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Abstract

Detecting approximate symmetries of parts of a model is important when attempting to determine the geometrical design intent of approximate
boundary-representation (B-rep) solid models produced e.g. by reverse engineering systems. For example, such detected symmetries may be
enforced exactly on the model to improve its shape, to simplify its analysis, or to constrain it during editing. We give an algorithm to detect
local approximate symmetries in a discrete point set derived from a B-rep model: the output comprises the model’s potential local symmetries
at various automatically detected tolerance levels. Non-trivial symmetries of subsets of the point set are found as unambiguous permutation
cycles, i.e. vertices of an approximately regular polygon or an anti-prism, which are sufficiently separate from other points in the point set. The
symmetries are detected using a rigorous, tolerance-controlled, incremental approach, which expands symmetry seed sets by one point at a time.
Our symmetry cycle detection approach only depends on inter-point distances. The algorithm takes time O(n*) where n is the number of input

points. Results produced by our algorithm are demonstrated using a variety of examples.
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1. Introduction

Many manufactured objects exhibit global and local
symmetries as a feature of their design or function, or for
ease of manufacturing or analysis [1]. Furthermore, symmetry
is also common in natural shapes [2] and designers prefer
symmetrical shapes for reasons of aesthetics and simplicity [3].
This is particularly true for engineering objects conventionally
represented by boundary-representation (B-rep) models, such
as the one shown in Fig. 1.

While such symmetries may be explicitly represented along
with a B-rep model, often they are not explicitly given,
for example, where a model has been created by reverse
engineering, or where a model has been transferred from
one CAD system into another. Furthermore, in cases like
these, the symmetries are often not exactly present, but only
approximately present, due to measurement errors in the
scanning process, and approximation and numerical errors in
model reconstruction during reverse engineering [4]. Different
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CAD systems often use different tolerances [5], and what
is symmetric in one CAD system may not be symmetric in
another.

Explicit detection of symmetries in such geometrical models
has many potential uses: for example, to improve the shape
of a model by enforcing intended symmetries, to enable faster
analysis, to place constraints on editing operations, and so on.
We are thus interested in detecting the symmetries intended by
a designer in a B-rep model, but which are only approximately
present.

Our previous methods for geometric design intent detec-
tion can detect global approximate symmetries [6], approxi-
mate congruencies between sub-parts [7], and other local reg-
ularities, e.g. parallel and orthogonal planes [8]. This paper
considers a different issue not solved by such approaches:
finding local approximate symmetries in a B-rep model. For
example, the model in Fig. 1 has cylindrical holes arranged with
an eight-fold rotational symmetry, and slots with a sixteen-fold
rotational symmetry.

To detect local symmetries, we use similar ideas to those
used for global symmetric detection in [6,7]. As in these
papers, we extract characteristic points from a solid model,
which when used with connectivity and face type information,
are sufficient to determine its symmetry, should symmetry
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Fig. 1. A B-rep model with many local symmetries.

be present. Essentially, these points are the vertices of the
B-rep model, together with other special points needed to
characterize curved edges and faces. For example, a straight
line is characterized by its two end points, whereas for an edge
known to be a circular arc, using one other point taken to be the
mid-point of the arc is sufficient to both fix its radius, and to
determine which of the two arcs between those end points we
want. A discussion of how to select these characteristic points
is given in [7].

Note, then, that we start from a very different point of view
to symmetry approaches used in image processing, e.g. [9-12],
and mesh processing [13—15]. These are designed to work on
dense point data, where the point distributions are far more
important than locations of individual points. Generally, their
aim is to detect one or a few dominant approximate symmetries
by partial matching of images or meshes under user selected
tolerances. In contrast, we wish to find symmetries in B-rep
models that are intended to be exact, but are approximate due
to their origins. We furthermore wish to generate all possible
subset symmetries, where any one may belong to quite a small
part of the model (such as a hole, or row of slots in a complex
model). We use as a basis a carefully selected and generated
point set from a B-rep model, not a dense point set covering
the whole surface of the B-rep model. Our algorithm thus
processes far fewer points than a mesh symmetry algorithm;
in our algorithm, both the position, and existence, of every
individual point is significant. However, we speculate that it
might be possible to apply our method to detecting symmetries
of meshes if a suitable means could be found for defining and
extracting carefully chosen key feature points.

In summary, the main novel contribution of the paper
is a rigorous definition of and an algorithm to detect local
approximate symmetries possessed by subsets of a set of
points in 2D or 3D. By letting this set of points be carefully
chosen characteristic points extracted from a B-rep model as
described above, these approximate point subset symmetries in
turn directly correspond to approximate local symmetries of an
approximate B-rep model. Finding approximately symmetrical
subsets of a point set is an important topic not addressed
by previous work. Here we are considering points which the

symmetry maps in a one-to-one fashion onto each other. Mitra
et al. [15] have considered the different problem of approximate
maps of dense point clouds representing part of the surface of
an object onto other dense point clouds from the same object—
but these are not pointwise maps. Other related work is later
discussed in Section 2.

The detected symmetries include rotational symmetries and
rotation-reflection symmetries, i.e. vertices of an approximately
regular polygon or an anti-prism. Each symmetry is represented
as an unambiguous (permutation) cycle on that subset of points.
Each symmetry corresponds to a transformation which maps a
subset of the point set onto itself. As we assume that the input
model is approximate, the subset may only map approximately
onto itself under the symmetry. A (permutation) cycle is a
subset of a permutation whose elements trade places with
one another. It describes the orbit of a single point under
consecutive application of a symmetry transformation (in the
exact case), specifically under rotation and rotation-reflection.
By unambiguous cycles we mean that the points involved in
the subset are sufficiently far away from other points in the
input point set, so that there is no chance of confusion as to
which point maps to which under the symmetry transformation,
given its approximate nature. These ideas are explained more
carefully and rigorously in Section 3.

Note that in this paper we only concern ourselves with
finding each individual cycle separately. Thus, given a regular
prism, we will output one cycle corresponding to the vertices
at one end, and a separate cycle for the vertices at the
other end—even though (at least in the exact case) these two
point subsets share the same symmetry transformation. Clearly,
extracting higher level information is important: merging the
cycles found by the method given in this paper will be
addressed in future work. In the following, we shall always
mean a cycle when we talk about a symmetry, unless we say
otherwise.

Before we go further, we should just mention a special
case. Clearly, every pair of points trivially defines an exact
two-fold rotational symmetry, a reflection symmetry, and an
inversion symmetry cycle. These cycles can be trivially ‘found’
by simply enumerating every pair of points, and so are
not further discussed here. Thus, we consider how to find
rotational symmetry cycles, i.e. vertices of an approximately
regular polygon, and rotation-reflection symmetries, where
the symmetry transformation comprises reflection in a plane
followed by rotation about an axis perpendicular to that plane,
i.e. vertices of an anti-prism.

There are seven elementary symmetry transformations:
reflection, inversion, translation, rotation, glide reflection,
rotation reflection and screw translation [16]. However,
discounting inversion and reflection, only two other kinds —
rotation and rotation-reflection — have finite cycles (i.e. if we
apply the symmetry operation enough times, the points go back
to their original permutation). Translational symmetries, and
glide reflections and screw translations, which are combinations
of translation respectively with reflection and rotation, must
always be incomplete for finitely many points. Handling
incomplete symmetries, both of this kind, and e.g. incomplete
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rotational symmetries, is not straightforward and will also be
addressed in future work.

Although exact symmetry detection has been widely studied,
e.g. [17,18], these methods cannot be directly extended to
approximate symmetries by simply replacing tests for equality
by tests for approximate equality. Algorithms for exact
symmetry detection rely on making /ocal decisions about which
elements match under symmetry. For approximate symmetries,
such decisions must be based on global properties. Point
matching is no longer a Boolean property—points match to a
certain degree, and in general, multiple potential matches have
to be considered, increasing algorithmic complexity [6].

We build on the basic idea of Brass” work on detecting exact
subset symmetries [18]. For exact n-fold rotational symmetries,
given three ordered points forming an isosceles triangle, these
uniquely determine a rotation mapping point one to point two,
and point two to point three. Under recursive application of the
map, we get point four and so on, expanding the initial seed
set. During the expansion process, if a point is finally mapped
back onto the first point, the expansion stops and the result is a
symmetric regular polygon. While it is trivial to determine these
point mappings in the exact case, for approximate symmetries
the points do not map exactly onto each other, but are only
matched within a certain tolerance. Thus it becomes nontrivial
to determine them.

Detecting local approximate symmetries raises further
issues—which point subsets should be examined for symmetry,
and under what tolerance they display symmetry. These
two issues depend on each other. Our approach allows us
to automatically determine tolerances at which approximate
symmetries of subsets are present, and does not require
predefined tolerance bounds as input (also see [6]). Fixing
some coarsely chosen upper limit to acceptable tolerances
can help to reduce the number of unwanted approximate
symmetries detected. However, it cannot directly help in finding
local approximate symmetries, where appropriate tolerances
must be derived from the point set itself. Choosing tolerances
appropriate to the data is important, as typically for engineering
components, quite different tolerances are used for different
features of the same component.

Downstream processes may typically wish to merge the
cycles found, or in other cases choose between them. We
note that the tolerance information output by our method is
important for any such processes which use the symmetries,
e.g. to beautify reverse engineered models by solving
geometrical constraint systems [8,19] or other applications for
further selection between these detected symmetries [20]. After
symmetries at certain tolerances have been detected it is simpler
to select suitable symmetries at suitable tolerances.

Based on the definition of global approximate symmetries
given in [6], we introduce in Section 3 a definition of ap-
proximate subset symmetries, or unambiguous cycles, lead-
ing to clear conditions under which approximate symmetries
can be said to be present. Using this definition, we then
give an algorithm for detecting approximate symmetries, by
selecting symmetry seed sets and expanding them point by

point. The initial seed sets are approximate isosceles trian-
gles. Each detected cycle that is sufficiently separate from other
points in the input point set represents an approximate subset
symmetry.

We next discuss in more detail how our ideas are related to
earlier work on exact and approximate symmetry detection. Our
definition of approximate symmetry is given in Section 3. An
overview of our algorithm for finding approximate symmetries
in 2D is provided in Section 4, with further details in Section 5.
Extension of the algorithm to 3D symmetry detection is
given in Section 6. The time complexity of our symmetry
detection algorithm is analysed in Section 7. Practical examples
are discussed in Section 8, and conclusions are drawn
in Section 9.

2. Previous work

We now discuss previous work on detection of exact and
approximate symmetry. Symmetry detection is used to refer
to two slightly different problems. Sometimes, it refers to
finding the symmetry transformation (if any) under which a
certain point set is mapped onto itself. Alternatively, it can
mean finding a symmetrical set which is close (according to
some similarity measure) to a set of points; in this case the
transformation itself need not be explicitly found. Symmetry
detection algorithms can be further classified as detecting
either global or subset (local) symmetries, and as trying to
find exact or approximate symmetries. Global symmetries
involve mapping the whole set onto itself, whereas subset
symmetries only map a subset onto itself. The latter are harder
to compute as the subset in addition to the symmetry has to
be identified. Exact symmetries preserve the point set exactly
under transformation, whereas approximate symmetries map
the point set onto itself within a tolerance. Different definitions
for approximate symmetry exist depending on how matching
under a tolerance is defined. This paper considers approximate
subset symmetries, for sets of discrete points. As noted earlier,
such sets suffice to identify local symmetries in B-rep models.

Algorithms for detecting exact, global symmetries of point
sets and objects have been widely studied, e.g. [17,21-24].
Exact symmetry detection for planar collections of points and
lines can be done in O (n log n) time [21]. Detecting symmetries
of 3D point and line configurations, and polyhedra, has the
same complexity [17,21]. The basic idea used is to sort the
points according to distances from the centroid, and then to
check how many there are at each distance, which essentially
reduces the complexity of the problem to that of a sorting
algorithm. Brass and Knauer [24] recently extended the idea
to general 3D objects.

There are relatively few results on exact symmetries
of subsets. Brass [18] detects rotational symmetries by
finding rotational mappings based on isosceles triangles, and
combines them into symmetrical subsets efficiently using a
tree data structure. Mirror symmetries can easily be detected
by combining mirror planes generated by point pairs. This
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work was improved by Aloupis [25] using a randomised
approach. Another approach to finding subset symmetries
in solid models was presented by Tate [26]. It is based
on matching pairs of edge loops and finding the isometries
that relate them. The isometries are then grouped according
to similarity. Their implementation finds mirror planes of
symmetry.

Most previous work on approximate symmetries has
considered global approximate symmetries, using various
definitions of approximate symmetry. Iwanowski [27] pointed
out that testing approximate symmetry in the plane is NP-hard
if approximate symmetry is defined in terms of the existence
of an exactly symmetrical object near to the approximate
object. Alternatively, approximate symmetry may be defined
as existence of a transformation mapping the point set
approximately onto itself within a certain tolerance; this yields
high-order polynomial time algorithms [22] for symmetry
detection. Mills et al. [6] give a method for approximate
global symmetry detection that combines the combinatorial
and geometrical nature of symmetries, resulting in a low-
order polynomial time algorithm. A completely different
approach to detecting global approximate symmetries is to
define an asymmetry measure [28,29]. Zabrodski [28] defines
this as the minimum, taken over all exactly symmetric shapes
with the desired symmetry, of the mean squared distance
between points of the original shape and the symmetrical
shape.

Finally, we turn to the case of approximate symmetries
of subsets of points. To our knowledge, no previous work
addresses this topic. (We again emphasize that we seek
one-to-one correspondences between points, so our work
is quite different from previous work on detecting local
symmetries in images e.g. [9,12] or meshes [14,15] which
use dense sets of points). The difficulties of the problem
lie in choosing point subsets for consideration, inferring the
symmetry transformations, and automatically determining the
tolerance for each symmetry; furthermore, all of these issues
depend on each other. The requirement to find all potential
approximate symmetries at appropriate tolerances increases the
difficulty of the problem. We employ a similar definition of
approximate symmetry to Mills et al. [6], but modify it so
that it can find subsets, based on the ideas for finding exact
symmetrical subsets given by Brass [18].

3. Approximate symmetries of point subsets

Exact symmetry is a well-defined concept and there are
efficient algorithms to detect it. Approximate symmetry is
harder to define—there is more than one way to do so,
and to some extent, the most appropriate definition depends
on the particular application. In this section, we give a
rigorous formalization of our particular concept of approximate
symmetry for use in design intent detection.

Throughout this paper we use the following notation:

E4 d-dimensional Euclidean space (here, d = 2
or 3).

|P — Q| Euclidean distance between points P, Q € E4.

D(P) The set of distances {||P — Q|| : P, Q € P} for a
set P of points.

|P| The number of elements in a set P.

L7 The largest integer not greater than a real number
r.

a=¢b Equality of real numbers within tolerance €:
la —b| <e.

a mod n Remainder of division of integer a by integer n

except when the remainder is O whereupon we set
it to n as we use indices starting from 1.

Assume that a point set P has an exact, global symmetry.
In B4 this symmetry T of P is fully determined by a mapping
from d + 1 points Sp C P onto another d + 1 points S; C P.
The images of the remaining points P \ Sy are fully determined
by mapping their distances from the points in Sy onto the
corresponding distances from the points in Sj.

This mapping induces a permutation on the points in P.
In the exact case these distances match exactly and uniquely,
which allows for efficient symmetry detection algorithms that
extend partial matches to complete ones. In the approximate
case, however, T maps points and their distances only
approximately onto each other, and care is needed to find a
globally consistent matching between points. Just taking the
best match locally is insufficient, and in general, an expensive
backtracking approach is required. We have carefully chosen
the definition below for approximate symmetry so that it allows
an algorithm to be devised based on expanding local matches
without backtracking, enabling us to keep the efficiency of the
approach used in [6]. Approximate symmetry of a point set is
defined in terms of a permutation of the points which maps
distances between the points approximately onto each other:

Definition 1 (Approximate Symmetry). Let P C E¢ be a point
set. We call a pair (¢, o), for which € > 0 and o is a permutation
on P, an approximate symmetry of P if =, is an equivalence
relation on D(P), and |P — Q| =c |lo(P) — o(Q)| for all
P,QeP.

Note that an approximate symmetry with ¢ = 0 yields an exact
symmetry.

We now explain the ideas behind this definition. The
condition that =, forms an equivalence relation means that
the set D(P) of all distances between the points P is grouped
into pairwise distinct subsets of approximately equal distances
(equivalence classes). This partly recovers the exact matching
property of exact symmetries. In the exact case, given the
images P’ of d + 1 points P, we can determine the other
points and their images by the distances from P and P’. In the
approximate case with an arbitrary tolerance the distances only
match approximately and hence do not uniquely determine the
points. By requiring that =, forms an equivalence relation we
avoid this situation: if two points have approximately (within
€) the same distances from a set of d 4+ 1 points in P they
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Fig. 2. Some symmetries of a hexagon.

Fig. 3. Unambiguous symmetry.

are effectively identified with each other and treated as having
the same approximate position. But note that this does not hold
true for points not in P, which means for subsets we have to
introduce further conditions involving the complete point set.

For example, consider a 2D point set P = {Py : 1 <
k < 6} forming an approximate hexagon. Fig. 2 shows
three of its symmetries described by permutations: the mirror
symmetry o1 : (P1, Ps), (P2, Ps), (P3, P4) in Fig. 2(a); the
three-fold rotational symmetry o2 : (Py, P3, Ps), (P2, P4, Pg)
in Fig. 2(b); and the six-fold rotational symmetry o3
(P1, Py, P3, P4, Ps, Pg) in Fig. 2(c). If we were detecting
subset symmetries in the case in which P were a subset of
a larger point set, we would, however, only be interested
in detecting the six-fold symmetry o3 for P. This is the
only symmetry whose permutation consists of a single cycle.
The other permutations would be found at other times when
considering different subsets of the complete, larger point set.
Thus, our algorithm detects symmetries in terms of single
cycles as these form the elementary symmetry structures of a
point set. In 2D the cycles correspond to the ordered vertices
of regular polygons, while in 3D they may in addition be the
ordered alternate vertices taken from opposite ends of anti-
prisms as further discussed in Section 6.2.

Following Definition 1, a tolerance interval Epjh(C) <
€ < Emax(C) exists for € at which a symmetry cycle C is
present. These are called the minimal and maximal tolerances
of C. Enin(C) ensures equality of all the distances in the same
distance class—if En,in(C) were too small, various distances
would no longer be considered equal, and the approximate
symmetry would no longer exist. En,x(C) separates different
classes—if Emax(C) were too large, the approximate symmetry
would map a given point onto more than one possibility, and the
approximate symmetry would no longer be unambiguous. We
require that Enin(C) < Emax(C) for C to be a proper cycle—
see Theorem 1. Further discussion of this issue is given in
Section 5.

For symmetries of point subsets in an input point set, we
have to consider another issue, to specify the subsets we are
interested in. Consider, for example in Fig. 3, P, P, Ps,
P4 construct an exact square and Ps is a point close to Pj.

Fig. 4. Illustration of the expansion process.

Suppose Pi, ..., Ps form an input point set P. They yield
two subset symmetries given by the permutation cycles C;
(P1, Py, P3, Py), C» (P1, P, P3, Ps) at proper tolerances
€1, €2 respectively, where €] < €. However, C; is ambiguous
as Ps can be replaced by P4 without changing the symmetry
transformation at tolerance €;. We must avoid such cycles
containing ambiguous points if the description of a symmetry
by a cycle is to be unique. The following definition gives a
condition for when a given cycle C belonging to a point set
‘P is symmetric and sufficiently separate from the other points
in P to avoid ambiguity: no point in P \ C can replace a
point in C such that C is still symmetric at the same tolerance.
As an approximate symmetry can be present at a range of
tolerance values, we must enforce this requirement at the
minimal tolerance E iy (C).

Definition 2 (Unambiguous Cycle). Let C be a cycle formed by
a subset of points from a point set P at the minimal tolerance
e* = Enin(C). We say that C is unambiguous with respect to P
if C stops being a cycle at tolerance e* if we replace any point

in C by any pointin P \ C.

Finally, we can now state what our algorithm computes:
given a point set P C E?, d = 2 or d = 3, our algorithm
computes each of its unambiguous cycles Ci together with their
minimal tolerance € = Emin(Cr), i.e. (Cr, €x), 1 <k <r.

4. Algorithm overview

In this section we provide an overview of our algorithm for
detecting approximate symmetries of a 2D point subset, each
represented as an unambiguous cycle. Further 2D algorithm
details are given in Section 5. The algorithm for 3D point sets
is similar, and is further described in Section 6.

The basic idea behind our symmetry detection algorithm
comes from the following ideas in the exact case. Let Py, P>, P3
describe an isosceles triangle in which || P} — P2|| = || P — P3|
and | P; — P3| = ||P1 — P2|| (see Fig. 4). These three points
define a rotation, under a (partial) permutation that P; moves
to P», and P> moves to P3; this rotation potentially represents
the symmetry of a regular polygon. Suppose we now look for
another point P4 to extend this symmetry such that the rotation
maps P; onto P4. We can find P4 by noting that P4 must satisfy
P4 — P3|l = |P> — Pi|| and || P4 — P2|| = [|P3 — Pi||. These
constraints correspond to two possible locations for P4, and
only the one lying on the same side of the line P, P3 as Pp is
valid and chosen. (In the approximate case we have to consider
both as explained below.) To proceed further, we can find
the next expansion point Ps by replacing (P, P2, P3, P4) by
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Fig. 5. 2D approximate symmetry (unambiguous cycle) detection algorithm.

(P>, P3, P4, Ps) in the above process. Applying this expansion
process iteratively will eventually lead to a cycle corresponding
to the ordered vertices of a regular polygon if it is present.

However, in the approximate case, determining the points
involved in a symmetry using an expansion process is more
complicated, due to the difficulty in determining whether two
distances are approximately the same, both because of the need
to choose a tolerance, and due to the possible accumulation of
errors. To avoid accumulating expansion errors, we add further
constraints to determine the expansion point. For example, in
order to determine the expansion point Ps from the seed set
(P1, P2, P3, Py) in Fig. 4, instead of simply requiring at some
tolerance € that || Ps— P4 || =¢ || Ps— P3|| and | Ps— P3|| =¢ || P4—
P> ||, we require the equality of all the distances within the same
distance group, i.e. ||Ps — Pa||=c || Px+1 — Prll, k = 1,2, 3,
I1Ps — P3|l =¢ || P2 — Prll. k= 1,2 and || Ps — Pa| = [| P4 —
P1||. Note here that Ps is uniquely determined by these distance
equalities without any further conditions, at least in the exact
case.

Note that we do not base our approximate symmetry
detection algorithm on a predetermined tolerance, but instead,
we find suitable tolerances as the algorithm proceeds. The ideas
are based on three theorems discussed later in the paper. We
use Theorem 1 to detect potential expansion points: if a point
P is to be a valid expansion point for seed set S, the following
relationship must be satisfied: Epin(SU{P}) < Emax(SU{P});
Enin(S U {P}) and Epnax(S U {P}) are computed during the
point expansion process from inter-point distances as explained
in detail in Section 5.2.2. However, more than one potential
expansion point may exist in the input point set. We choose
the one which minimizes Epi, (S U {P}). This strategy tries to
avoid adding any points that violate the unambiguity condition

while also ensuring that we always find any expansion point
which exists. Taking this idea further, a condition under which
a complete cycle can be found is provided in Theorem 2. While
we always choose the expansion point which minimizes the
tolerance, this tolerance may increase as further points are
added during the expansion process. Hence, we still need to
check the unambiguity condition for the final detected cycle
before it is output; doing so is based on Theorem 3.

The algorithm itself, for detecting approximate symmetries
expressed as unambiguous cycles, is listed in Fig. 5. It takes as
input a set of distinct 2D points P and outputs all unambiguous
cycles as pairs (Ck, €x) where Cy lists the points in order
forming a cycle, and ¢ is the minimal tolerance at which C
forms an unambiguous cycle. We assume no two input points
are at the same location.

In Line 1 the output list of cycles 7 is initialized as
empty. In Line 2 the distances between all pairs of points are
precomputed for efficiency. Lines 3—17 form an outer loop over
all triples of points in P. These triples are seeds for the point
expansion process, some of which will lead to unambiguous
cycles. Each initial seed set forms an approximate, rather than
exact, isosceles triangle. The triple is put into an ordered list
(P1, P, P3) such that P; maps to P,, and P, to P3, and
[Py — P3|l = [[P2 — P3ll = [Pt — P|l. We now consider
expanding a cycle starting from P;, P», P3 (Line 3). Note that
the same symmetry can be found starting with several different
triples. Hence, we further check in Line 4 whether the triple is
already a contiguous part of a previously detected cycle and if
S0, ignore it.

A given point triple may form an approximately regular
triangle, or may be expanded to a regular polygon with more
than 3 sides, or even both. We consider these cases respectively
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in Lines 5-7 and Lines 8-16. (Note that deciding which of
these different cases is actually present in the model is not
considered in this paper, but left as a problem for a downstream
process, guided by some higher level information: see [8]; here
we only detect what is unambiguously present in the model
data). We first check, as a special case, if the three points
form an approximately regular triangle, and output them if so
(Lines 5-7). How this is done is described in Section 5.3.1.

We next check whether an unambiguous cycle containing
more than three points can be generated from the triple
(Lines 8-16). To find the correct expansion point from a set
S, first a set M of potential expansion points is determined
(Line 9). As explained above, each such point P must satisfy
Enin(S U {P}) < Enax(S U {P}). If any such points exist,
i.e. M is not empty, we choose the point which minimizes
the tolerance required for the potential approximate symmetry
(Line 11) and add it to S (Line 12). Expansion from the
initial three points is handled slightly differently from further
expansion points, as there are two possible locations for which
the distances between the points match approximately, and
they both have to be considered, as we explain in detail in
Section 5.3.2; this is omitted from the algorithm listing for
simplicity. Expansion stops when either no more expansion
points can be found (Line 10) or a complete cycle has been
detected (Line 13). If a cycle is detected, we must further verify
that it satisfies the unambiguity condition, i.e. that there is no
other point close to some point in S which can replace it and
still give the same symmetry at the same tolerance (Line 14). If
verified, we accept this detected cycle as an unambiguous cycle
(Line 15).

5. Unambiguous cycles of 2D point sets

We now give further details of our 2D unambiguous cycle
detection algorithm outlined in Section 4. We first explore the
basic properties of the point expansion approach in Section 5.1.
Using these ideas, we then show in Section 5.2 how to select
suitable expansion points, compute the associated tolerance
ranges, and verify whether an expanded cycle is unambiguous.
Section 5.3 considers conditions on the valid initial seed sets
for point expansion and how to expand them in the special case
of the fourth point.

5.1. Tolerance conditions for symmetry seed set expansion

In this section we derive the conditions imposing limits on
the tolerances under which a set S expanded by a point P may
still lead to an approximate symmetry. We also give theorems
stating when an expansion gives a cycle and when the cycle
is unambiguous. We obtain these by analysing what conditions
are to be fulfilled for a list of consecutive points if they form a
cycle.

Let C C E? be a cycle of ¢ = |C| points at tolerance €. The
cycle C = {Py : 1 < k < c} can be seen as generated by a
permutation that maps P; to Py, satisfying for each 1 < r <
c—1

| Pr — Pgsrymod el =e lPk — Ptktr) mod el
for1 <l k <ec. (1)

Thus, all the distances between point pairs (P;, Py) with [ —
k = rorl —k = ¢ — r are approximately the same at
tolerance €. Moreover, as =, is an equivalence relation on the
set D(C) of all distances between the points in C, each group of
distances between point pairs with index differences r or ¢ — r
corresponds to one equivalence class. Therefore the number of
distance equivalence classes is [c¢/2].

The equivalence classes play an essential role in the
approximate symmetry definition, Definition 1, and enforce
constraints on the tolerances allowed for a symmetrical set. In
the following, we apply them to infer what condition a list of
consecutive points should satisfy if it lies in a cycle.

Consider a subset S of s = |S| consecutive points
Pry1, Prsa, ..., Py from C, with indices taken modulo c.
Clearly, Eq. (1) still holds for the distances between points in
S and groups these in the same way as for C. We call a set
with such properties a (symmetry) seed set at tolerance €. The
fact that the number of different distance classes in D(C) is | § |
yields that the number of different distance classes in D(S) is

g(s, ¢) = min (s -1, L%J) . 2)

Then for each 1 < r < g(s, ¢) we get a distance class

G =P — Peyrll : 1 <k <s—r}
Ul Pe — Pigr—cll: 1 =k <s+c—rh 3)

Let

D}in(8) = min(G" (5)),

Dl (S) = max(@’ (S)), (¥

respectively be the minimal and maximal distance in each class
G"(S). Clearly, D] . (S) < D (S).
As S satisfies Eq. (1) and =, is an equivalence relation on

D(S), S being a seed set is equivalent to

D;nax(s) - D;un(‘s) <e 1=<r=g(,o), 5)
DIrnTnl(S) - Dfnax(S) >e€, 1 <r<g(s,c)—1.

These inequalities give a range of tolerance values € for S to
be a seed set based on the actual distances between the points
in S: € must be large enough for all distances in each distance
class G"(S) to be approximately the same and small enough not
to confuse different G" (S). Furthermore, Eq. (5) is a condition
for S being a seed set. Thus any subset of points satisfying Eq.
(5) is a seed set which may lead to an unambiguous cycle C on
expansion.

For simplicity in the above tolerance condition derivation,
we assume the potential cycle C that a seed set S may lie in (see
Eq. (2)) is known. We discuss further in Section 5.2 how, during
the point expansion process, the cycle and its size ¢ = |C| are
determined.

By defining the maximum size of all distance classes to be
the minimum matching tolerance

Enin(S) = max )(Dfnax(S) — Dpyin(5)), (6)

1<r<g(s,c
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and the minimum distance between two consecutive distance
classes as the maximum separation tolerance

Emx(S) = min  (DIHN(S) — DI (S)), 7

1<r<g(s,c)—1
we can simplify Eq. (5) to
Enin(S) < € < Enax(S). 3

Finally, then, to verify whether S is a suitable seed set, we
only have to check whether some € exists for Eq. (8) to be
satisfied, i.e. that:

Enin(S) < Emax(S). )

Thus Eq. (9) allows us to check the validity of a seed set without
reference to any explicit tolerance €, using only quantities
derived from the set itself. We may now apply this result to
give a condition to decide whether a seed set can be expanded:

Theorem 1. For a point set P C E2, let S C P be a seed set.
The set Sy = SU{P} with P € P\ S is also a seed set if and

only if
Enin(S4) < Enax(Sy). (10)

We now consider how to find Epjn(S+) and Emax(S+).

Foreach1 <r < g(s + 1, ¢), let D', be the set of distances
between P,y and the points in S that may have index gaps r
or c —r to Pyyj when Py is seen as the expansion point of S.

We get
i c
(1P = Poirll,ifs < |5
,Di = {”Ps—i-l - IZS—H—r”’ ”Ps—i-l - Ps+1—(c—r)||}’
ifs>|=|,r>c—s.
2

Hence, we can write

Dy (S4) = min(D’, U {Dy; (S)D),

D} (S1) = max(D!_ U (D, (S)}). (11
In the special case that r = g(s + 1,¢) = s + 1, D], (S)
and Dy, (S) do not exist and we treat the sets {D; . (S)} and

{Dpax (S)} as empty.
Eq. (11) tells us that instead of computing Dj, (S4),
D[ .«(S4), 1 < r < g(s + 1,¢), based on Eq. (4), we can
efficiently calculate them from the known values D] . (S),
Dix(8), 1 < r < g(s, ¢), and the distance set D, . S1m11arly
this also leads to an efficient way to compute Emin(S+),
Emax(8+)~
From Eq. (11) it follows that D], (S4+) >
D} .. (S+) < Dy .. (S), and hence

(Drrnax(8+) -

(S) and

de

Emin(S+) = max
1<r<g(s+1l,c)

> max (D
I1<r=<g(s,c)

Similarly Enax(S+) <  Emnax(S). Furthermore, Eq. (8) is
satisfied for S4, so

Enin(S) < Emin(8+) <€e< Emax(SJr) < Enax(S), (12)

Dyin(84))
Dyin(S)) = Emin(S).

max( )

i.e. the additional point distances introduced by adding a new
point to S such that the expanded set S; remains a seed set
generally reduces the range of valid tolerance values €.

We now consider how expansion terminates. An initial seed
set S is expanded consecutively by finding additional points
satisfying Eq. (10) until either no further expansion points exist,
or a cycle is found. In the former case there is no symmetry, as
there is no cycle. In the latter case the fully expanded seed set
S is a symmetrical set at tolerance € = Epyjn(S) < Emax(S) as
it satisfies Eq. (1) and =¢ is an equivalence relation on D(S).

A seed set describes a complete cycle if ||Psy+1 — Pl €
G1(S), because in this case due to the definition of G’ (S), Eq.
(3),wehavek =s+1,r = 1,k+r—c = landhences+1 = c.
Thus we get

Theorem 2. Let P C E? be a point set and S C P with
s points Py, P, ..., Ps ordered in sequence by the expansion
process according to Theorem 1. S describes a cycle if | Py —
Pil| € G'(S) and is approximately symmetric at tolerance

Emin (S)

Note how our algorithm avoids accumulating expansion
errors by considering all possible distances to all other points
in the seed set S. Errors could rapidly accumulate if the process
simply determines an expansion point merely by its distances
to the three previous points in the seed set.

A cycle S for a point set P is only unambiguous with
respect to P if there is no point in P \ S close to the points
in § with respect to the symmetry tolerance €. The following
theorem, which follows from the above considerations, gives
the condition to verify this after a complete cycle has been
found.

Theorem 3. Let C = {Px,1 < k < c¢} be a cycle within
P c E? at tolerance € = Emin(C). For each point Py, let
CK (P) be the point set generated by replacing Py by another
point P € P\ C. C is an unambiguous subset of P if and only
if Emin(CX(P)) > € for all choices of P € P \C.

How to efficiently apply the theorem to check unambiguity of a
cycle is further explained in Section 5.2.1.

5.2. Symmetry seed set expansion

In this section we illustrate in detail the point expansion
process of a seed set S with s = |S| > 3, such that the
expansion leads to an unambiguous cycle. How to obtain seed
sets consisting of three points from the input set P is described
in Section 5.3. Repetitive application of this point expansion
process is used in the overall algorithm to find unambiguous
cycles.

5.2.1. Expansion point selection

This section describes how to expand a seed set by
an additional point and verify that a resulting cycle
is unambiguous. We use Theorems 1-3 for expansion
point selection, the termination condition, and unambiguity
verification respectively.
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Given a seed set S within an input point set P,
selecting a unique expansion point (if one exists) requires the
determination of a suitable tolerance €: once this has been
done, the unique expansion point P € P \ S fulfilling Eq. (8)
can be determined. Eq. (12) tells us that adding an additional
point may cause the range Epin(S) to Emax(S) of acceptable
tolerance values to become narrower. Theorem 1 tells us that
we can expand S by adding an additional point as long as some
point exists for which this interval does not become empty. We
choose amongst these points, if there are several, by taking the
one which keeps the tolerances smallest, as we describe shortly.

Note that at no time during the expansion process are we
able to fix a specific value for the tolerance €. If we were to
set € to the minimal tolerance in the initial set E,i,(S), then
it might not be possible to expand the initial set to a cycle as
this value could be too restrictive. Moreover, even if we were
to try all possible initial seed sets, and set the tolerance from
them, the tolerance might have to be increased when adding
additional points as indicated by Eq. (12).

If we were to choose a tolerance € larger than necessary,
e.g. Emax(S) — 8 for a very small §, to include the additional
point in the symmetry, it might be possible to replace certain
points in S with other points from P at the tolerance, violating
the unambiguity condition, when a smaller value of € would not
have this problem. In Fig. 3, for example, if we expand from
S = {P1, P», P3} at tolerance Epyx(S), Eq. (8) is satisfied by
adding either P4 or Ps. However, Ps is an unnecessary point
and can actually be ruled out using a smaller tolerance, say
| Py — Ps/2.

So instead of fixing the tolerance, we keep track of the
tolerance interval and check whether there is any expansion
point which can be added while keeping the tolerance within
the interval given in Theorem 1.

To select a unique expansion point, we consider each
potential expansion point P € P \ S satisfying Enjn(S+) <
Enax(S4) for S¢ = S U {P}. We compute Enin(S+) and
choose as the expansion point the one for which this tolerance
is minimal.

If there is no point in P \ § satisfying Epnin(Sy) <
Enax(S+), no valid expansion point can be found and the
expansion process stops. If there is more than one point
minimizing Emin(S+), we have multiple expansion points and
expansion will also stop. However, using real arithmetic, such
a situation is unlikely to arise in practice.

Only after a complete cycle has been found, by checking the
condition ||Ps+1 — Pi]| € G I' (Theorem 2) for the expansion
point P, can we compute the actual minimal tolerance for
the approximate symmetry. However, the resulting cycle may
not be unambiguous with respect to the input point set P, and
further checking is required based on Theorem 3 as we now
explain. For example, in Fig. 6, Py, P>, P3, P are points of an
exact six-fold rotation. Ps does not exactly lie in the set, and
Péi is a point close to Py. Starting from Py, P>, P3, we find the
next expansion point P4 with a tolerance € = 0 rather than P,
which gives a larger tolerance ¢’ > 0. The expansion process
continues with Ps which increases the tolerance €. At this new
tolerance, it may be possible that P, can be used to replace P4

Fig. 6. Verification of unambiguity condition of a cycle.

while giving the same symmetry. We cannot simply conclude
that P, can replace P4 simply based on € > €', however, as
these tolerances are not based on the final cycle.

Unambiguity verification must be based on Theorem 3.
Specifically, suppose C = {P; : 1 <[ < c}is acycle of P at
tolerance € = Enin(C) and let CX (P) be the point set generated
by replacing Py with another point P € P\ C. We need to check
that foreach1 <k <c¢

Emin(CE(P)) > € (13)

for each point P € P \ C. However, instead of applying this
directly, we note that, for k > 3, if the point set cku {P} is
symmetrical, it must satisfy Epnin(S*U{P}) < Enax(S*U{P})
for S* = {P;,1 < | < k — 1}. Hence, for each seed set
S = {Pr,1 < k < s} generated during the point expansion
process, if P is the unique point in P \ C such that Epjn (S U
{P}) < Emax(S U {P}), we know that Eq. (13) will not be
satisfied. If more than one point exists in P \ C such that
Enin(S U {P}) < Emax(S U {P}) is satisfied, we only need
to verify Eq. (13) for these points to improve the algorithm’s
efficiency.

As can be seen from the above, the validity and efficiency
of the point expansion approach mainly depends on the
computation of Epijn(S+) and Emnax(S4) from given Epin(S)
and E .« (S), which we discuss next.

5.2.2. Minimal and maximal tolerance computation

In this section, an efficient algorithm is given for the
computation of Epi,(S+) and Enax (Sy) for P € P\ S, where
S ={P:1 <k <s}isagivenseed setand Sy = S U {P}.
Eq. (11) is used for the computation of D] . (Sy), D, (S1),
1 <r < g(s+1, ¢), from the known values D] . (S), Dy, (S),
1 <r < g(s,c) where s = |S] and c is the number of points
in the c-fold rotational symmetry that S may finally produce.
While we do not know ¢ in advance, it can be computed during
point expansion as described below.

Let Ly = ||P — Ps+1—kll, 1 <k <s.From Eq. (2), it can be
seenthat g(s+1,c) = g(s,c)org(s+1,c) = g(s, c)+1. Using
Eq. (11) for the computation of D] . (Sy) and Dy, (S4), we
just need to decide which distance class G"(S4), 1 < r <
g(s 4+ 1,¢),each Ly, 1 < k < s should lie in if S} is also a
seed set. This is based on the following observation depending
on the slot P occupies in the symmetry:

1. If s < |c¢/2], Lk increases with k (see Fig. 7(a)).

2. If s > [c/2] and c is an odd integer, Ly increases with
k at first until it reaches a maximum at k = |c/2] and
k = [c/2] + 1 and then decreases (see Fig. 7(b)).
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Fig. 7. Various cases of distance classes during the point expansion process.

3. If s > |c/2] and c is an even integer, L increases with k
at first until it reaches a maximum at k = |c/2] and then
decreases (see Fig. 7(c)).

Therefore, in each step of our consecutive point expansion,
as s increases, we can determine whether L; has reached a
maximum. If not, we must have L, € G¥ (S+); otherwise we
can now determine c¢. Once we know c, the computation of
Dy . (S5+) and Dp,,(S+) can be based on Eq. (11). Further
details are now explained.

Suppose ¢ is not yet known. In this case, we know that
s < |c/2]. Therefore, g(s,c) = s — 1 and correspondingly,
Drvnjnl S) = Dfn;){ (S). Furthermore, we have Ly € G¥(S,),
1 < k < s — 1. However, Ly may possibly belong to any of
G2 G lorG forc =2(s—1),c=2s—1landc > 2s
respectively, when Sy is a seed set. In Fig. 7, for example,
given S = { Py, P», P3, P4} for a valid expansion point P, cases
(a), (b), (c) are those for which L4 belongs to G*, G> and G>
respectively. Therefore, in order to decide to which distance
class L actually belongs, we compute Enin(S+) and Enax(S+)
for the three possibilities of adding L to G°, ¢ land G 2. L,
is then added to the class such that Enj(S+) has the smallest
value while Epnin(S+) < Emax(S+). If Ly is added to G, we
leave ¢ undetermined, and to get the next expansion point after
this one, the above process is repeated. If L is added to G* -1
we set ¢ = 25 — 1. If Ly is added to G572 wesetc = 2(s — 1).
Once ¢ has been determined, D; . (S1) and Dy, (S4) can be
computed according to Eq. (11).

Note that we do not estimate ¢ from the angles set up by each
consecutive triple of points in S, since it is difficult to say in the
approximate case which c-fold rotational symmetry an angle
corresponds to without additional information (especially when
c is large). The above approach is compatible with our point
expansion principle, choosing the point P that makes Emin(S+)
minimal among all points in P \ S.

The following observation further simplifies the computa-
tion required during the point expansion. For a valid expansion
point P, Enin(S+) < Emax(S4) must be satisfied. From Egs.
(6) and (7), we have that
max (L = Dpyip(S)], 1Lk = Ding (S)D

< Enin(S+) < Emax(S4) < Emax(S),

where k' = k whenk < cork’ =k — c when k > ¢. Thus, L
must lie in the open interval (Drlfﬂ/in (S) — Enmax(S), Dfn/ax (S) +
Emax(S)) for a valid expansion point, and we can ignore
any point not meeting this condition. This simple observation
greatly reduces the amount of computation required since most

points in P \ S typically fall into this category.

5.3. Initial symmetry seed sets

Finally, we describe in Section 5.3.1 conditions on a proper
initial seed set consisting of three points for them to produce a
potential cycle, and in Section 5.3.2 how to compute the first
expansion point (which must be treated as a special case) from
such an initial seed set.

5.3.1. Conditions on initial seed sets

Our point expansion process considers all unordered triples
of points in the input point set as candidates for cycle
generation. However, Eq. (9) adds further conditions on an
initial seed for it to be capable of producing cycles, as we now
explain. For this, let an initial seed set triple be the three points
P1, P>, P3. Without loss of generality we assume the points are
ordered such that | P — P3|| > ||P, — P3| = | P1 — P2

First we consider the possibility that S possesses a three-fold
rotational symmetry. In this case the minimal tolerance for S is
Enin(S) = ||P; — P3|l — || P1 — P2||, the maximal difference
between the edge lengths amongst these points. In order for
these points to represent a three-fold symmetry, in which we
cannot confuse two points, we require that Enax(S) = || P1 —
P>|. Hence, from Eq. (9),

1P1 — P3|l < 2[| Py — P2l (14)

Now suppose that S may be expanded to a symmetric set
possessing a c-fold symmetry with ¢ > 3 and correspondingly
g(s,c) = 2 (see Eq. (2)). From Eqgs. (6) and (7) we obtain

Enin(S) = [|1P> — P3|l = |I1P1 — P2,
Emax(S) = [|P1 — B3|l = || P> — P3].

For S to be a valid seed set, it must satisfy Ennin(S) < Emax(S),
i.e.

2P, — P3|l < |P1 — P3|l + 1P — P2l (15)

If only one of Egs. (14) and (15) is satisfied, we
can immediately decide whether the points have three-fold
symmetry, or c-fold symmetry for some ¢ > 3. However,
Egs. (14) and (15) are frequently both satisfied, specifically, if
2||P,— P3|l < 3|| P1— P>||. In this case, S can be plausibly either
a regular triangle or a suitable seed set for point expansion;
this happens, for example, for the seed set S = {Py, P2, P3}
in Fig. 6. In such situations, we output both as potential
symmetries detected in the point set (the problem of deciding
which one should be present is left for downstream processing,
where higher level information may be used; also see [8]).

5.3.2. Initial symmetry seed set expansion

Expansion from the initial seed set S of three points is
different from the general point expansion process for a seed
set S of |S| > 3 points, as we now discuss.

Before considering what may happen when we expand an
initial seed set S = {Py, P>, P3} in the approximate case, we
first discuss the exact case (i.e. € = 0). Eq. (1) requires that the
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Fig. 8. Special cases for point expansion.

following conditions must be satisfied for an expansion point
Py with e = 0:

|Ps — P3| = || P, — P3|l = ||P1 — P2,
[Py — P2l =[P — P53l (16)

These conditions determine two possible locations for P,
denoted P4 and P;: see Fig. 8(a). They are the intersection
points of two circles with centre P; and radius || P, — P3|, and
centre P, with radius || P; — P3|. However, only P4 can lead
to rotational symmetry and is the desired expansion point. The
two points can be distinguished in the exact case by which side
of the line P, P5 they lie on. Specifically, we choose the point
P which lies on the same side of the line P, Py as P; as the
expansion point, i.e. the point which fulfils

(P = P3) x (P2 = P3)) - (P3 — P2) x (P1 — P2)) > 0. (17)

For € > 0 the case is less straightforward, especially if
P1, P>, Pz almost lie in a line, which corresponds to a c-
fold rotational symmetry with large c. In this case determining
the sign of the left hand side of Eq. (17) is ill posed due to
numerical instabilities. Furthermore, note that a point which lies
on the wrong side of the line may still belong to an approximate
symmetry. For example, see Fig. 8(b). Starting from the initial
seed set S = {P1, P2, P3}, the point P4 should still be selected
even though it lies on the opposite side of P, P3 from Pj: a
symmetric set with small tolerance can still be generated using
this point.

Our solution to this problem is to consider points on both
sides of the line and check whether a complete cycle can be
found. In the exact case, if we expand P, P>, P3, P4 further, we
get a potential cycle, while exact expansion from Py, P>, P3, PL{
would produce a zig-zag line, not a cycle. Consider Fig. 8§,
for example. Applying a further expansion step from both
SU{ Py} and SU{P,}, we would obtain Ps and Ps respectively.
P1,..., Ps form a seed set that may finally lead to a cycle,
while Py, Py, P3, Py, P; only yield a zig-zag line.

Now consider the approximate case (¢ > 0). Denote by P*
the set of all points fulfilling Epnin (S U {P}) < Enax(S U{P}),
P € P\ S. This set is divided into two categories: points
Py lying on the same side of the line P, P3 as P, and points
P73 lying on the opposite side. We choose whichever point
minimizes Enin(S U {P}) in Py, and again in P;, and do
further point expansion from both in order not to lose potential
symmetries. No unnecessary symmetries will be introduced
by this strategy, as further explained. Provided we have no

symmetries like those in Fig. 8(b), expansion from the point
chosen from P; produces a cycle (if it exists), while the point
from P} can only give a zig-zag line. If, however, we have a
case like Fig. 8(b), the selected points from P; and P; may
produce two cycles which are only different in the fourth point,
and are otherwise very close to each other. Selection between
them will be decided by further unambiguity checking—either
one of them will be chosen, or neither of them.

Note that this situation can only arise when expanding an
initial seed set consisting of three points. If s = |S| > 4,
P41 is uniquely determined by the point P that minimizes
Enin(S U {P}) amongst all valid expansion points in P \ S,
as illustrated in Section 5.2.1.

6. Unambiguous cycles of 3D point sets

In this section we describe the modifications needed to our
2D unambiguous cycle detection algorithm for 3D point sets.
It is again based on the idea of expanding an initial seed set
consisting of three points. The main difference is that in the 3D
case, we have to consider rotation-reflection cycles, i.e. vertices
of an anti-prism, as well as rotation cycles.

6.1. Unambiguous cycle types in 3D

The unambiguous cycles that can arise in 3D are the ordered
vertices of the following shapes: tetrahedrons, regular polygons
and anti-prisms (alternate vertices taken from opposite ends).
Here, again, we start by considering exact symmetries of such
types.

The following theorem states the condition under which an
initial seed set can only be expanded into a point sequence lying
in a plane, leading to symmetry defined by a regular polygon:
the fourth expansion point lies on the plane determined by the
initial seed set. As in the 2D case, expansion points from an
initial seed set are still determined by the distance constraints
as prescribed by Eq. (1) for € = 0 or equivalently Epi,(S) = 0.

Theorem 4. Assume throughout the tolerance ¢ = 0. Let
S=1{P:1<k<d4 C E3 be a coplanar seed set. The
next expansion point Ps is uniquely determined by S such that
S U {Ps} is a seed set, and any further expansion of S results
in a coplanar set.

Proof. A seed set is only prescribed by the distances between
its points. From the analysis in 2D, P4 may lie to the left or right
of the line P, P3 in the plane Pj, P>, P3. We assume that Py lies
on the same side of the line P, Pz as Pj. The proof of the case
where Py lies on the other side proceeds in a similar manner.
From Egq. (1), the fifth expansion point from S is determined by

| Ps — P4l = | P1 — P2, |Ps — P3|l = || P1 — P3ll,
|Ps — Pall = [Pt — P4l (18)

This means that Ps lies at the intersection of three spheres: S;
with centre P4 and radius ||P; — P2|, S> with centre P3 and
radius || Py — P3|, S3 with centre P, and radius || P; — Py4]|.
S1 and S, always intersect in a circle C with centre O on the
line P3 P4 (see Fig. 9(a)). Let Ps and PS’ be the intersection
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Fig. 9. Analysis of 3D point expansion.

points between circle C and plane Pj, P>, P;. Ps lies on the
same side of line P3P4 as P, and P5’ lies on the other side.
Ps is the unique expansion point we are looking for. Firstly,
|Ps — P>|| = ||P1 — Pal|, as the polygons P;, P>, P3, P4 and
P>, P3, P4, Ps are congruent. Next, as the line P, Ps is parallel
to P3 P4 and P3Py is perpendicular to the plane the circle C lies
in, line P, Ps is also perpendicular to the plane of C. Thus, the
distance between P, and all other points on C than Ps is greater
than || P, — Ps||. Thus Ps is the unique point satisfying Eq. (18).
O

We now give a further analysis for other 3D symmetries.

Let {P;, P>, P3} be an initial seed set of 3D points (see
Fig. 9(b)), and Ps be the next expansion point determined
by Eq. (1) at ¢ = 0. Hence, P4 must lie on the circle C
formed by the intersection of two spheres, with centre Pz and
radius || P, — P3|, and Py with radius || P; — P3||, respectively.
Depending on the different locations of Py, different types of
symmetry are possible.

Clearly, a regular tetrahedron is produced if all the distances
between each pair of points are the same. As noted in
Theorem 4, if P4 lies on the plane P; PPz, the points can
belong to a regular polygon. Finally, suppose Ps does not
lie in the plane P;P,P3, and the dihedral angle (at edge
P> P3) between the adjacent triangles Py P, P3 and P, P3Py is
B. Continuing from P;, P>, P3, P4 there are two possible
expansion points, Ps and P/, such that Eq. (18) is satisfied (see
Fig. 9(c)). P5s and PS/ lie on different sides of plane P, P3 P4 and
they determine two triangles P3 P4 Ps and P3Py PS’ respectively,
each of which makes a dihedral angle g with triangle P Pz Py
along edge P3 P4. Suppose Ps lies on the same side of the plane
P> P3Py as P; while PS’ on the other side. In a similar manner to
the 2D case, further expanding (Py, P2, P3, P4, PS/) produces a
zigzag line in 3D space, which is caused by evenly distributed
points on a helix (leading to an infinite screw symmetry, which
we ignore here). In the other case, (Py, P2, P3, P4, Ps) leads to
a uniquely determined rotation-reflection symmetry case.

In 3D, when finding unambiguous cycles involving the
detection of the orbit of a single point, there are two
cases to consider: isometries which preserve orientation and
isometries which invert the orientation of space. The orientation
preserving isometries are rotations giving regular polygons
as unambiguous cycles. The orientation inverting isometries
consist of combinations of rotations and reflections, which
means we have to also consider elementary rotation-reflection
symmetries as described above.

6.2. Point expansion in 3D in the approximate case

Section 6.1 analyses the cycles that may arise in 3D in the
exact case. Based on these ideas, we now explain how similar

cycles can be obtained in 3D in the approximate case using a
point expansion approach starting from an initial three-point
seed set. In particular, we illustrate how the point expansion
process used in the 2D case can be applied in 3D to rotation-
reflection symmetry detection.

The core algorithm used for 3D unambiguous cycle
detection is similar to the one used in 2D. Given an initial seed
set S = {P}, P,, P3} taken from the input point set P C E3,
we choose all possible expansion points P4 and then expand
further from each of them if possible. As noted in Section 6.1,
the fifth expansion point can be in two different positions of
which only one can lead to a valid unambiguous cycle. Thus,
following a similar approach to the 2D case, we divide all
potential expansion points into two sets according to which side
of the plane P> P; P4 they lie on and use the same reasoning
as in the 2D case to find in each set an optimal expansion
point leading to an unambiguous set, if one exists. Finally, its
unambiguity condition is checked as in the 2D case.

However, applying this expansion process directly prevents
certain rotation-reflection symmetries from being detected.
This is because for a regular polygon, the distance equivalence
classes as defined by Eq. (3) increase (in the sense of their
elements) as r (the index difference between points as used in
Eq. (3)) increases, but this is not satisfied for an anti-prism. We
handle this case by distinguishing distance classes that contain
distances between points at opposite ends of an anti-prism from
classes containing distances between points from the same end
of the anti-prism, as we now explain.

We recall some ideas from 2D point expansion: we start
with a 2D seed set S, s = |S| with maximal and minimal
distances D! . (S), Dy, (S), 1 < r < g(s, ¢) for each distance
class as defined by Eq. (4). For any point P € P\ S we let
Ly = ||P—Pst+1-ll, 1 < k < s. The point expansion algorithm
is based on Theorem 1, which states that the next expansion
point P must satisfy Epin(S + {P}) < Emax(S + {P}). The
computation of Epin(S + {P}), Emax(S + {P}) involves two
important monotonicity conditions:

() DI (S) < Dl (S) < DIH(S) < DLEL(S) for Stobe a
valid seed set, which can be seen from Eq. (5);
(i1) Ly increases with k at first until a maximum is reached at

k= L%J and then decreases (see Section 5.2.2).

In 3D, however, these monotonicity properties are in general
not satisfied by a point set with rotation-reflection symmetry.
For example, consider the points forming a rotation-reflection
symmetry in Fig. 10. We may have ||Ps — P3|| < ||P5s — P4l
or even ||Ps — Pi|| < ||Ps — P4| if we increase the distance
between the points on the top plane and bottom plane along the
normal direction. In such cases Enjn(S + {P}), Emax(S + {P})
have to be handled differently so that Theorem 1 remains valid.

When rotation-reflection symmetry is present, if we split
each set D] . (S), D} ,x(S) and Ly into subsets with even
and odd indices, denoted as D0 (S), D2 (S), Drax(S),
DL (S) and L, L¢, we can see that a monotonicity condition
similar to the 2D condition (conditions (i) and (ii) listed
above) is separately satisfied by each subset. We can then

consider the even and odd cases separately first, and then
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Fig. 10. Crown symmetry detection.

combine them together for rotation-reflection cycle generation.
Specifically, for each point P € P \ S, we first compute from
min\* | min
in Section 5.2.2 to give Ep. (S U {P}), Ep, (S U {P}) and
E; . (SU{P)), ES, (SU{P}) respectively. If ET. (SU{P}) >
valid expansion point. Otherwise, we next set Enin(SU{P}) =
max(E®. (S U {P}), ES. (S U {P})) and Enax(S U {P}) =
min(Ep, (SU{P}), E}(SU{P})) to maintain the interval of
is again not a valid expansion point. A similar idea is used to
generalize the unambiguity verification from 2D to 3D using
Finally, based on the above analysis, we note that for a
rotation-reflection symmetry, it may be possible that ||[P; —
on finding the initial three points for the seed set is relaxed to
max(|[| P — P3| = | P1 — P2ll, [|1 Py — P3ll = [|[ P2 — P3ll]) < €

D2 (S), Driax(S), LY and D% (S), Diax(S), L as described
max
E} (S U{P}) for x = o or x = e, the point P is not a
min min

valid tolerances. If Epni, (S U {P}) > Enax(S U {P}), the point
the same computation for Epi, (S U {P}).

P3| < ||P1 — P»|| for the initial seed set. So the condition
with €* = min(|| Py — P2|, | P> — Psll, | Py — P3lD).

7. Time complexity

The time complexity of our algorithm is O (Cn*), where n is
the number of points in the input point set and C is the maximal
symmetry order present (usually a small integer). This is easily
seen as all triples of points are taken as seed points, and then
each remaining point is considered as an expansion point at
each step until we have a cycle (or we exit without finding one).

Brass’ [18] presents a deterministic algorithm to find all
exact local symmetries in O (n%136+€) time. Aloupis et al. [25]
improve this using a randomised algorithm which can detect
regular polygons with high probability in O (n>%68+€) time.
Although the time order of these algorithms is smaller, they
only solve the exact problem and approximate symmetry
detection is much more complex as global properties have to be
considered. No previous work on approximate local symmetry
(i.e. regular polygon) detection exists as far as we know.
Finding global approximate symmetry is NP-hard under the
definition of Iwanowski [27]. Under other different definitions
provided to facilitate detection, approximate global symmetry
detection requires high-order polynomial time: O (n®) using
Alt et al.’s method [22] and O (n3- log* n) using Mills et al.’s
method [6]. In this context, we consider time O(n*) to be
acceptable.

For large point sets, in the approximate case, there is
potentially a large number of unambiguous cycles. To increase
the speed of the algorithm, as well as the usefulness of the
answers, we suggest that feature detection algorithms, such as
regularity feature trees [30], may help to reduce the complexity

of the problem for practical use, by dividing the input into
several smaller sub-problems.

8. Experiments

In this section we present various examples of using our
approach to detect unambiguous cycles in 2D and 3D point sets.
The algorithm was implemented on Linux in Matlab running on
a Pentium 4 3.4 GHz with 1GB RAM. We would expect a C++
implementation to be much quicker than this Matlab prototype.
Section 8.1 considers 2D cases, and Section 8.2 shows cases
derived from 3D CAD models.

Note that if C has a c-fold rotational symmetry at tolerance €,
by definition it must have subsets displaying a ¢’-fold rotational
symmetry with tolerance not greater than € for any factor ¢’ > 1
of c. For clarity of presentation, such symmetries are not shown
in these examples although they are also output. Furthermore,
we do not show the detected three-fold symmetries or 3D
symmetries consisting of four points, of which there are usually
many.

Most spurious symmetries are only present at large tolerance
values and can easily be suppressed if a user-supplied maximal
tolerance of interest is given. Often it is very simple to select
a suitable cut-off tolerance after the symmetries at various
tolerances have been detected. However, as we are detecting
approximate symmetries, not all symmetries at small tolerance
are automatically also symmetries which are intended. Our
algorithm detects symmetries which are unambiguously present
in the data at various tolerance levels. Downstream processes
must decide which of these symmetries should be considered
for further processing.

8.1. 2D examples

This section discusses the results of determining 2D
unambiguous cycles in various examples.

First, we considered the algorithm’s ability to detect
intended symmetries in sets of points derived from regular
shapes. We took 25 points from the vertices of a twelve-fold
regular polygon of radius 1.0, one five-fold regular polygon of
radius 0.5 and two squares of radii 0.5 and 0.2. The twelve-
fold regular polygon was placed at the origin and the others
centre at various locations. In the example shown, these centres
were as (0.—0.25), (—0.2, 1.05), (1.5, 0.2), chosen to carefully
place points from different polygons close to each other so
we could assess the quality of the results produced by the
point expansion process. The coordinates of the points in each
original exact regular polygon were disturbed by uniformly
distributed random errors less than 0.01, 0.04, 0.033 and 0.01
respectively. Overall 30 randomly generated arrangements of
this type were used for testing, one of which is shown in
Fig. 11. The left image shows the symmetries used to generate
the set, which were also detected successfully, and the right
image shows additional unintended symmetries also detected.
The tolerances at which these were present are also given in the
top-right legends.

All four initial polygons were detected in each test, taking
an average time of 2.5s. Furthermore, at most five additional
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Fig. 11. 2D points with intended (left) and unintended (right) unambiguous cycles; running time for this example: 2.37 s.

Fig. 12. 2D points on a 4 x 4 regular grid and 20 random points.

symmetries were detected. As we are looking for approximate
symmetries, such additional sets cannot be avoided in general.
As can be seen in Fig. 11, the unintended symmetries not only
have much larger tolerances (at least 10 times larger) than the
intended symmetries, but also are inconsistent with some of
the intended symmetries—for example, three points are shared
by the intended twelve-fold symmetry and the unintended
five-fold symmetry. The tolerance information can be used in
combination with a consistency check to separate the intended
from the unintended symmetries (see [8]).

The example in Fig. 11 shows the algorithm’s stability with
respect to noisy point sets with intended symmetries. To test
the algorithm’s behaviour given random points, examples like
Fig. 12 were also considered. 36 points were generated of which
16 were arranged on a 4 x 4 regular grid in [0, 1] x [0, 1] (dark
points) and the other 20 were chosen randomly with a uniform
probability distribution in the same area (light points). These
light points disturb the symmetries generated by the dark points.
Over 30 tests on such arrangements were executed. Within at

most 10s, the 20 square symmetries induced by the points on
the 4 x 4 grid were always detected at tolerance zero (see the
first four rows of Fig. 12). The random points led to several
other symmetries (at most five per test) also being detected;
examples being given in the last row, with tolerances of 0.0459,
0.0471, 0.0570, 0.0801, 0.1063 respectively.

Tests on uncorrelated random points uniformly distributed
in [0, 1] x [0, 1] were also performed to test the algorithm’s
performance in detecting unintended symmetries. The results of
30 tests using 30 random points are summarized in Fig. 13. The
black line gives the running time in seconds, the red line shows
the number of detected symmetries, and the blue line indicates
approximate tolerances multiplied by 100 in each test. As seen
from the figure, in five tests no symmetry was found, in 16 tests
either one or two symmetries were found, in seven tests either
three or four symmetries, and in two tests six symmetries were
detected. The tolerances of the symmetries found range from
0.0159 to 0.0838. Such good performance strongly suggests
that only few unintended symmetries, as detected by our
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Fig. 13. Experimental results on 30 tests of 30 2D random points. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

algorithm, are introduced by randomly distributed points. All
the tests took 2—4s to compute, which shows the algorithm’s
efficiency.

In summary, these and other 2D examples show that
our algorithm can robustly detect all potential intended 2D
symmetries within one minute for up to about 100 points. Also
note that for many typical CAD models, planar symmetries
dominate in engineering, e.g. see the complex model in Fig. 1.
In such cases, the 2D symmetry detection algorithm can be used
directly if these planes are detected explicitly beforehand.

8.2. 3D examples

In this section we show the performance of the 3D version
of our algorithm on discrete point sets extracted from CAD
models.

The MISUFA model in Fig. 15(a) came from Cadalog,
Inc., http://www.ohyeahcad.com/, and the other two in
Figs. 1 and 14(a) from the National Design Repository,
http://www.designrepository.org/. For simplicity, the discrete
points used in our tests here were the model vertices instead of

Fig. 15. The symmetries of extracted points from the MISUFA model. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

being the complete set of characteristic points discussed earlier.
These exact models were perturbed using uniformly distributed
random errors dependent on the objects’ sizes; details are
given later. This allows us to compare the symmetries that our
algorithm detects with the intended symmetries that really exist.

In the first test, 68 discrete points were extracted from
the model in Fig. 14(a). The maximal and minimal distances
between these distinct points are 2.3607 and 0.054 respectively.
These extracted points were then disturbed by uniformly
distributed random errors less than 0.01. It took 38.9s to detect
the four hexagonal symmetries shown in Fig. 14(b). The same
symmetries are obtained when running our algorithm on the
exact point set yielding tolerances 0, 0, 0.0154, 0.0154 for
the hexagonal symmetries in 36.2s. The two symmetries at
tolerance zero correspond to the two in Fig. 14(b) drawn
in dashed lines. The non-zero tolerances for the other two
symmetries originate from the actual model. To further check
the algorithm performance, the extracted points were disturbed
by larger errors: uniformly distributed random errors of less
than 0.05. Note that such errors are quite close to the
minimal inter-point distance 0.054. Then, only two hexagonal
symmetries were detected respectively at tolerance 0.114 and

Fig. 14. The symmetries of extracted points from the Vise-guide model.
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Fig. 16. The symmetries of extracted points from the Monster model (see Fig. 1). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

0.122, which corresponds to the two symmetries originally at
tolerance zero (in dashed lines). The other two symmetries
were no longer detected, as their regular distribution were
destroyed by such large induced errors. This demonstrates that
our algorithm is capable of detecting intended symmetries at
large tolerances, but also only finds unambiguous symmetries
and yields overall fewer unintended symmetries. No other
unintended symmetries were detected during all the tests.

In the next example, the 123 vertices of the MISUFA model
in Fig. 15(a) were disturbed by uniformly distributed random
errors of less than 0.02. (Maximal and minimal inter-point
distances in the original exact model are 2.3607 and 0.054
respectively). All the eight detected symmetries are shown in
Fig. 15(b) at similar tolerances on average 0.0247. The model
has no global symmetries. The cycles detected by our algorithm
include four rotational cycles (blue lines) and four rotation-
reflection cycles (red lines). The rotational symmetries are
obvious hexagonal parts of the model; the rotation-reflection
symmetries come from combination of rotational symmetries.

We also tested our algorithm with the Monster part in Fig. 1.
A total of 438 points were extracted. As other examples, these

points were disturbed by uniformly distributed random errors
of less than 0.1. To improve the algorithm performance, we first
divided the extracted points into 8 regions by planes orthogonal
to the z coordinate axis at z heights —25, 0, 20, 40, 60, 70, 90
(see Fig. 16(c)); the original z coordinates were in [—50, 100].
(This planar division is straightforward for a user to do and
is a reasonable approach, as planar symmetries dominate in
engineering, and rotation-reflection symmetries also consist of
two planar symmetries).

Using this approach, it took 345s to detect 58 unambiguous
cycles. An overall view, a top view, a side view and a close-up
view are shown in Fig. 16(a), (b), (c) and (d) respectively. The
detected symmetries can be explained as (i) the five eight-fold
rotational symmetries, drawn in red, with an average tolerance
0.094, which come from the eight cylindrical holes; (ii) the
five sixteen-fold rotational symmetries, drawn in black, with
average tolerance 0.1764, which come from the 16 slots around
the centre; (iii) the 24 smaller square symmetries along the
sides, drawn in green, with average tolerance 0.1364, from the
square slots at the sides; (iv) the 24 large square symmetries
along the sides, drawn in red, with average tolerance 5.0100,
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from the rectangular slots at the sides. As seen from the
model, the first three types at smaller tolerance are all intended
symmetries, while the fourth type were originally rectangles but
detected as squares at a large tolerance.

In a manner similar to the above examples, we have
tested our algorithm with various other approximate CAD
models, most of which were obtained from the National
Design Repository, http://www.designrepository.org/. They
were perturbed by uniformly distributed random errors. These
models include simple models such as cubes with some blends
or complex models such as the Monster model (Fig. 1). The
number of discrete points extracted from these models ranged
from 36 to 438 and it took between S5s and 345s to detect
symmetries. In each case, all intended symmetries that could
be detected at zero tolerance in the original CAD model were
detected as unambiguous cycles from the disturbed extracted
points. In addition to these symmetries, other unintended
symmetries were also detected; in all cases there was clear
evidence in the model for their presence. Most unintended
symmetries, however, were present at larger tolerances than the
intended symmetries and, hence, could easily be identified.

Depending on the amount of noise added to the points
compared to the distances between the points, some unintended
symmetries were at the same tolerances as the intended
symmetries. For these a downstream process would have to
employ a more sophisticated selection process, e.g. as discussed
in [8]. When we added a larger amount of noise (on the
level of the smallest distance between points), some intended
symmetries were not detectable anymore. We note that such
cases cannot in general be avoided when detecting approximate
symmetries and our algorithm only detects symmetries for
which there is clear, unambiguous evidence present in the
model.

Again, we note the advantage of our algorithm that instead of
selecting an arbitrary tolerance in advance, the algorithm selects
suitable tolerance levels as the symmetries are detected.

9. Conclusion

In this paper a novel definition of approximate subset sym-
metries of discrete point sets has been given, together with an
algorithm to find them. It is suitable for finding approximate
symmetries in B-rep models, by carefully choosing characteris-
tic points from the model, including vertices and other special
points. Our algorithm avoids generating large numbers of spu-
rious approximate symmetries by automatically deducing tol-
erance levels at which subsets unambiguously exhibit symme-
tries. Our experiments demonstrate the ability of our algorithm
to find all expected symmetries. Only few unintended symme-
tries are detected when tested in practice on CAD models. The
latter are almost always found at larger tolerance values, giving
a simple criterion to decide which symmetries are likely to be
intended by the designer. Our algorithm takes time O (Cn*) for
a point set with n points, and maximal symmetry order C. In
practice, our prototype Matlab implementation detects symme-
tries in an acceptable amount of time, in the context of a com-
plete reverse engineering process, for example; furthermore we
would expect a C++ implementation to be considerably faster.

In this paper we detect unambiguous cycles which
describe orbits of points only. In future work we intend
to consider the problem of combining such orbits into sets
which approximately share the same geometric symmetry—for
example, the five eight-fold symmetries in Fig. 16 can actually
be merged into a single eight-fold rotational symmetry. We also
intend to investigate the use of this algorithm for design intent
detection.
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