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Abstract— In this work we address joint object category and
instance recognition in the context of rapid advances of RGB-
D (depth) cameras [16, 3]. We study the object recognition
problem by collecting a large RGB-D dataset which consists of
31 everyday object categories, 159 object instances and about
100, 000 views of objects with both RGB color and depth.
Motivated by local distance learning where elementary distances
(over features like SIFT and spin images) can be integrated at
a per-view level, we define a view-to-object-instance distance
where per-view distances are weighted and merged. We show
that the per-instance distance, through jointly learning the per-
view weights, leads to superior classification performance on
object category recognition. More importantly, the per-instance
distance allows us to find a sparse solution (through Group-
Lasso), where a small subset of representative views of an object
are identified and used, and the rest discarded. This not only
reduces computational cost but also further increases recognition
accuracy. We also empirically compare and validate the use of
visual (i.e. RGB) cues and shape (i.e. depth) cues and their
combinations.

I. INTRODUCTION

Visual recognition of object categories and instances is a
fundamental and challenging problem and a major focus of
research for computer vision, machine learning, and robotics.
In the past decade, a huge variety of features and algorithms
have been proposed and applied to this problem, resulting in
significant progress on object recognition capabilities, as can
be seen on the steady improvements on standard benchmarks
such as Caltech101 [6].

While most modern-day recognition benchmarks are con-
structed using Internet photos at the category level only, the
goal of our work is to study the recognition problem at both the
category and the instance level, on objects that we commonly
use in everyday tasks. The ability to recognize objects at both
levels is crucially important if we want to use such recognition
systems in the context of specific tasks, such as human activity
recognition or service robotics. For instance, identifying an
object as a generic “coffee mug” or as “Amelia’s coffee mug”
can lead to substantially different implications depending on
the context of a task.

In addition to category and instance level recognition, we
want to enrich the recognition data by taking advantage of
recent advances in sensing hardware. In particular, the rapidly
maturing technologies of RGB-D depth cameras [16, 3] pro-
vide high quality synchronized videos of both color and depth,

presenting a great opportunity of combining color- and depth-
based recognition. Here, we use RGB-D cameras to collect
a comprehensive object recognition dataset, which comprises
31 categories of everyday objects, 159 object instances, and
about 100 views per instance, with both color and depth
(Section IV). This dataset presents unique challenges for
recognition, for instance: (1) how can we handle category and
instance recognition together, (2) how can we integrate color
and depth cues for recognition, and (3) how can we adequately
handle a large number of views of the same object?

Given the extensive knowledge we have about individual
cues for recognition,such as SIFT [13] for appearance and
Spin-Image [11] for 3D shape, we seek to combine these cues
and their metrics, and one successful line of work that does
so is that of distance learning (e.g. [22, 21]), or in particular
local distance learning [18]. Local distance learning has been
extensively studied and demonstrated for object recognition,
both for color images [8, 9, 14] and 3D shapes [12]. A key
property of these approaches is that they can model complex
decision boundaries by combining elementary distances.

Local distance learning, however, is not without issues.
For our particular task, there are two main limitations to
overcome: (1) existing formulations of local distance learning
do not capture the relations between object categories and
specific instances under them; (2) they provide no means for
selecting representative views, or examples, of instances and
thus become very inefficient if a large number of views are
collected for each object.

In this paper we propose an approach of sparse instance-
based distance learning: instead of learning per-view, or per-
exemplar, distances, we combine local distances to define and
optimize a per-instance distance I. By learning a distance
function jointly for all views of an instance, our approach
significantly outperforms view-based distance learning for
RGB, Depth, and RGB+Depth recognition (this result can also
be motivated as subclass classification [20, 5]). However, even
more importantly, joint instance-based learning naturally leads
to a sparse solution using Group-Lasso, where a sparse set of
views of each instance is selected from a large pool of views.
Thus, our approach is able to significantly sparsify the data set;
discarding redundant views and speeding up classification. We
show that the sparse solution does not decrease performance;
on the contrary, higher accuracy is achieved by using a smaller
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Fig. 1. In this work we study joint object category and instance recognition at a large scale through the use of per-instance distances. (a) Local distance
learning uses a view-to-view distance, typically followed by a k-nearest neighbor rule. (b) We directly use the weighted average distance from an view x to
an intance Y which consists of a set of views of the same object. This allows us to jointly learn the weights for each individual view y in the instance set,
outperforming local distance learning. More importantly, this allows us to use Group-Lasso on w to select a sparse set of exemplars from a large pool of
views.

but more representative set of exemplars for classification.
This paper is organized as follows. Our instance-based

distance learning approach for object category and instance
recognition is presented in Section 2. Then, in Section III, we
introduce Group-Lasso sparsification, followed by experimen-
tal results and conclusions.

II. LEARNING INSTANCE-BASED DISTANCES

In this section, we show how to learn instance-based dis-
tance functions for visual recognition tasks. In image classifi-
cation, we are given a set of images Y and their corresponding
label set t. The goal is to learn a classifier to recognize
category and instance labels of images, or views, outside of the
training set. One of the simplest methods to do this is to find
nearest neighbors of the test view and make a prediction based
on the labels of these nearest neighbors. In this section, we
show how to improve this approach by learning an instance-
based distance function. We start by considering a simple
classification rule, nearest instance classifier, which labels
incoming test images x using the label of the nearest instance
(an extension to k-nearest instances is straightforward):

cx = argmin
i,j

1
|Yij |

∑
y∈Yij

d(x, y) (1)

Here, Yij denotes the set of views taken of the j-th instance
of the i-th category. As can be seen, cx is the object instance
that appears, averaged over its views, most similar to the test
image. d(x, y) can be any distance function between views x
and y. In this paper, we use the L2 distance d(x, y) = ‖x−y‖2.
The nearest instance classifier given in (1) can be used for
both category and instance recognition: The index i provides
the category and the index j gives the corresponding instance.
Unfortunately, the nearest instance classifier can often perform
poorly in practice due to the difficulties of finding a good
distance measure. Instead, we now consider a significantly
more powerful variant by learning an instance-based distance
function for recognition.

In many problems there are multiple features available
and the best performance is obtained by using all available

information. To do so, we replace the scalar distance d(x, y)
between two views x and y by a vector d(x, y) of separate L2

feature differences. The corresponding instance based distance
function between example x and the j-th instance of i-th
category Yij then can be written as

f(x,Wij) =
1
|Yij |

∑
y∈Yij

w>y d(x, y) + b , (2)

where W is a set of weight vectors wy for all y ∈ Yij . This
significantly more expressive distance function does not suffer
from the problems that plague nearest instance. Note that we
have added a bias term, b, to the instance based distance
function to allow negative values. The weight vector wy is
D-dimensional, where D is the number of different features
extracted for each view. Note also that each example view has
a different weight vector. Due to this, the functions do not
define a true distance metric, as they are asymmetric. This is
advantageous since different examples may have different sets
of features that are better for distinguishing them from other
examples, or views.

When learning the weight vector for an instance, it is
necessary to distinguish between category and instance clas-
sification. For instance recognition, the weight Wij defining
the distance function for the j-th instance in category i can
be learned using the following L2 regularized loss function:∑
x∈Yij

L(−f(x,Wij)) +
∑

x∈Y \Yij

L(f(x,Wij)) + λ||Wij ||2,

subject to Wij � 0, (3)

where we have chosen L(z) = max(0, 1 − z)2, the squared
hinge loss. The non-negative weight constraint ensures that
large feature differences can never imply similarity. The first
term penalizes misclassification of views x ∈ Yij that belong
to the same instance. The second term similarly penalizes
misclassification of negative examples, or views, by incurring
a loss when their distance is small. Note that the negative
examples also include views of different instances that belong
to the same category i. The final term serves standard L2



parameter regularization. This objective function is convex and
is easily optimized using standard optimization algorithms.

For category recognition, we learn the instance-based dis-
tance by minimizing the following L2 regularized loss:∑
x∈Yi

L(−f(x,Wij)) +
∑

x∈Y \Yi

L(f(x,Wij)) + λ||Wij ||2,

subject to Wij � 0, (4)

where Yi =
⋃Ni

s=1 Yis and Ni is the number of instances in
the i − th category. The key difference between the instance
recognition and the category recognition loss is that in the
former, only the views of the same instance are positive
examples, whereas in the latter the views of all instances in
the same category become positive examples.

III. EXAMPLE SELECTION VIA GROUP-LASSO

An important property of the instance based distance that
we defined in Section II is that it allows for data sparsification.
This is achieved by replacing L2 regularization in (3) with
Group-Lasso [23, 15], resulting in the following objective
function:∑
x∈Yij

L(−f(x,Wij)) +
∑

x∈Y \Yij

L(f(x,Wij)) + λ
∑

y∈Yij

||wy||2

subject to W � 0 (5)

Here, the first two terms optimize over individual components
of the instance weight vector, and the third, Group-Lasso, term
drives the weight vectors of individual views toward zero.
Group-Lasso achieves this by grouping the weight components
of individual views in the penalty term. In contrast to previous
work that make use of the Group-Lasso for encouraging
feature sparsity, here we use Group-Lasso to encourage data
sparsity. In other words, optimizing this objective function
gives a supervised technique for choosing a subset of rep-
resentative examples, or views. If the Group-Lasso drives an
entire weight vector wy to 0, the corresponding example no
longer affects the decision boundary and has effectively been
removed by the optimization. The degree of sparsity can be
tuned by varying the λ parameter. Intuitively, data sparsity is
often possible because many examples may lie well within the
decision region or are densely packed together. Removing such
examples would reduce the magnitude of the regularization
term while having little or not effect on the loss terms. Each
data point is only one of many that contribute to the instance-
based distance and redundant examples would not significantly
influence the decision boundary.

The advantage of data sparsification using the proposed ob-
jective function is twofold. As explained above, the proposed
technique can remove redundant and uninformative examples.
Secondly, removing examples from consideration at test time
results in computational cost savings which counteracts the
data-size-dependent time complexity of nearest neighbor tech-
niques. For category level, the group lasso based instance

distance learning uses the following objective function∑
x∈Yi

L(−f(x,Wij)) +
∑

x∈Y \Yi

L(f(x,Wij)) + λ
∑

y∈Yij

||wy||2

subject to W � 0 (6)

IV. EXPERIMENTS

We apply the proposed subclass distance function learning
to two related object recognition tasks: category recognition
and instance recognition. In category recognition, the system
is trained on several objects belonging to each category and
the task is to classify a never-before-seen object into one of
the categories. In the instance recognition task, the system is
presented with multiple views of each object, and the task
is to classify never-before-seen views of these same objects.
The experimental results in this section demonstrate that our
technique obtains good performance on both recognition tasks,
particularly when taking full advantage of both shape and
visual information available from the sensor. The technique
is able to not only automatically sparsify training data, but it
also exceeds the performance of several alternative approaches
and baselines, even after sparsification.

A. RGB-D Data Set

We evaluate our technique on a novel data set consisting
of images of objects spun around on a turntable (the RGB-
D data set). The data set consists of 159 object instances
in 31 categories. Table I gives a breakdown of the number
of instances in each category. The images are collected with
the RGB-D camera that can simultaneously record both color
image and depth data at 640×480 resolution. In other words,
each ‘pixel’ in the RGB-D frame contains four channels:
red, green, blue and depth. The location of each pixel in
3D euclidean space can be computed using known sensor
parameters, meaning that in essence each RGB-D pixel is a
6-dimensional point. Each object was placed on the turntable
and rotated. Data was recorded from three viewing angles,
at approximately 30, 45 and 60 degrees with the horizon. We
used around 33 views at each viewing angle, giving around 100
views per instance, or 15900 RGB + Depth images in total,
each of which serves as a data point in training or testing.
Fig. 2 shows some example views from the data set.

B. Segmentation and Feature Extraction

Since we know that the object lies on a table, which is
a flat surface, we can segment out the object by performing
RANSAC plane fitting [7] to find the table plane and then
remove it. Next, we extract features from each view. The
presence of synchronized visual and 3D data greatly enhances
the amount of information available for performing object
recognition and our technique naturally combines multiple
features into a single framework. We first extract a set of
features capturing the shape of a view. For each RGB-D
point, we compute spin image signatures [11], which capture
the local shape information around the point. To incorporate
spatial information, we partition the points into a 3 × 3 × 3
spatial grid. To generate a final fixed length feature vector



Fig. 2. Views of objects from the RGBD data set. From left to right, top to bottom, they are apple, battery, bowl, calculator, cap, keyboard, lemon, lime,
tomato.

Category apple battery binder bowl calculator camera cap
# of Instances 5 6 3 4 5 3 4

Category cell phone cereal box comb crayon flashlight keyboard lemon
# of Instances 5 5 5 7 5 5 6

Category lime lock mug orange pear pepper pitcher
# of Instances 4 4 6 6 6 3 7

Category plate pliers potato scissor soda can sponge stapler
# of Instances 7 6 6 5 6 4 6

Category tomato toothbrush water bottle
# of Instances 5 4 6

TABLE I
THE CATEGORY AND INSTANCE COMPOSITION OF THE RGBD DATA SET.

from this set of local descriptors, we generate efficient match
kernel (EMK) features using random fourier sets as proposed
in [2]. Each grid cell has a 100-dimensional EMK feature and
so overall we obtain 27 EMK spin image descriptors each of
length 100. We also include as shape features the width, depth
and height of the segment’s bounding box. This gives us a total
of 30 shape descriptors.

To capture the visual appearance of the view, we ex-
tract densely-sampled SIFT [13] features and generate EMK
features (of fixed length 1000) with them using the same
technique described above for spin image signatures. We also
extract other visual features including color histograms and
texton histograms for a total of 42 features.

Evaluation

The learning algorithms that we evaluated are:
• IDL: Our proposed instance-based distance learning al-

gorithm with L2 regularization.
• IDL SPARSE: Sparse instance-based distance learning

learning with Group-Lasso regularization.
• NIC: The nearest instance classifier baseline described in

Section II.

Algorithm Accuracy (# / % training data retained)
IDL 84.0 (12554/100.0)

IDL SPARSE 86.5 (11572/92.1)
86.1 (9904/78.9)
86.1 (5079/40.5)
85.8 (3418/27.2)
85.2 (2384/19.0)
84.6 (2085/16.6)

NIC 51.5 (12554/100.0)
EB Local 80.0 (12554/100.0)

TABLE II
CLASSIFICATION PERFORMANCE OF OUR TECHNIQUES AND ALTERNATIVE

APPROACHES ON THE RGB-D DATA SET. IDL IS INSTANCE BASED

DISTANCE LEARNING, IDL SPARSE IS INSTANCE BASED DISTANCE

LEARNING WITH DATA SPARSITY, NIC IS NEAREST INSTANCE CLASSIFIER,
AND EB LOCAL IS EXEMPLAR-BASED LOCAL DISTANCE LEARNING.

• EB LOCAL: Exemplar-based local distance function
learning technique first proposed in [14].

For category recognition, we randomly select one instance
per category for as test data, while training on the rest, for 5
train/test splits. For instance recognition, we randomly select
80% of the views for training and test on the remaining 20%,
once again repeated for 5 train/test splits.



Features Classification Accuracy
Category Recognition Instance Recognition

Shape 71.6 68.6
Vision 73.6 85.2

Shape+Vision 84.0 93.0

TABLE III
CLASSIFICATION PERFORMANCE OF THE instance-based distance learning

TECHNIQUE WITH DIFFERENT FEATURES.

Table II shows the overall classification accuracies of the
different algorithms on the category recognition task. As can
be seen from the results, our technique significantly outper-
forms the baseline nearest mean distance and substantially
improves upon the performance of a competitive exemplar-
based local distance method. IDL SPARSE is able to sparsify
the data considerably (by almost a factor of 1

10 ) without
causing any significant loss in accuracy. The fact that IDL
SPARSE actually slightly outperforms IDL despite removing
so many data points is particularly encouraging. A histogram
of the number of examples retained for a subset of objects
(one per category) after IDL SPARSE optimization is shown
in Fig. 4. From this, it can be seen that the technique retains
a different number of examples of each object, trading off the
classification loss during training with the desired amount of
sparsity controlled by the λ parameter in front of the Group-
lasso term.

Fig. 3 shows the confusion matrices between the 31 cate-
gories for the (top) the instance-based distance learning tech-
nique (IDL) and (bottom) the instance-based distance learning
technique with data sparsification (IDL SPARSE).

In any recognition task it is important to extract the correct
set of features. However, the appropriate set of features may
be different for the two tasks. For example, if we wish to
distinguish between soda cans and keyboards, both shape and
visual information is very important. On the other hand, if
we are trying to distinguish between a Coke can and a 7up
can, the shape is completely uninformative. As described in
Section II, it is straightforward to apply IDL to the case of
multiple features. To verify that our technique is indeed able to
take advantage of both shape and visual information available
from the RGB-D camera, we additionally performed feature
ablation experiments. We evaluated the performance of the
IDL technique with only shape-based features and with only
visual-based features. Table III shows the resulting classifica-
tion accuracies for both the category and instance task. The
result of using both shape and visual features from Table II
is repeated here for ease of comparison. Consistent with our
intuitions, the relative importance of shape-based and vision-
based features differs for the two tasks, with visual appearance
being much more important for instance recognition. The fact
that combining both shape and visual features enables our
technique to perform better on both tasks demonstrates that
our technique provides a common framework for solving both
tasks.

V. DISCUSSIONS

In this work we have studied joint object category and in-
stance recognition using a large RGB-D (color+depth) dataset

of everyday objects. Our work are of interest both in terms of
algorithm design and of the empirical validations on appear-
ance and depth cues for recognition. Our key insight is that
because an object category consists of object instances, there
is a natural division of a category into subclasses, and this
motivates our use of the per-instance instance. We show that
by joining learning the weights in the per-instance distance, we
outperform local distance learning methods. The use of Group-
Lasso allows us to find a compact representation of each object
instance as a small set of views, and this sparsification further
improves recognition accuracy.

We have empirically validated our models for various
choices of objective functions and the use of vision (RGB)
and shape (depth) cues. We show that jointly shape+vision
achieves much higher performance than either set of cues
alone, for both category and instance recognition. Considering
the fast advances of RGB-D camera hardware, these results are
of great interest and send a clear message: that the combination
of RGB and depth will find many uses in object recognition
and other perception tasks. We also confirm that vision (RGB)
cues are more useful for instance recognition, where texture
plays a central role, while performing about the same as shape
cues on category recognition.

Furthermore, with the ever increasing size of data sets
available on the world wide web, sparsification of such data
will become a more and more important issue. In contrast to
online, greedy selection algorithms, we here introduce Group-
Lasso as an alternative sparsification approach. While the
current technique assumes an offline setting, the development
of online Group-Lasso style sparsification is an interesting and
promising direction for future work.
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