
regularity, ignoring the deviations [Arnheim 1956]. Thus we expect
abstractions of man-made shapes to be as regular or structured as
possible. This translates to the curves being locally as simple as
possible, i.e., being planar, linear, circular arcs, etc., while satisfy-
ing global regularity requirements such as symmetry, parallelism,
and orthogonality.

Our abstraction method generates such vector representations in
two steps. First, it constructs an envelope surface, a closed, mani-
fold surface approximating or “enveloping” the input model (Sec-
tion 4). The surface provides a manifold approximation of the po-
tentially poorly-connected data, enabling subsequent extraction of
a meaningful network of curves. It also helps to approximate the
input at a desired degree of abstraction, controlling the genus of the
final model as well as smoothing out minor details (Figure 7).

The second step extracts the curve network that serves as the vector
representation of the input (Section 5). First we extract the net-
work connectivity using mesh segmentation and then establish the
network geometry using a combination of regularization and ap-
proximation criteria. In the geometry computation, we simultane-
ously optimize for the vector representation and an approximation
of the reconstructed surface obtained from this representation. This
controls the tradeoff between the smoothness and regularity of the
reconstruction, and the level of approximation of the input.

Figure 8: (Left to right) Input model, voxel hull, subdivided voxel
hull, envelope after iterative fitting.

4 Envelope Construction

The envelope construction stage defines a tight manifold approxi-
mation of the input model, providing both a first level of abstraction
and a well-defined domain for further processing. This step can be
skipped if the input model is a priori described by a single manifold
surface. However, in this case the abstracted model will preserve
the topology of the input.

Man-made models in public databases are often formed as a union
of overlapping components, where the hidden interior parts of the
components are left intact effectively splitting the models into sev-
eral closed regions. Algorithms, such as [Cohen et al. 1996], that
assume well-formed manifold input cannot be applied to such poly-
gon soups. The existence of interior surfaces prevents the use of
methods that grow the surface from inside [Sharf et al. 2006], as
they are likely to get stuck at a local minimum when encountering
such interior surfaces. It also prevents the use of ball-pivoting meth-
ods [Bernardini et al. 1999] that essentially attempt to reconstruct
the non-manifold structures. The method of Shen et al. [2004],
when used in an approximating setup, does indeed satisfy most of
our requirements for the envelope generation step. However, the
method rounds off sharp features, thus making subsequent feature-
curve extraction challenging. Our envelope generation step is sim-
ple, effective, and designed to satisfy the requirements of the sub-
sequent abstractions steps.

We start by constructing an initial envelope that contains the input
model and loosely follows its geometry. Using an ICP-like [Besl
and McKay 1992] local refinement process, the envelope is at-
tracted toward the model to obtain the desired approximation qual-
ity. The iterative fitting process helps satisfy the potentially con-
flicting goals of bringing the envelope mesh close to the input model
while maintaining a quality triangulation of the envelope. The fit-
ting process, which provides a tradeoff between envelope resolution
and input approximation, smoothes out narrow concavities, yield-
ing a first level of abstraction.

Initialization. We embed the input model in a regular grid and de-
fine the voxel hull of the model as the set of all grid voxels that inter-
sect any of the model triangles (Figure 8). Subsequently the outer

Figure 9: The deformation step, during envelope fitting, smooths
out narrow concavities and suppresses details of the input model.

Figure 10: Zooms of the mesh envelope, for the Dome of the Rock
model, after four iterations of fitting without (left) and with (right)
regularization.

visible surface of the voxel hull is extracted as the initial envelope.
While it is conceivable to have an implicit, distance function based
approach followed by isosurface extraction for initializing the en-
velope [Bischoff et al. 2005], such an approach is ill-suited for our
setup, as our input models often contain many self intersections and
may have inconsistent triangle orientation, making distance compu-
tations problematic. The resolution of the grid controls the topol-
ogy, specifically the genus, of the final envelope, and is defined
by the user. Once the envelope is constructed we refine the initial
coarse mesh using one or two iterations of regular subdivision to
enable better subsequent approximation.

Iterative fitting. The fitting process iteratively pulls the envelope
toward the input model while preserving the overall shape and mesh
quality. Each iteration consists of the following steps.

• Matching, which maps the vertices of the envelope to the closest
positions on the input model;

• deformation, which deforms the envelope to better approximate
the input based on the computed matches;

• and mesh regularization, which maintains the quality of the
envelope mesh as it deforms.

The process terminates when the envelope stabilizes or a maximum
number of iterations is reached. We now describe the steps in detail.

Matching. Each vertex of the envelope is matched to the closest
position on the input model. Similar to ICP setup, we discard out-
lier matches, i.e., ones where the distance from the envelope to the
model is significantly larger than the average distance.

Deformation. The target positions provided by the correspon-
dences established in the matching step can be inconsistent, leading
to self-intersections and other mesh degeneracies. To avoid such
artifacts we introduce a deformation formulation that provides a
tradeoff between enforcing the matches and maintaining the shape
and position of the current envelope. Specifically we optimize

min
vi

∑

i

c1‖(vi −
1

|(i, j)|

∑

e=(i,j)

vj) − li‖
2 + c2‖vi − v

′
i‖

2

+c3‖vi − wi‖
2

(1)

where vi are the new positions of the mesh vertices, v′
i are the cur-

rent vertex positions, li are the Laplacian vectors [Sorkine et al.
2004] given by (v′

i −
∑

e=(i,j)
v
′
j/|(i, j)|) computed on the cur-

rent envelope, and wi are the positions proposed by the matching.
The first two terms preserve the current envelope shape, effectively
controlling the speed at which the envelope is pulled toward the
input model, penalizing self-intersections and other artifacts. We
used c1 = 1, c2 = 0.5, c3 = 2 for all the models shown in the
paper. The resulting linear system is solved using a sparse linear
solver [Toledo et al. 2003]. The shape preservation terms combined
with the regularization step help smooth over narrow concavities in
the input model where the size of the narrow features is smaller than
the initial grid resolution (see Figure 9). This aids the abstraction
process by removing potentially deep, but poorly visible, features.

Figure 11: Vectorization stages: (Left to right) VSA segmentation,
segmentation after boundary improvement, smooth approximation
geometry, extracted regularized curve network, surface after hier-
archical simplification, regularized simplified curve network.

Mesh Regularization. As the envelope deforms, the quality of
the mesh triangles can increasingly deteriorate as the initial con-
nectivity may not accurately reflect the fitted geometry. Such mis-
matching connectivity can negatively affect the quality of the ap-
proximation (Figure 10). Our iterative fitting addresses this concern
by performing mesh regularization after every iteration. The basic
regularization step is based on [Surazhsky and Gotsman 2003] and
involves a combination of local mesh smoothing, edge collapses,
and edge flip operations aimed at maintaining reasonable mesh
quality. In addition to remeshing for improving the mesh quality, in
later iterations of the envelope contraction we use heuristic remesh-
ing operations to improve the approximation quality. Specifically,
we flip edges if the mid-point of the flipped edge is closer to the
input model than that of the current edge. If the flip creates poorly
shaped triangles, we split the flipped edge at the midpoint. The
order of flipping is determined by the approximation improvement
amount, i.e., the edge for which the improvement is largest gets
flipped first.

The resulting envelope surfaces are manifold triangle meshes with
fair mesh quality that approximate both the topology and the ge-
ometry of the input model up to a desired resolution. The envelope
generation step fills up small through-holes, smooths out narrow
concavities, and removes self-intersections.

5 Vectorization

Having generated an envelope surface we now proceed to extract
the network of curves and associated normals sufficient to recon-
struct an abstracted replica of the envelope and hence the input
shape. To avoid storing unnecessary geometric information, we dis-
tinguish between two types of curves in our network: regular curves
that have a geometric definition (positions and normals) along the
curve, and virtual or connectivity-only curves that have no such in-
formation and which are used solely to define the connectivity of
the network.

The network is extracted in two steps. We first extract the network
connectivity using a mesh segmentation mechanism. We then final-
ize the curve geometry using smoothing and regularization enforc-
ing spatial, relational, and metric constraints (Figure 11).

5.1 Extracting Network Topology

We recast the network extraction problem as one of mesh segmenta-
tion, with the curve network defined as the set of chart boundaries.
Explicitly aiming at a segmentation that satisfies the reconstruction

and approximation criteria in Section 3 is likely to be rather time
consuming, since even evaluating a chart quality would be com-
putationally expensive. Instead we opt for a simpler, conservative
approach, requiring charts to be relatively planar. Clearly any chart
that satisfies a near-planarity requirement would satisfy the other
two. Though alternative criteria such as chart developability [Julius
et al. 2005] are likely to work as well, the advantage of the planarity
criterion is the simplicity and speed of the resulting method. While
this approach may initially result in an over-segmented network, the
number of charts is later reduced when the network is hierarchically
simplified (Section 5.3).

We employ the Variational Segmentation Algorithm
(VSA) [Cohen-Steiner et al. 2004] to obtain the near-planar
segmentation, using the approximation error to control the number
of charts. We start VSA with an initial number of charts (typically
just one) and measure the total approximation error. If the error is
above the user-prescribed threshold we add another chart, using
the triangle with the maximal error as the seed and repeat the
process. The segmentation is improved using a standard post-
processing step [Julius et al. 2005] of straightening boundaries
and merging small charts with their neighbors, while bounding the
per-chart error (we allow up to 10% increase in per-chart error for
straightening and 20% for merging).

In the last step, to create a connected network, we split charts with
multiple boundary loops into simple ones using a bottom-up trian-
gle clustering. The new boundaries are defined as connectivity-only
as they are unnecessary from a geometry point of view.

5.2 Extracting Network Geometry

We expect the reconstructed surface to consist of smooth charts
bounded by the prescribed curve network. Our goal is to define po-
sitions and normals along the curves (c.f. diffusion curves [Orzan
et al. 2008]), that enable such a reconstruction. We achieve this us-
ing an optimization that simultaneously edits the chart boundaries
and the chart geometry such that the optimized charts reflect the
reconstructed geometry. The optimization should balance the fol-
lowing aspects:

• Surface Smoothness: The normals across each surface chart
should change smoothly. This ensures that the reconstruction
using the normals along the chart boundaries will approximate
the optimized charts.

• Approximation: The optimized and hence the reconstructed
surface should remain close to the original one.

• Curve Smoothness: The boundary curves should be smooth.
This helps to regularize the curve network and thus the subse-
quent reconstruction result.

Normals being a non-linear function of the vertex positions, an opti-
mization function aiming to simultaneously satisfy the above goals
would be challenging to minimize. Instead we use a solution that
decouples the normals and the positions, splitting the solution into
three steps: normal solve, per-triangle vertex positioning, and, fi-
nally, global assembly.

Normal Solve: We first compute new triangle normals which pro-
vide a tradeoff between smoothness and normal-level approxima-
tion of the envelope surface,

min
{ni}

∑

i

‖ni −
1

|N(i)|

∑

j∈N(i)

nj‖
2 + ω1

∑

i

‖ni − n
′
i‖

2
(2)

where i indexes mesh triangles, N(i) denotes the set of triangles
adjacent to i that belong to the same chart, and ni and n

′
i are the

new and current triangle normals, respectively. We set ω1 to 0.25
for interior chart triangles, and to 0.1 for triangles adjacent to chart

boundaries. We use a smaller weight for boundary triangles since
their envelope normals often deviate from those of the input models
and hence are less critical to preserve (Figure 11 top, center).

Per-Triangle Solve: Next we compute the vertex positions that
generate the desired normals while staying close to their original
positions. The computation is performed on a per-triangle basis.

• For interior triangles we solve

min
{vk}

∑

k

‖vk − v
′
k‖

2 + ω2(nivk + di)
2,

where k indexes the three triangle vertices and di is the un-
known distance component of the triangle’s plane equation (nor-
mal form). The weight ω2 is set to 1000, effectively ensuring
that the new positions vk satisfy the desired normal ni.

• For boundary triangles, we incorporate an additional boundary
curve smoothness requirement. For every boundary edge eb =
−−−→
v

1
bv

2
b of the triangle, we add an additional component to the

minimization:

min
{vk}

∑

k

‖vk −v
′
k‖

2 + ω2(nivk + di)
2 + ω3

∑

b

‖eb − sb‖
2,

where sb is the smoothed boundary edge computed by averaging
the edge vectors in the local neighborhood along the boundary
using the current mesh. We used a neighborhood size of 1.5x
the average edge length in the mesh and ω3 set to 2 in all our
examples.

Global Assembly: Finally, to obtain a connected mesh we recon-
cile the different per-triangle positions computed for each vertex.
At this stage the shape and orientation of each individual trian-
gle can be viewed as optimal, hence we aim for new vertex po-
sitions such that the per-triangle transformation gradient is close
to identity. We express this requirement using a similar formu-
lation to [Sumner and Popović 2004]. For each triangle we de-
fine Vk = [v3 − v0,v3 − v1,v3 − v2] where v0,v1,v2 are the
three vertices of the triangle computed in the previous step and
v3 = v0 + ni. We define Wk similarly but using the unknown
shared vertex positions w. We optimize over w using

min
{wj}

∑

i

||WiV
′−1

i − I||2F + ω4

∑

j

‖wj − v
′
j‖

2

where F denotes the Frobenius norm, j indexes mesh vertices, and
ω4 set to 10. We iterate the steps until the positions and normals
converge, typically in three to four iterations. After each iteration
we perform topological cleanup, reapplying the segmentation post-
processing step (Section 5.1).

Finally, we associate per-chart normals with curve vertices, using
the average normal of the adjacent triangles around the vertex in
each chart (see Figures 11 and 12). Notice that points have a pair
of normals associated with them.

5.3 Network Regularization and Simplification

The obtained curve network satisfies the abstraction and reconstruc-
tion criteria (Section 3). We now further regularize the network
to capture structure, and then simplify it by removing appropriate
curves, producing a sequence of abstractions.

Regularization. The vector representation we obtain at this stage
is sufficient to faithfully reconstruct an approximation of the input.
However, our goal is to create abstractions for man-made objects,
highlighting regularity and structure, while ignoring minor devia-
tions or inconsistencies. Hence, we regularize individual curves

and loops of the network, and enhance their mutual relations (see
also [Gal et al. 2009]).

Our local regularization replaces near-regular geometric features
by perfectly regular ones, in an effort to retain the essence of shapes
while ignoring small variations. The process considers both posi-
tions and normals across the network. First near-planar curves are
made exactly planar using a least squares plane fit. Curves, once op-
timized, are kept fixed during the later iterations, as side constraints
for least squares optimization. Subsequently, near-linear curves are
converted to line segments. Similarly, curves that fit well to circular
arc segments are regularized to perfect circular arcs. Such tests are
incremental, where once a curve or a sequence of curves fit into one
of these categories, we incrementally check if consecutive curves
sharing the same boundary loop with the current sequence also fit
the same plane, line, or arc. We use a similar incremental approach
to detect sequences of curves with nearly identical normal values
along a shared face loop, indicating a locally near planar face region
and make the normals identical. Standard least squares fitting solu-
tions are employed, and considered acceptable if the residual error
falls below threshold margin (0.02 and 0.1 for fine and coarse, re-
spectively). Normals are projected accordingly: for example, when
planarizing curves, the normals are projected to the least squares
plane, and re-normalized.

In man-made or engineered objects, symmetry and regularity play
a dominant role due to aesthetic considerations, as well as conve-
nience in design and manufacturing. A good abstraction should
capture such relations, making them explicit. In the global reg-
ularization step we enforce mutual relations between curve pairs
that local processing may have missed. First, planar loop pairs that
are nearly parallel (or orthogonal) are made exactly so. Such an
approach clearly depends on the order in which the loops are pro-
cessed. As a (heuristic) solution, we process the loop pairs in a
greedy fashion (i.e., the loop-pair, which is closest to being par-
allel, is processed first), taking small steps towards making the
loops parallel (or orthogonal), and iterate until convergence. Most
of the examples presented in the paper converged in less than five
rounds. Finally, we detect global reflective and (discrete) rotational
symmetry in the input model [Mitra et al. 2006]. When detected,
we enforce symmetry in the curve network, minimally moving the
curves to make them exactly symmetric using a symmetrization ap-
proach [Mitra et al. 2007]. In the regularization steps, we only up-
date positions and normals without changing connectivity or topol-
ogy of the network.

Hierarchical Simplification. Our original method for network
topology extraction is fairly conservative, often resulting in more
charts than strictly necessary for reconstruction purposes. Hence it
is often possible to simplify the network further without compro-
mising the abstraction quality. Simplification can also be used to
create higher levels of abstraction. To define the hierarchical sim-
plification mechanism we reuse the smoothness and approximation
criteria targeted during network geometry extraction.

We compute a per-curve simplification error measuring the impact
of removing the curve from the network using two terms. We use
integral dihedral angle along a curve to measure smoothness er-
ror. To quickly estimate the approximation or reconstruction error,
we integrate the deviation of the average normal along the curve
from the arc-length interpolation of the curve end-point normals at
that point. This measure provides a rough estimate of the differ-
ence between the reconstructed surfaces with and without the curve
in question. To control the simplification process we set separate
thresholds on the two terms.

During simplification, rather than removing curves completely, we
simply demote them to connectivity-only discarding all the geomet-
ric information associated with them (Figure 12). Leaving the net-

virtual edges

Figure 12: Input model, processed segments, vectorized curve net-
work, and reconstructed abstraction. Zoom panels show section of
curve network, and normals along the curves. Connectivity-only
or virtual edges are marked in brown. For ease of visualization,
normals from same curve loops are marked in identical colors.

work topology untouched, helps the reconstruction process while
the overhead of storing connectivity-only curves is negligible. In
order to maintain reconstruction consistency, once a curve is de-
moted, we update the curve network, re-assigning normals along
the affected edges using our chart optimization (see Section 5.2)
and regularization procedures. Recomputing the surrounding ge-
ometry after each edge removal is expensive. However, the number
of curves in our curve networks is small, allowing such expensive
iterations. Thus we get multiple curve networks and associated re-
constructions or abstractions of the input (see Figure 11).

6 Reconstruction

The reconstruction process constructs the abstracted model’s shape
from the vector representation (Figure 7 right), establishing both
the underlying mesh connectivity and the actual mesh geometry.

Initial Reconstruction. The reconstruction starts by triangulat-
ing the faces of the curve network, aiming to construct a con-
nectivity that reflects the target geometry. It first embeds the
boundary of each face in the plane, using Multi-Dimensional Scal-
ing (MDS) [Kruskal and Wish 1978] aiming to preserve the shape
of the boundary. The MDS embedding best preserves the Euclidean
distances between all pairs of vertices on the boundary, which in
case of planar boundary loops results in preservation of the bound-
ary shape and even for non-planar boundaries generates a reason-
able embedding. As MDS allows for self intersections, we explic-
itly check for them. When an intersection is observed, we embed
the loop on a circle using arc-length parameterization. Once a pla-
nar boundary is computed, its interior is triangulated [Shewchuk
1996], providing the desired connectivity reconstruction.

To generate the geometry of the abstracted model we deform the
computed planar meshes, enforcing the boundary vertex positions
and normals prescribed by the input vector representation. We
use the shape preserving deformation method of Popa et al. [2006]
whose rotation propagation approach is well suited to our setting.
The deformation is applied simultaneously to clusters of faces con-
nected with connectivity-only network curves as we expect the nor-
mal impact to propagate across them.

Improvement. Although for many surfaces the initial reconstruc-
tion produces satisfactory results, it is not always the case. First, if
the normal differences across a reconstructed face are fairly large,

our deformation may “under-rotate” the triangles involved as it sat-
isfies the normal constraints only in a least-squares sense. This
problem is easily resolved by iterating through the deformation step
using the current surface as the undeformed model.

Second, if the initial embedding of the boundary differs signif-
icantly from the “natural” parameterization of the corresponding
face, the mesh triangles can undergo significant deformation lead-
ing to visible artifacts. This is resolved by repeating the connectiv-
ity and geometry construction steps. Since we now have an interior
triangulation, we use standard mesh parameterization methods to
find the optimal planar domain, e.g ABF++ [Sheffer et al. 2005].
We then retriangulate the obtained boundary and repeat the defor-
mation as above.

7 Results and Discussion

We tested our abstraction algorithm on a variety of man-made mod-
els mostly described by polygon soups. The abstracted models are
generated using a combination of local processing with subsequent
consolidation of global relations common in man-made forms. The
abstracted shapes, having highlighted the mutual relations of parts
or curves, are significantly more compact and lightweight compared
to any low level representation. Here we take advantage of the
observation that engineered forms are often defined by a few 1D
curves, having relatively low information content compared to or-
ganic objects. The resulting models are extremely concise, while
explicitly encoding information about relations between parts (see
Table 1). For the models shown in the paper, the average time taken
for generating an abstraction was less than 2 minutes on a 3GHz
machine with 2GB RAM, with the envelope surface creation phase
taking the majority of computing time.

Figures 13 and 14 showcase abstraction results for various models
of man-made buildings, furniture, and equipment of varying level
of complexity at high and low-resolution abstractions. After pre-
scaling the objects to a unit box, the abstraction level can be con-
trolled using the following parameters: the voxel size (0.01 and
0.05 for fine and coarse, respectively), VSA approximation error
(0.05 and 0.1, respectively), regularization thresholds (deviations
from straight lines, circles, etc.). The perceptual effect of the pa-
rameters, in terms of their visual impact, is harder to quantify, and
we plan to explore this relationship using a user study in the future.

Figure 15 indicates how the abstraction result degrades with in-
creasing noise and ambiguity in the data. Since the input models
consist of many disconnected components, little is achieved by lo-
cal smoothing. In contrast, the abstraction results, which enforce
local and global regularization, are stable and capture the charac-

Model # triangles # components level #lines # arcs # curves

Empire State 16k 17 low 34 0 4

high 146 2 4

Eiffel Tower 15.6k 2417 low 47 19 19

high 85 31 24

building 3.7k 89 low 70 0 12

high 288 2 9

Arc-Triomphe 13k 8 low 127 2 10

high 163 16 14

Pagoda 37k 1173 low 64 0 1

high 54 0 22

dome 3.8k 2 low 24 2 0

high 116 23 6

rocking chair 32k 22 low 26 33 39

high 55 35 32

baroque chair 164k 353 low 25 25 16

high 20 33 42

Table 1: Abstraction statistics.

Figure 13: Result gallery showing various input models, extracted curve networks (with normals), and reconstructed abstractions. The
high-resolution abstractions are rendered in yellow, while the low-resolution ones are in blue.

Figure 14: Abstractions of a microscope model at high- and low-
resolutions. For such models with fine details, the abstraction re-
sults are often subtle, while geometrically minor but semantically
significant parts can get suppressed by our purely geometric ab-
straction procedure.

teristic features. More specifically, we achieve noise resistance via
normal smoothing, topological cleanup, and regularization.

We construct the network topology in two main stages: VSA seg-
mentation and hierarchical simplification. Thus we have the op-
tion of balancing or shifting the algorithmic sophistication between
these steps. We could indeed make the segmentation step more so-
phisticated, using higher level primitives for advanced VSA tech-
niques (e.g. [Wu and Kobbelt 2005; Attene et al. 2006; Yan et al.
2006]). However, given our hierarchical simplification step we
found this unnecessary.

It has been hypothesized that abstract shapes are easier to recognize
and classify compared to detailed ones [Hou and Ramani 2008].
Besides adding highlights for NPR applications, curves or feature
lines are also used for detecting partial symmetries [Bokeloh et al.
2009], for shape editing [Gal et al. 2009], etc. Such methods usually
work on manifold, connected geometric models or rely on edges
with sharp dihedral angles to identify feature edges, and thus cannot
be readily applied to polygon soups or noisy models. Our abstrac-
tion procedure, which robustly generates a curve network capturing
the high-level features of the model while ignoring finer details or
deviations, provides an abstraction network that can be used as aux-
iliary information by the above mentioned algorithms.

Figure 15: Even for noisy input models, the regularization step
allows creation of quality abstractions. We present abstractions
with 2% and 5% (of bounding box diagonal length) noise added to
the dome model.

Limitations. Our method’s ability to remove topological details
is currently strongly linked to the resolution of the envelope. Once
the envelope separates features like the fine diagonal bars in the wa-
ter tower in Figure 16, they persist throughout the algorithm stages,
independent of size. Topology level abstraction that removes such
features is an important topic to address in future research.

On a more perceptual note, not all objects have recognizable ab-
stract representations. For instance, the abstraction of the Burj Al-
Arab building (see Figure 16) may not be identified by all.

8 Conclusion

We presented an algorithm for creating abstractions of 3D geomet-
ric shapes, specifically targeting man-made objects, using hierar-

Figure 16: (Left) Fine topological features are easily combined by
our envelope construction stage. However, once such features are
extracted by a finer grid resolution, we have no easy method to re-
move them, independent of their size. (Right) Some objects, perhaps
those less familiar to us, have no obvious natural abstraction.

chical curve networks that capture the defining characteristics of the
inputs. Our method is robust, designed to handle models with dis-
connected components, self-intersections and noise, and uses a reg-
ularization step to make specific both individual and mutual curve
relations. The curve networks, along with the associated normal
information, can be used to reconstruct clean manifold meshes re-
taining the essence of the input forms. We believe that the extracted
curve network provides a powerful handle to the input shape, since
the representation contains specific and explicit global information
about the shape of object parts and the relations between them.

Acknowledgements

This work was partially supported by Adobe Inc., MITACS NCE,
and the NSERC discovery program. Niloy was supported by a Mi-
crosoft Outstanding Young Faculty Fellowship. We thank Karan
Singh for the simulating discussions, and the anonymous reviewers
for their helpful suggestions. We would also like to thank Tiberiu
Popa for help with Graphite and MAMD code, Vladislav Kraevoy
for providing the CML code, and finally Xi Chen, Benjamin Cec-
chetto and Derek Bradley for helping in the production of the sup-
plementary video. The 3D models were collected from the artist-3d,
Google 3D warehouse, Princeton Benchmark, and TurboSquid.

References

ARNHEIM, R. 1956. Art and Visual Perception: A Psychology of
the Creative Eye. Faber and Faber.

ATTENE, M., FALCIDIENO, B., AND SPAGNUOLO, M. 2006. Hi-
erarchical mesh segmentation based on fitting primitives. The
Visual Computer 22, 3, 181–193.

ATTNEAVE, F. 1954. Some informational aspects of visual percep-
tion. Psychological review 61, 3, 183–193.

BENGTSSON, A., AND EKLUNDH, J.-O. 1991. Shape representa-
tion by multiscale contour approximation. IEEE Trans. on PAMI
13, 1 (Jan), 85–93.

BERNARDINI, F., MITTLEMAN, J., RUSHMEIER, H., SILVA, C.,
AND TAUBIN, G. 1999. The ball-pivoting algorithm for sur-
face reconstruction. IEEE Trans. on Visualization and Computer
Graphics 5, 4, 349–359.

BESL, P. J., AND MCKAY, N. D. 1992. A method for registration
of 3D shapes. IEEE Trans. on PAMI 14, 2, 239–256.

BIASOTTI, S., FALCIDIENO, B., AND SPAGNUOLO, M. 2002.
Shape abstraction using computational topology techniques.
From geometric modeling to shape modeling, 209–222.

BISCHOFF, S., PAVIC, D., AND KOBBELT, L. 2005. Automatic
restoration of polygon models. ACM Trans. Graph. 24, 4.

BOKELOH, M., BERNER, A., WAND, M., SEIDEL, H.-P., AND

SCHILLING, A. 2009. Symmetry detection using line features.

Computer Graphics Forum, Proc. of Eurographics 28, 2, 697–
706.

BROWN, G., FORTE, P., MALYAN, R., AND BARNWELL, P. 1993.
A non-linear shape abstraction technique. In CAIP, 223–230.

COHEN, J., VARSHNEY, A., MANOCHA, D., TURK, G., WEBER,
H., AGARWAL, P., BROOKS, F., AND WRIGHT, W. 1996. Sim-
plification envelopes. In Proc. SIGGRAPH, 119–128.

COHEN-STEINER, D., ALLIEZ, P., AND DESBRUN, M. 2004.
Variational shape approximation. ACM SIGGRAPH Trans.
Graph., 905–914.

COLE, F., GOLOVINSKIY, A., LIMPAECHER, A., BARROS, H. S.,
FINKELSTEIN, A., FUNKHOUSER, T., AND RUSINKIEWICZ,
S. 2008. Where do people draw lines? ACM SIGGRAPH Trans.
Graph. 27, 3, #88, 1–11.

COSTA, L., AND CESAR, R. M. 2001. Shape Analysis and Clas-
sification: Theory and Practice. CRC Press.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND

SANTELLA, A. 2003. Suggestive contours for conveying shape.
ACM SIGGRAPH Trans. Graph. 22, 3 (July), 848–855.

DEMIRCI, M., SHOKOUFANDEH, A., AND DICKINSON, S. J.
2009. Skeletal shape abstraction from examples. IEEE Trans.
on PAMI 31, 5, 944–952.

FALCIDIENO, B., AND SPAGNUOLO, M. 1998. A shape abstrac-
tion paradigm for modelling geometry and semantics. In Com-
puter Graphics International, 646–656.

GAL, R., SORKINE, O., POPA, T., SHEFFER, A., AND COHEN-
OR, D. 2007. 3D collage: expressive non-realistic modeling. In
Proc. of NPAR, ACM, New York, NY, USA, 7–14.

GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D.
2009. iWIRES: An analyze-and-edit approach to shape manipu-
lation. ACM SIGGRAPH Trans. Graph. 28, 3, #33, 1–10.

GARLAND, M., AND HECKBERT, P. S. 1997. Surface simplifica-
tion using quadric error metrics. In Proc. SIGGRAPH, 209–216.

GRABLER, F., AGRAWALA, M., SUMNER, R. W., AND PAULY,
M. 2008. Automatic generation of tourist maps. ACM SIG-
GRAPH Trans. Graph. 27, 3, 1–11.

HOU, S., AND RAMANI, K. 2008. Structure-oriented contour
representation and matching for engineering shapes. Computer
Aided Design 40, 1, 94–108.

JULIUS, D., KRAEVOY, V., AND SHEFFER, A. 2005. D-charts:
Quasi-developable mesh segmentation. In Computer Graphics
Forum, Proc. of Eurographics, vol. 24, 581–590.

KOENDERINK, J. J., AND VAN DOORN, A. J. 1979. The inter-
nal representation of solid shape with respect to vision. Journal
Biological Cybernetics 32, 4, 211–216.

KRAEVOY, V., SHEFFER, A., SHAMIR, A., AND COHEN-OR, D.
2008. Non-homogeneous resizing of complex models. ACM
SIGGRAPH Trans. Graph. 27, 5, 1–9.

KRUSKAL, J. B., AND WISH, M. 1978. Multidimensional scaling.
Sage University Paper series on Quantitative Application in the
Social Sciences 07-011.

MERRELL, P., AND MANOCHA, D. 2008. Continuous model syn-
thesis. ACM Trans. Graph. 27, 5, 1–7.

MITRA, N. J., GUIBAS, L., AND PAULY, M. 2006. Partial and
approximate symmetry detection for 3D geometry. In ACM SIG-
GRAPH Trans. Graph., vol. 25, 560–568.

MITRA, N. J., GUIBAS, L., AND PAULY, M. 2007. Symmetriza-
tion. In ACM SIGGRAPH Trans. Graph., vol. 26, #63, 1–8.

NA, K., JUNG, M., LEE, J., AND SONGA, C. G. 2005. Redeeming
valleys and ridges for line-drawing. In Advances in Mulitmedia
Information Processing, 327–338.

NACKMAN, L., AND PIZER, S. 1985. Three-dimensional shape
description using the symmetric axis transform. IEEE Trans. on
PAMI 7, 2, 187–201.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M.
2007. Fibermesh: designing freeform surfaces with 3D curves.
ACM SIGGRAPH Trans. Graph. 26, 3, 41.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P.,
THOLLOT, J., AND SALESIN, D. 2008. Diffusion curves: A
vector representation for smooth-shaded images. In ACM SIG-
GRAPH Trans. Graph., vol. 27.

PAULY, M., MITRA, N. J., WALLNER, J., POTTMANN, H., AND

GUIBAS, L. 2008. Discovering structural regularity in 3D ge-
ometry. ACM SIGGRAPH Trans. Graph. 27, 3, #43, 1–11.

POGGIO, T., TORRE, V., AND KOCH, C. 1985. Computational
vision and regularization theory. Nature 317, 314 – 319.

POPA, T., JULIUS, D., AND SHEFFER, A. 2006. Material-aware
mesh deformations. In SMI, 22.

SHARF, A., LEWINER, T., SHAMIR, A., KOBBELT, L., AND

COHEN-OR, D. 2006. Competing fronts for coarse-to-fine sur-
face reconstruction. Computer Graphics Forum, Proc. of Euro-
graphics 25, 3, 389–398.

SHEFFER, A., LÉVY, B., MOGILNITSKY, M., AND BO-
GOMYAKOV, A. 2005. ABF++: fast and robust angle based
flattening. ACM Trans. Graph. 24, 2, 311–330.

SHEN, C., O’BRIEN, J. F., AND SHEWCHUK, J. R. 2004. Inter-
polating and approximating implicit surfaces from polygon soup.
In ACM SIGGRAPH Trans. Graph., ACM Press, 896–904.

SHEWCHUK, J. 1996. Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator. In Applied Computa-
tional Geometry: Towards Geometric Engineering, vol. 1148.
Springer-Verlag, 203–222.

SORKINE, O., LIPMAN, Y., COHEN-OR, D., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Proc. of Symp. of Geometry Processing, 179–188.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer for
triangle meshes. In ACM SIGGRAPH Trans. Graph., 399–405.

SURAZHSKY, V., AND GOTSMAN, C. 2003. Explicit surface
remeshing. In Proc. of Symp. of Geometry Processing, 17–28.

THEOBALT, C., RÖSSL, C., DE AGUIAR, E., AND SEIDEL, H.-
P. 2007. Animation collage. In Proc. of Symp. of Computer
Animation, 271–280.

TOLEDO, S., CHEN, D., AND ROTKIN, V., 2003.
TAUCS: A library of sparse linear solvers.
http://www.tau.ac.il/ stoledo/taucs/.

VÁRADY, T., AND MARTIN, R. R. 2002. Reverse engineering.
In Handbook of Computer Aided Geometric Design, G. Farin,
J. Hoschek, and M. S. Kim, Eds. Springer, 651–681.

WU, J., AND KOBBELT, L. 2005. Structure recovery via hybrid
variational surface approximation. Computer Graphics Forum,
Proc. of Eurographics 24, 3, 277–284.

YAN, D. M., LIU, Y., AND WANG, W. 2006. Quadric surface ex-
traction by variational shape approximation. In Geometric Mod-
eling and Processing, 73–86.

