
Automated Generation of Interactive 3D Exploded View Diagrams
Wilmot Li1,3 Maneesh Agrawala2 Brian Curless1 David Salesin1,3

1University of Washington 2University of California, Berkeley 3Adobe Systems

Abstract

We present a system for creating and viewing interactive exploded
views of complex 3D models. In our approach, a 3D input model
is organized into an explosion graph that encodes how parts ex-
plode with respect to each other. We present an automatic method
for computing explosion graphs that takes into account part hierar-
chies in the input models and handles common classes of interlock-
ing parts. Our system also includes an interface that allows users to
interactively explore our exploded views using both direct controls
and higher-level interaction modes.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry & Object Modeling; I.3.8 [Computer Graphics]: Applications

Keywords: exploded view illustration, interactive, visualization

1 Introduction

Complex 3D objects, such as mechanical assemblies, electronic de-
vices, and architectural environments, are typically composed of
numerous parts. To convey the internal structure of such objects, il-
lustrators often create exploded views in which parts are separated
(or “exploded”) away from one another to reveal parts of interest.
Well designed exploded views not only expose internal parts, they
also convey the global structure of the depicted object and the lo-
cal spatial relationships between parts. Furthermore, unlike other
illustration techniques that reveal internal parts in situ by remov-
ing or de-emphasizing occluding geometry, such as cutaways and
transparency, exploded views show the details of individual parts.

However, traditional static exploded views have several limitations
that can make it difficult for viewers to browse the part structure
of complex objects and focus on different subsets of parts. Since
most exploded views expose all the parts in an object, they often
suffer from excess visual clutter. As a result, the viewer may have
to carefully inspect the entire illustration to locate parts of interest.
Furthermore, parts that are close to one another may end up far apart
when the object is fully exploded, making it difficult for the viewer
to determine how parts of interest are positioned and oriented with
respect to the rest of the model. Finally, static exploded views do
not allow viewers to explore spatial relationships at different levels
of detail. For instance, a viewer might first want to see how two sub-
assemblies fit together before examining their constituent parts.

In this paper, we present a system for creating and viewing inter-
active 3D exploded views that allow users to explore the spatial
relationships between specific parts of interest. In our approach, we

Figure 1 Exploded view diagram generated by our system. Our system in-
struments 3D models to enable interactive exploded views. This illustration
of a turbine model was automatically computed to expose the user-selected
target part labeled in red.

automatically determine the order and directions in which parts can
explode without violating blocking constraints (i.e., without pass-
ing through each other) and then use this information to implement
high-level viewing tools that expand and collapse parts dynami-
cally. For instance, the user can select target parts of interest from a
list, and the system automatically generates an exploded view that
exposes the targets without showing every other part in the object
(see Figure 1). The user can then directly expand and collapse the
exposed parts along their explosion directions to better see how they
fit together.

Our work makes several contributions. We present an automatic
technique for organizing 3D models into layers of explodable parts
that handles the most common classes of interlocking parts. We also
introduce two algorithms for exposing user-selected target parts,
one that explodes the necessary portions of the model in order to
make the targets visible, and one that combines explosions with
the dynamic cutaway views described by Li et al. [2007]. We also
present several interactive viewing tools that allow the user to di-
rectly explore and browse our exploded views.

2 Related work

There is a large amount of existing work on visualizing the inter-
nal structure of complex 3D objects. Here, we focus on previous
techniques that rearrange rather than remove geometry in order to
expose parts of interest.

A number of digital illustration systems provide tools for creating
exploded views [Adobe Inc. ; Agrawala et al. 2003; Driskill and Co-
hen 1995; Li et al. 2004; Rist et al. 1994]. A limitation of most of
these systems is that the user must manually specify the explosion
directions and blocking relationships for all parts in the model. A
notable exception is the work of Agrawala et al. [2003], whose tech-
niques for generating step-by-step assembly instructions automati-
cally determine the order and directions in which parts can explode
without violating blocking constraints. We present an automatic al-
gorithm for computing exploded views that extends this work to
take into account part hierarchies and to handle the most common
cases in which parts interlock.



{
Drill bit

sub-assembly

Explosion
directions

Figure 2 Explosion conventions. This illustration of a drill incorporates
several explosion conventions described in Section 3.1. Image credit:
Bosch Tools schematic

Most existing systems generate exploded views that are either
meant to be viewed statically [Driskill and Cohen 1995; Rist et al.
1994] or provide limited interactive viewing controls (e.g., a sin-
gle knob for expanding the entire exploded view [Agrawala et al.
2003]). Since a key goal of our system is to enable users to interac-
tively explore complex 3D objects, we provide a richer set of inter-
actions. The viewing interface for our system is similar to the work
of Li et al. [2004], who present viewing tools that allow users to
directly manipulate and search for parts. However, their techniques
are designed for 2.5D illustrations, and thus do not automatically
compute or maintain blocking constraints between parts.

Whereas traditional exploded views typically separate parts along
linear explosion directions, researchers have developed visualiza-
tion techniques that “explode” parts using other types of transfor-
mations and/or deformations. Some of these approaches peel away
layers of parts using non-rigid deformations [Correa et al. 2006;
McGuffin et al. 2003]. Others extend 2D fisheye techniques to ex-
pose and enlarge parts of interest in 3D scenes [Carpendale et al.
1997; LaMar et al. 2001; Raab and Rüger 1996; Wang et al. 2005].
Recent work by Bruckner and Gröller [2006] uses a force-based
model to push occluding parts out of the way. Our work focuses on
the challenges of generating more traditional exploded views.

3 Conventions from traditional illustration

The conventions described below were distilled from a large corpus
of example illustrations taken from technical manuals, instructional
texts on technical illustration, and educational books that focus on
complex mechanical assemblies [Hoyt 1981; Platt and Biesty 1996;
Dennison and Johnson 2003].

3.1 Explosion conventions

When creating exploded views, illustrators carefully choose the di-
rections in which parts should be separated (explosion directions)
and how far parts should be offset from each other based on the
following factors. The example illustration in Figure 2 incorporates
several of these conventions.

Blocking constraints. Parts are exploded away from each other in
unblocked directions. The resulting arrangement of parts helps the
viewer understand local blocking relationships and the relative po-
sitions of parts.

Visibility. The offsets between parts are chosen such that all the
parts of interest are visible.

Compactness. Exploded views often minimize the distance parts
are moved from their original positions to make it easier for the
viewer to mentally reconstruct the model.

Cutaway view
for context

Exploded view
for detail

Separation 
distance

Container

(a) Split container (b) Contextual cutaway

Figure 3 Cutting conventions for exploded views. Image credits: (a)
Stephen Biesty c© Dorling Kindersley; (b) Bill Sherwood’s Differential
Page (www.bilzilla.org)

Canonical explosion directions. Many objects have a canonical co-
ordinate frame that may be defined by a number of factors, includ-
ing symmetry (as in Figure 2), real-world orientation, and domain-
specific conventions. In most exploded views, parts are exploded
only along these canonical axes. Restricting the number of explo-
sion directions makes it easier for the viewer to interpret how each
part in the exploded view has moved from its original position.

Part hierarchy. In many complex models, individual parts are
grouped into sub-assemblies (i.e., collections of parts). To empha-
size how parts are grouped, illustrators often separate higher-level
sub-assemblies from each other before exploding them indepen-
dently, as shown in Figure 2.

3.2 Cutting conventions in exploded views

Illustrators often incorporate cuts in exploded view diagrams. Here,
we describe two common ways in which cuts are used.

Splitting containers. In many complex models, some internal parts
are nested within container parts. To visualize such containment
relationships, illustrators often split containers with a cutting plane
through the centre of the part and then explode the two container
segments away from each other to expose the contained parts (see
Figure 3a). To emphasize that the segments originate from the same
part, the orientation of the plane is chosen to minimize the distance
the segments must be separated to make the internal parts visible.

Contextual cutaways. In some cases, a cutaway view is used to
provide additional context for an exploded view. For example, in
Figure 3b, the cutaway view (bottom) allows the viewer to see how
the sub-assembly of interest is positioned and oriented with respect
to surrounding structures, and the exploded view (top) exposes the
sub-assembly’s constituent parts.

4 Implementing exploded views
The minimum input to our system is a 3D solid model whose in-
dividual parts are represented as separate geometric objects. The
following additional information may be specified to help the sys-
tem generate higher quality exploded views.

Part hierarchy. If the input model is organized into a hierarchy of
sub-assemblies, our system generates hierarchical exploded views
that enable exploration at any level of the part hierarchy.

Explosion directions. By default, our system allows parts to ex-
plode only in directions parallel to the coordinate frame axes of the
entire model. However, a different set of directions may be speci-
fied as part of the input. All of the example illustrations shown here
were generated using the default explosion directions.

Cutaway instrumentation. If the input model is instrumented to
enable cutaway views, as described by Li et al. [2007], our system



a

b

d

e

f

g

h

c

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

(a) Input model (b) Explosion graph

(c) Exploded model

Figure 4 Explosion graph representation.

automatically combines exploded views with contextual cutaways
to expose user-selected sub-assemblies.

In the remainder of this section, we describe a representation for
3D exploded views and then present an automatic technique for
constructing this representation from the 3D input model.

4.1 Exploded view representation

To enable interactive exploded views, our system organizes parts
into a directed acyclic explosion graph, as shown in Figure 4b. The
structure of the graph defines the relative order in which parts can
be exploded without violating blocking constraints. In particular, a
part can explode as long as all of its descendants in the explosion
graph have been moved out of the way. For each part p, the graph
also stores an explosion direction and the current offset of p from
its initial position. We define this initial position with respect to the
largest of the direct parents of p, which encourages smaller parts to
move together with larger parts. To expand and collapse different
portions of the model, the system simply modifies the part offsets.

Since many of the computations described below need to know
whether parts touch, block, or contain each other, our system com-
putes auxiliary data structures that encode these low-level spatial
relationships. Contact and blocking relationships are computed and
stored in the manner described by Agrawala et al. [2003]. For a
given part p, these data structures can be queried to determine all
the parts that touch p and all the parts that block p from moving
in each of the possible explosion directions. We use an approxi-
mate definition of containment that is computed as follows. For a
pair of parts (p1, p2), our system checks whether the convex hull of
p2 is completely inside the convex hull of p1 and if p1 blocks p2
from moving in each of the possible explosion directions. If so, p1
is considered to contain p2. The algorithms for computing contact,
blocking, and containment relationships assume the input model is
two-sided and that parts that are meant to fit together do not inter-
fere with each other (i.e., overlap beyond a small tolerance).

4.2 Constructing the explosion graph

Our basic approach for computing explosion graphs is similar to
the method of Agrawala et al. [2003] for determining assembly se-
quences. We first describe this algorithm before introducing two
important extensions that allow our system to take into account part
hierarchies and handle common classes of interlocking parts.

Sub-assembly C

Sub-assembly A

a

b

c

d

e

f

g

h

{

{
Sub-assembly B

(a) Hierarchical
input model

(b) Hierarchical
explosion graph

Figure 5 Hierarchical explosion graph.

Basic approach

To construct the explosion graph, we use an iterative algorithm that
removes unblocked parts from the model, one at a time, and adds
them to the graph. To begin, all model parts are inserted into a set S
of active parts. At each iteration, the system determines the set of
parts P⊆ S that are unblocked in at least one direction by any other
active part. For each part p ∈ P, the system computes the minimum
distance p would have to move (in one of its unblocked directions)
to escape the bounding box of the active parts in contact with p. The
part pi ∈ P with the minimum escape distance is added to the graph.
An edge is added from every active part that touches pi, and the
direction used to compute the minimum escape distance is stored
as the explosion direction for pi. Finally, pi is removed from S.
The algorithm terminates when no unblocked parts can be removed
from S.

Using part hierarchies

If the model has a part hierarchy, our system computes a nested col-
lection of explosion graphs, as shown in Figure 5. This approach en-
ables sub-assemblies at any level of the part hierarchy to expand and
collapse independently. For each sub-assembly A, the system com-
putes an explosion graph by treating all of the direct children of A
in the part hierarchy (which may themselves be sub-assemblies) as
atomic parts and then applying the algorithm described above.

Handling interlocked parts

In some cases, the parts in the active set may be interlocked such
that no unblocked part can be removed. Here, we describe how our
system handles two common classes of interlocking parts.

Sub-assembly
A

{ Partial
sub-assembly

{

(a) Interlocked (b) Split

Figure 6 Splitting sub-assembly A.

Splitting sub-assemblies
When computing the explosion
graph for a hierarchical input
model, the active set may contain
interlocked sub-assemblies. In
such cases, the system attempts to
split interlocked sub-assemblies
into smaller collections of parts
(see Figure 6). Given an inter-
locked sub-assembly A, the sys-
tem computes the largest partial sub-assembly (i.e., subset of parts
in A) that can be separated from the remaining active parts and
then removes this partial sub-assembly from the set of active parts.
If there is more than one interlocked sub-assembly, the system
computes the largest removable partial sub-assembly for each one.
Amongst these computed partial sub-assemblies, the smallest one
is removed from the set of active parts.



Container c

Splitting
direction

Cutting plane

Cutting plane

Segment c

Segment c

(a) Interlocked

(b) Split

1

2

Figure 7 Splitting container c.

Splitting containers
If any of the interlocked parts is an
atomic container part whose only
blockers are contained parts, the
system splits the container into two
segments that are then removed
from the set of active parts, as
shown in Figure 7. To split a con-
tainer c, the system selects one of
the candidate explosion directions
and then splits c into two segments
c1 and c2 with a cutting plane that
passes through the bounding box
centre of c and whose normal is par-
allel to the chosen explosion direc-
tion. The explosion direction is de-
termined in a view-dependent man-
ner. The system explodes the set of
contained parts P and then, for each
candidate direction, measures how far c1 and c2 would have to sep-
arate in order to completely disocclude and escape the 3D bounding
box of P (see Figure 7b). In accordance with the cutting conventions
described in Section 3.2, the container c is split in the direction that
requires the smallest separation distance.

If some of the parts in P are themselves containers, the system
emphasizes their concentric containment relationships by consid-
ering only explosion directions where the bounding boxes of the
nested containers remain inside the exploded bounding box of c.
If none of the splitting directions satisfy this constraint, the system
chooses the splitting direction that causes the smallest total volume
of nested container bounding boxes to extend beyond the exploded
bounding box of c.

4.3 Precomputation

Since the viewing direction can influence how container parts are
split, explosion graphs may be view-dependent. Recomputing these
data structures on the fly as the viewpoint changes can cause some
lag in the viewing interface. Instead, our system precomputes ex-
plosion graphs from the 26 viewpoints that correspond to the faces,
edges and corners of an axis-aligned cube that is centered at the
model’s bounding box center and is large enough to ensure that the
entire model is visible from each viewpoint. At viewing time, the
system automatically switches to the precomputed explosion graph
closest to the current viewpoint.

5 Viewing interactive exploded views

Once the explosion graph is computed, the model can be explored
in our viewing interface, which provides both direct controls and
higher-level interaction modes to help users find parts of interest
and explore specific portions of the model.

5.1 Animated expand/collapse

Our system allows the user to expand or collapse the entire ex-
ploded view with a single click. Each part is animated to its fully
exploded or collapsed position by updating its current offset. To
ensure that parts do not violate blocking constraints during the ani-
mation, the system expands parts in reverse topological order (i.e.,
outermost to innermost) with respect to the explosion graph. In
other words, the descendants of each part are expanded before the
part itself. For hierarchical models, higher-level (i.e., larger) sub-
assemblies are expanded before lower-level sub-assemblies. The
system collapses parts in the opposite order.

5.2 Direct manipulation

The system also supports the direct manipulation of parts. As the
user drags a part p, the system slides p along its explosion direction
and updates the current offset of p. If the user drags p past its fully
exploded or collapsed position, the system propagates the offset
through the explosion ancestors of p until it encounters a part with
a different explosion direction. Propagating offsets in this manner
allows the user to expand or collapse an entire collection of parts,
just by dragging a single part.

This type of constrained direct manipulation for exploded views
was introduced in the image-based system of Li et al. [2004]. How-
ever, that approach does not automatically compute and enforce
blocking constraints. In our system, blocking constraints are main-
tained in real time during direct manipulation. As the user drags
part p, the system checks for blocking parts amongst the descen-
dants of p in the explosion graph and stops p from moving if such
parts are found. A single click causes the blocking parts to move
out of the way, which allows the user to continue dragging.

5.3 Riffling

The viewing interface also provides a riffling mode, in which parts
are exploded away from adjacent portions of the model as the user
hovers over them with the mouse. When the mouse moves away,
the part that was beneath the mouse returns to its initial position.
If the user clicks, the selected part remains separated as the mouse
moves away. Although similar in feel to existing 3D fisheye view-
ing techniques [LaMar et al. 2001; Sonnet et al. 2004], our riffling
interaction restricts spatial distortions to the computed explosion di-
rections. By riffling through the model, the user can quickly isolate
parts or sub-assemblies and see how various portions of the model
can expand without actually dragging on a part.

5.4 Automatically exposing target parts

In addition to the direct controls described above, the viewing sys-
tem provides a high-level interface for generating exploded views
that expose user-selected target parts. The user just chooses the tar-
gets from a list of parts and the system automatically generates a
labeled exploded view illustration. Parts are smoothly animated to
their new positions to help the user see which portions of the model
have been expanded and collapsed. The text labels are arranged us-
ing the approach described by Ali et al. [2005].

We describe two different techniques for generating illustrations.
By default, the system expands specific portions of the model to
expose the target parts. If the model has been instrumented for cut-
aways (as described by Li et al. [2007]), the system can also gener-
ate illustrations that combine explosions with contextual cutaways.

Exposing target parts with explosions

For non-hierarchical models, the algorithm works as follows. Given
a set of target parts T , the system visits each part p in topological
order with respect to the explosion graph and moves p if necessary
to ensure that no visited target part is occluded by any other visited
part. That is, p is moved to meet the following two conditions:

1. p does not occlude any previously visited target parts.
2. if p ∈ T , p is not occluded by any visited part.

To visually isolate target parts from surrounding parts, the algo-
rithm moves p to meet two additional conditions that ensure each
target is separated from its touching parts, even if those touching
parts do not actually occlude the target:

3. p is not occluded by any visited target part that touches p.
4. if p ∈ T , p does not occlude any visited part that touches p.



p

p p

p

Condition 1 Condition 2 Condition 3 Condition 4

Visibility frustum
for target part

Target
part

Condition 1:
move p s.t. p does not
occlude visited target

Condition 2:
move p s.t. p is not

occluded by visited part

Condition 3:
move p s.t. p is not

occluded by visited target
that touches p 

Condition 4:
move p s.t. p does not

occlude visited part
that touches p 

Figure 8 Conditions for moving part p. For each condition, the target part
is outlined in red. The orange visibility frusta show how unwanted occlu-
sions have been eliminated in each case.

To satisfy these conditions, the system performs the relevant occlu-
sion tests and if necessary, moves p the minimum distance along
its explosion direction such that all unwanted occlusions are elim-
inated (see Figure 8). To successfully eliminate unwanted occlu-
sions, the explosion direction of p must not be exactly parallel to
the viewing direction. If it is parallel, the system informs the user
that one of the targets cannot be exposed from this viewpoint; in
practice, such failure cases rarely arise. If p is moved, its explo-
sion graph descendants are also moved out of the way so that no
blocking constraints are violated. Since the position of a part only
depends on the positions of its explosion graph ancestors, visited
targets are guaranteed to remain visible with respect to visited parts
after each part is processed. Thus, once every part has been pro-
cessed, the resulting exploded view will have no occluded targets.

For hierarchical models, the algorithm starts by processing the
highest level sub-assembly in the part hierarchy. Atomic parts and
sub-assemblies that do not contain any target parts are processed as
described above to eliminate target occlusions. However, when the
algorithm encounters a sub-assembly A that contains one or more
target parts, the algorithm recursively processes the parts within A
to expose these targets. Once this recursive procedure returns, the
system checks whether A (in its new configuration) violates block-
ing constraints with respect to any visited parts or occludes any
visited targets not contained in A. If so, the algorithm iteratively
increases the current offset of A and then repeats the recursive com-
putation for A until no blocking constraints are violated and all vis-
ited targets are visible (see Figure 9). At each iteration, the cur-
rent offset of A is increased by one percent of the bounding box
diagonal for the entire model. The exploded views shown in Fig-
ures 1, 10a, and 10b were generated using this algorithm.

Exposing target sub-assemblies with cutaways and explosions

If the input model is instrumented for cutaways and the user selects
an entire sub-assembly A as a target, the system first generates a cut-
away view that exposes A in context and then explodes A away from
the rest of the model through the cutaway hole. Finally, the system
explodes A itself to expose its constituent parts (see Figure 11). To
generate the cutaway, the system first chooses an explosion direc-
tion for A. Given the viewing direction v, the system chooses the
explosion direction d that allows A to escape the model’s bound-
ing box as quickly as possible and satisfies the constraint d · v < 0.
Using the method of Li et al. [2007], the system creates a cutaway
that is large enough to allow A to explode away from the rest of the
model in direction d.

6 Results

We have used our system to generate exploded views of several
3D models, as shown in Figures 1, 10, 11, 12, and 13. The iPod
model was downloaded from TurboSquid (www.turbosquid.com),
the arm dataset is from a commercially available model of human
anatomy created by Zygote Media (www.zygote.com), and the rest

Target part

Visibility frustum
for target part

{Sub-assembly A

Iteration 1:
move parts within

sub-assembly A

Iteration2:
move sub-assembly A

Iteration 3:
move parts within

sub-assembly A

Figure 9 Exposing a target part within a hierarchical model. To expose the
target part within sub-assembly A, the algorithm iteratively removes target
occlusions within A (iteration 1) and moves A itself to enforce blocking
constraints (iteration 2). When the algorithm converges at iteration 3, the
target is visible and all blocking constraints are satisfied.

of the datasets were obtained from a public repository for CAD
models. We made a few modifications to some of these models be-
fore loading them into our system. To satisfy our input assump-
tions, we scaled two of the transmission parts slightly to eliminate
interferences with adjacent parts. For the turbine, disk brake, and
grip mechanism examples, we omitted some of the original parts
to reduce the preprocessing time required to compute contact and
blocking relationships. The iPod model was poorly segmented, so
we manually grouped some of the geometry into parts before load-
ing it into our system. We created part hierarchies for the disk brake
and transmission models based on the simple part groupings that
came with the models. For the other CAD datasets, we created hi-
erarchies based on the spatial organization and material properties
of the parts. The arm model has no part hierarchy.

To generate the exploded view of the turbine shown in Figure 1, the
system automatically determined how to split two container parts:
the outer shell and the exhaust housing. The exploded views shown
in Figures 1, 11, 10a, and 10b were generated automatically to
expose user-specified target parts. These illustrations clearly show
the parts of interest without exploding unnecessary portions of the
model. In addition, Figure 11 shows how a contextual cutaway
view helps convey the position and orientation of the exploded sub-
assembly with respect to the rest of the model.

Although exploded views are typically used to illustrate manufac-
tured objects, we also tested our system with a musculoskeletal
model of a human arm. Since many of the muscles in the arm twist
around each other where they attach to bones, we manually sec-
tioned off part of the arm where the muscles are less intertwined
and then used this portion of the dataset as the input to our sys-
tem. To emphasize how the muscles are layered from the outside
to the inside of the arm, we also restricted the system to use a sin-
gle explosion direction. From this input, our system automatically
computed the exploded view shown in Figure 12.

Table 1 reports the number of parts and precomputation time for
each dataset. In general, computing contact and blocking relation-
ships dominates the total precomputation cost. We do not report the
cost of computing containment relationships because containment
tests are performed lazily only when the system encounters inter-
locked parts during explosion graph construction. Since the turbine
is the only dataset that includes container parts, its explosion graph
cost includes the time required for containment tests.



(a) iPod (b) Transmission (c) Disk brake

Figure 10 Exploded views generated by our system. The illustrations of the iPod (a) and transmission (b) were automatically generated to expose the
user-selected target parts labeled in red. The sequence of images on the right shows the disk brake model exploding in stages (c).

Model Nparts Tcontact Tblock Tegraph Ttotal
Disk brake 18 440s 195s 0.016s 635s

iPod 19 215s 20s 0.016s 235s
Grip mechanism 20 150s 50s 0.016s 200s

Arm 22 280s 40s 0.016s 320s
Turbine 26 380s 200s 430s 1010s

Carburetor 42 135s 45s 0.16s 180s
Transmission 55 885s 835s 2.5s 1778s

Table 1 Precomputation statistics. For each model, we report the num-
ber of parts Nparts and the time (in seconds) required to compute contacts
Tcontact , blocking relationships Tblock , and explosion graphs Tegraph. The
total precomputation time Ttotal is listed on the right. All timings were per-
formed on a MacBook Pro with a 2.6 GHz Intel Core 2 Duo, 4GB of mem-
ory, and an nVidia GeForce 8600M GT graphics card.

7 Discussion

Although in general our system produces effective exploded view
diagrams for a large class of 3D models, our approach does have
some limitations. As mentioned earlier, the contact, blocking, and
containment computations assume the input model is two-sided and
that parts fit together without interferences. In addition, our algo-
rithm for constructing explosion graphs assumes that all parts can
be separated via rigid linear translations. Thus, the system is not
able to separate atomic parts with certain complex interlocking re-
lationships (e.g., a screw modeled with realistic thread geometry
would have to rotate to be removed). Although not all 3D models
adhere to these input assumptions, many CAD models are specifi-
cally designed to fit together properly without interferences. Fur-
thermore, for performance reasons, CAD programs typically in-
clude part libraries with stylized models of standard screws, bolts
and other fasteners that do not have realistic thread geometry.

Figure 13 illustrates two situations in which our approach can gen-
erate less successful results. Since the blocking algorithm that we
use analyzes the normals of contact faces to determine blocking di-
rections, the computation can be sensitive to noisy or irregular sur-
face geometry where parts touch each other. For example, in Fig-
ure 13a, the top shaft explodes sideways rather than upwards from
the top spring because the complexity of the spring geometry causes
the system to compute the wrong blocking relationship. Figure 13b
shows a case in which splitting a non-container part could help clar-
ify spatial relationships. Although the illustration successfully ex-
poses the target parts, it is not obvious how the exposed parts fit
together within the long hollow body. Splitting the body lengthwise

Figure 11 Exploded view with contextual cutaway. To expose the user-
selected sub-assembly, the system first generates a cutaway view (left) and
then explodes the sub-assembly through the cutaway hole (right).

and then exploding the two halves away from each other would
likely provide better spatial context for the internal parts. However,
since the parts are free to slide out of the body, the system does not
consider the body to be a container part (and thus, does not incor-
porate any cuts).

Finally, although we have shown that our system can generate effec-
tive visualizations of models with up to roughly 50 parts, there are
some challenges involved in scaling our approach to handle signifi-
cantly more complex models. First, exposing an internal part might
require exploding many blocking parts, which could result in visual
clutter. We believe our approach could be extended with level-of-
detail controls to reduce the amount of clutter due to exploded parts.
In addition, the cost of computing contact, blocking, and contain-
ment relationships puts a practical limit on the complexity of the in-
put geometry. Our current implementation incorporates simple spa-
tial data structures to accelerate these computations, but for highly
complex input models, more efficient algorithms would likely be
necessary to avoid prohibitively large precomputation times.

8 Conclusions and future work

In this paper, we have presented techniques for creating and viewing
interactive exploded view illustrations of 3D models composed of
many distinct parts. Our contributions include an automatic method
for decomposing models into explodable layers and algorithms for
generating dynamic exploded views that expose user-selected tar-
get parts. Our results demonstrate that our approach can be used to
create effective interactive exploded views for a variety of models.



Figure 12 Exploded view of arm. To create this visualization, we sectioned
off a portion of the arm to explode. Within this portion, our system auto-
matically computed the layering relationships between the muscles.

We conclude by mentioning a few areas for future work:

Inferring parts to expose. Our system allows users to directly spec-
ify target parts to expose. In some cases, showing additional parts
can provide more context for the specific parts of interest. It would
be interesting to explore techniques that automatically infer which
additional parts to expose based on the user-selected targets.

Continuous measure of blocking. It is difficult to detect the cor-
rect blocking relationships for 3D models that contain interfering
parts. One potential approach for handling such models would be
to construct exploded views based on some continuous measure of
the “amount” of blocking between parts.

Automatic guidelines. Guidelines can be useful for clarifying
how exploded parts fit back together. Although some previous
work [Agrawala et al. 2003] has been done on computing guideline
placement automatically, further investigation is required to iden-
tify and implement all of the conventions that illustrators use to
create effective guidelines.

Acknowledgments

The authors want to thank Sharon Lin for her work on the label
layout component of the system. We also thank François Chrétien,
Doug Johnson, and Dave Kasik for their feedback on the use of
CAD technology in industry. This work was supported by NSF
grants CCF-0643552 and EIA-0321235, the Alfred P. Sloan Foun-
dation, the University of Washington Animation Research Labs, the
Washington Research Foundation, Adobe, Microsoft, and Pixar.

References

ADOBE INC. Acrobat 3D.

AGRAWALA, M., PHAN, D., HEISER, J., HAYMAKER, J.,
KLINGNER, J., HANRAHAN, P., AND TVERSKY, B. 2003.
Designing effective step-by-step assembly instructions. ACM
Transactions on Graphics 22, 3 (July), 828–837.

ALI, K., HARTMANN, K., AND STROTHOTTE, T. 2005. Label
layout for interactive 3D illustrations. In WCSG Journal, 1–8.

BRUCKNER, S., AND GROLLER, M. 2006. Exploded views for
volume data. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (Sept./Oct.), 1077–1084.

CARPENDALE, M. S. T., COWPERTHWAITE, D. J., AND FRAC-
CHIA, F. D. 1997. Extending distortion viewing from 2D to

(a) Carburetor (b) Grip mechanism

Figure 13 Less successful results. Due to the complexity of the spring ge-
ometry, the system computes the wrong blocking relationship for the top
shaft in the carburetor model (a). In the exploded view of the grip mecha-
nism (b), it may be hard for the viewer to understand how the highlighted
target parts fit together inside of the long hollow body.

3D. IEEE Computer Graphics and Applications: Special Issue
on Information Visualization 17, 4, 42–51.

CORREA, C., SILVER, D., AND CHEN, M. 2006. Feature aligned
volume manipulation for illustration and visualization. IEEE
Transactions on Visualization and Computer Graphics 12, 5
(Sept./Oct.), 1069–1076.

DENNISON, J. A., AND JOHNSON, C. D. 2003. Technical Illus-
tration: Techniques and Applications. Goodheart-Wilcox.

DRISKILL, E., AND COHEN, E. 1995. Interactive design, analysis
and illustration of assemblies. In Proceedings of the Symposium
on Interactive 3D Graphics.

HOYT, W. A. 1981. Complete Car Care Manual. Reader’s Digest.

LAMAR, E., HAMANN, B., AND JOY, K. I. 2001. A magnifi-
cation lens for interactive volume visualization. In 9th Pacific
Conference on Computer Graphics and Applications, 223–232.

LI, W., AGRAWALA, M., AND SALESIN, D. H. 2004. Interactive
image-based exploded view diagrams. In Proceedings of Graph-
ics Interface 04.

LI, W., RITTER, L., AGRAWALA, M., CURLESS, B., AND
SALESIN, D. 2007. Interactive cutaway illustrations of com-
plex 3D models. ACM Transactions on Graphics 26, 3 (July),
31:1–31:11.

MCGUFFIN, M. J., TANCAU, L., AND BALAKRISHNAN, R. 2003.
Using deformations for browsing volumetric data. In Proceed-
ings of IEEE Visualization 2003, 401–408.

PLATT, R., AND BIESTY, S. 1996. Stephen Biesty’s Incredible
Explosions. DK Children.

RAAB, A., AND RÜGER, M. 1996. 3D-ZOOM: interactive visu-
alization of structures and relations in complex graphics. In 3D
image analysis and synthesis, 87–93.

RIST, R., KRÜGER, A., SCHNEIDER, G., AND ZIMMERMANN,
D. 1994. AWI: A workbench for semi-automated illustration
design. In Proceedings of Advanced Visual Interfaces 94.

SONNET, H., CARPENDALE, S., AND STROTHOTTE, T. 2004.
Integrating expanding annotations with a 3D explosion probe. In
Proceedings of ACM AVI 2004, 63–70.

WANG, L., ZHAO, Y., MUELLER, K., AND KAUFMAN, A. E.
2005. The magic volume lens: An interactive focus+context
technique for volume rendering. In Proceedings of IEEE Visual-
ization 2005, 367–374.


