
A Large-Scale Hierarchical Multi-View RGB-D Object Dataset

Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox

Abstract— Over the last decade, the availability of public
image repositories and recognition benchmarks has enabled
rapid progress in visual object category and instance detection.
Today we are witnessing the birth of a new generation of
sensing technologies capable of providing high quality syn-
chronized videos of both color and depth, the RGB-D (Kinect-
style) camera. With its advanced sensing capabilities and the
potential for mass adoption, this technology represents an
opportunity to dramatically increase robotic object recognition,
manipulation, navigation, and interaction capabilities. In this
paper, we introduce a large-scale, hierarchical multi-view ob-
ject dataset collected using an RGB-D camera. The dataset
contains 300 objects organized into 51 categories and has been
made publicly available to the research community so as to
enable rapid progress based on this promising technology. This
paper describes the dataset collection procedure and introduces
techniques for RGB-D based object recognition and detection,
demonstrating that combining color and depth information
substantially improves quality of results.

I. INTRODUCTION

The availability of public image repositories on the
Web, such as Google Images and Flickr, as well as visual
recognition benchmarks like Caltech 101 [9], LabelMe [24]
and ImageNet [7] has enabled rapid progress in visual object
category and instance detection in the past decade. Similarly,
the robotics dataset repository RADISH [16] has greatly
increased the ability of robotics researchers to develop and
compare their SLAM techniques. Today we are witnessing
the birth of a new generation of sensing technologies capable
of providing high quality synchronized videos of both color
and depth, the RGB-D (Kinect-style) camera [23], [19].
With its advanced sensing capabilities and the potential for
mass adoption by consumers, driven initially by Microsoft
Kinect [19], this technology represents an opportunity to
dramatically increase the capabilities of robotics object
recognition, manipulation, navigation, and interaction. In
this paper, we introduce a large-scale, hierarchical multi-
view object data set collected using an RGB-D camera.
The dataset and its accompanying segmentation, and video
annotation software has been made publicly available to
the research community to enable rapid progress based

This work was funded in part by an Intel grant, by ONR MURI grants
N00014-07-1-0749 and N00014-09-1-1052, by the NSF under contract IIS-
0812671, and through the Robotics Consortium sponsored by the U.S. Army
Research Laboratory under Cooperative Agreement W911NF-10-2-0016.

Kevin Lai and Liefeng Bo are with the Department of Computer Sci-
ence & Engineering, University of Washington, Seattle, WA 98195, USA.
{kevinlai,lfb}@cs.washington.edu

Xiaofeng Ren is with Intel Labs Seattle, Seattle, WA 98105, USA.
xiaofeng.ren@intel.com

Dieter Fox is with both the Department of Computer Science
& Engineering, University of Washington, and Intel Labs Seattle.
fox@cs.washington.edu

Fig. 1. (Top) Each RGB-D frame consists of an RGB image (left) and the
corresponding depth image (right). (Bottom) A zoomed-in portion of the
bowl showing the difference between the image resolution of the RGB-D
camera and the Point Grey Grasshopper.

on this promising technology. The dataset is available at
http://www.cs.washington.edu/rgbd-dataset.

Unlike many existing recognition benchmarks that are
constructed using Internet photos, where it is impossible
to keep track of whether objects in different images are
physically the same object, our dataset consists of multiple
views of a set of objects. This is similar to the 3D Object
Category Dataset presented by Savarese et al. [25], which
contains 8 object categories, 10 objects in each category, and
24 distinct views of each object. The RGB-D Object Dataset
presented here is at a much larger scale, with RGB and depth
video sequences of 300 common everyday objects from
multiple view angles totaling 250,000 RGB-D images. The
objects are organized into a hierarchical category structure
using WordNet hyponym/hypernym relations.

In addition to introducing a large object dataset, we in-
troduce techniques for RGB-D based object recognition and
detection and demonstrate that combining color and depth
information can substantially improve the results achieved
on our dataset. We evaluate our techniques at two levels.
Category level recognition and detection involves classifying
previously unseen objects as belonging in the same cate-
gory as objects that have previously been seen (e.g., coffee
mug). Instance level recognition and detection is identifying
whether an object is physically the same object that has
previously been seen. The ability to recognize and detect
objects at both levels is important if we want to use such
recognition systems in the context of tasks such as service
robotics. For example, identifying an object as a generic
coffee mug or as Amelias coffee mug can have different
implications depending on the context of the task. In this
paper we use the word instance to refer to a single object.



Fig. 2. The fruit, device, vegetable, and container subtrees of the RGB-D Object Dataset object hierarchy. The number of instances in each leaf category
(shaded in blue) is given in parentheses.

Fig. 3. Objects from the RGB-D Object Dataset. Each object shown here belongs to a different category.

II. RGB-D OBJECT DATASET COLLECTION

The RGB-D Object Dataset contains visual and depth
images of 300 physically distinct objects taken from multiple
views. The chosen objects are commonly found in home and
office environments, where personal robots are expected to
operate. Objects are organized into a hierarchy taken from
WordNet hypernym/hyponym relations and is a subset of the
categories in ImageNet [7]. Fig. 2 shows several subtrees in
the object category hierarchy. Fruit and Vegetable are both
top-level subtrees in the hierarchy. Device and Container are
both subtrees under the Instrumentation category that covers
a very broad range of man-made objects. Each of the 300
objects in the dataset belong to one of the 51 leaf nodes

in this hierarchy, with between three to fourteen instances
in each category. The leaf nodes are shaded blue in Fig. 2
and the number of object instances in each category is
given in parentheses. Fig. 3 shows some example objects
from the dataset. Each shown object comes from one of the
51 object categories. Although the background is visible in
these images, the dataset also provides segmentation masks
(see Fig. 4). The segmentation procedure using combined
visual and depth cues is described in Section III.

The dataset is collected using a sensing apparatus consist-
ing of a prototype RGB-D camera manufactured by Prime-
Sense [23] and a firewire camera from Point Grey Research.
The RGB-D camera simultaneously records both color and
depth images at 640×480 resolution. In other words, each



‘pixel’ in an RGB-D frame contains four channels: red,
green, blue and depth. The 3D location of each pixel in phys-
ical space can be computed using known sensor parameters.
The RGB-D camera creates depth images by continuously
projecting an invisible infrared structured light pattern and
performing stereo triangulation. Compared to passive multi-
camera stereo technology, this active projection approach
results in much more reliable depth readings, particularly
in textureless regions. Fig. 1 (top) shows a single RGB-D
frame which consists of both an RGB image and a depth
image. Driver software provided with the RGB-D camera
ensures that the RGB and depth images are aligned and
time-synchronous. In addition to the RGB-D camera, we
also recorded data using a Point Grey Research Grasshopper
camera mounted above the RGB-D camera, providing RGB
images at a higher resolution (1600×1200). The two cameras
are calibrated using the Camera Calibration Toolbox for
Matlab [2]. To synchronize images from the two cameras, we
use image timestamps to associate each Grasshopper image
with the RGB-D frame that occurs closest in time. The RGB-
D camera collects data at 20 Hz, while the Grasshopper has
a lower framerate of arond ∼ 12 Hz. Fig. 1 (bottom) shows
a zoomed-in portion of the bowl showing the difference
between the image resolution of the RGB-D camera and the
Point Grey Grasshopper.

Using this camera setup, we record video sequences of
each object as it is spun around on a turntable at constant
speed. The cameras are placed about one meter from the
turntable. This is the minimum distance required for the
RGB-D camera to return reliable depth readings. Data was
recorded with the cameras mounted at three different heights
relative to the turntable, at approximately 30◦, 45◦ and
60◦ above the horizon. One revolution of each object was
recorded at each height. Each video sequence is recorded
at 20 Hz and contains around 250 frames, giving a total
of 250,000 RGB + Depth frames in the RGB-D Object
Dataset. The video sequences are all annotated with ground
truth object pose angles between [0, 2π] by tracking the red
markers on the turntable. A reference pose is chosen for
each category so that pose angles are consistent across video
sequences of objects in a category. For example, all videos
of coffee mugs are labeled such that the image where the
handle is on the right is 0◦.

III. SEGMENTATION

Without any post-processing, a substantial portion of the
RGB-D video frames is occupied by the background. We
use visual cues, depth cues, and rough knowledge of the
configuration between the turntable and camera to produce
fully segmented objects from the video sequences.

The first step in segmentation is to remove most of the
background by taking only the points within a 3D bounding
box where we expect to find the turntable and object, based
on the known distance between the turntable and the camera.
This prunes most pixels that are far in the background,
leaving only the turntable and the object. Using the fact
that the object lies above the turntable surface, we can

performing RANSAC plane fitting [11] to find the table
plane and take points that lie above it to be the object.
This procedure gives very good segmentation for many
objects in the dataset, but is still problematic for small, dark,
transparent, and reflective objects. Due to noise in the depth
image, parts of small and thin objects like rubber erasers
and markers may get merged into the table during RANSAC
plane fitting. Dark, transparent, and reflective objects cause
the depth estimation to fail, resulting in pixels that contain
only RGB but no depth data. These pixels would be left out
of the segmentation if we only used depth cues. Thus, we
also apply vision-based background subtraction to generate
another segmentation. The top row of Fig. 4 shows several
examples of segmentation based on depth. Several objects
are correctly segmented, but missing depth readings cause
substantial portions of the water bottle, jar and the marker
cap to be excluded.

To perform vision-based background subtraction, we
applied the adaptive gaussian mixture model of Kaew-
TraKulPong et al. [18] and used the implementation in the
OpenCV library. Each pixel in the scene is modeled with a
mixture of K gaussians that is updated as the video sequence
is played frame-by-frame. The model is adaptive and only
depends on a window W of the most recent frames. A pixel
in the current frame is classified as foreground if its value
is beyond σ standard deviations from all gaussians in the
mixture. For our object segmentation we used K = 2, W =
200, and σ = 2.5. The middle row of Fig. 4 shows several
examples of visual background subtraction. The method is
very good at segmenting out the edges of objects and can
segment out parts of objects where depth failed to do so.
However, it tends to miss the centers of objects that are
uniform in color, such as the peach in Fig. 4, and pick up
the moving shadows and markers on the turntable.

Since depth-based and vision-based segmentation each
excel at segmenting objects under different conditions, we
combine the two to generate our final object segmentation.
We take the segmentation from depth as the starting point.
We then add pixels from the visual segmentation that are
not in the background nor on the turntable by checking their
depth values. Finally a filter is run on this segmentation mask
to remove isolated pixels. The bottom row of Fig. 4 shows
the resulting segmentation using combined depth and visual
segmentation. The combined procedure provides high quality
segmentations for all the objects.

IV. VIDEO SCENE ANNOTATION

In addition to the views of objects recorded using the
turntable, the RGB-D Object Dataset also includes 8 video
sequences of natural scenes. The scenes cover common
indoor environments, including office workspaces, meeting
rooms, and kitchen areas. The video sequences were recorded
by holding the RGB-D camera at approximately human
eye-level while walking around in each scene. Each video
sequence contains several objects from the RGB-D Object
Dataset. The objects are visible from different viewpoints
and distances and may be partially or completely occluded



Fig. 4. Segmentation examples, from left to right: bag of chips, water bottle, eraser, leaf vegetable, jar, marker and peach. Segmentation using depth only
(top row), visual segmentation via background subtraction (middle row), and combined depth and visual segmentation (bottom row).

Fig. 5. 3D reconstruction of a kitchen scene with a cap highlighted in blue
and a soda can in red using the labeling tool.

Fig. 6. Ground truth bounding boxes of the cap (top) and soda can (bottom)
obtained by labeling the scene reconstruction in Fig. 5.

Video Sequence # of Frames # of Objects
Desk 1 1748 3
Desk 2 1949 3
Desk 3 2328 4

Kitchen small 1 2359 8
Meeting small 1 3530 13

Table 1 2662 8
Table small 1 2037 4
Table small 2 1776 3

Fig. 7. Number of frames and objects in the eight annotated videos of
natural scenes in the RGB-D Object Dataset.

in some frames. Fig. 7 summarizes the number of frames
and number of objects in each video sequence. In Section VI
we demonstrate that the RGB-D Object Dataset can be used
as training data for performing object detection in these
natural scenes. Here we will first describe how we annotated
these natural scenes with the ground truth bounding boxes
of objects in the RGB-D Object Dataset. Traditionally, the
computer vision community has annotated video sequences
one frame at a time. A human must tediously segment out
objects in each image using annotation software like the
LabelMe annotation tool [24] and more recently, vatic [26].
Temporal interpolation across video frames can somewhat
alleviate this, but is only effective across a small sequence of
frames if the camera trajectory is complex. Crowd-sourcing
(e.g. Mechanical Turk) can also shorten annotation time,
but does so merely by distributing the work across a larger
number of people. We propose an alternative approach.
Instead of labeling each video frame, we first stitch together
the video sequence to create a 3D reconstruction of the entire
scene, while keeping track of the camera pose of each video
frame. We label the objects in this 3D reconstruction by hand.
Fig. 5 shows the reconstruction of a kitchen scene with a
cap labeled in blue and a soda can labeled in red. Finally,
the labeled 3D points are projected back into the known
camera poses in each video frame and this segmentation can
be used to compute an object bounding box. Fig. 6 shows
some bounding boxes obtained by projecting the labeled 3D
points in Fig. 5 into several video frames.

Our labeling tool uses the technique proposed by Henry
et al. [15] to construct 3D scene models from the RGB-
D video frames. The RGB-D mapping technique consists
of two key components: 1) spatial alignment of consecutive
video frames, and 2) globally consistent alignment of the
complete video sequence. Successive frames are aligned by
jointly optimizing over both appearance and shape matching.
Appearance-based alignment is done with RANSAC over
SIFT features annotated with 3D position (3D SIFT). Shape-
based alignment is performed through Iterative Closest Point



Classifier Shape Vision All
Category

LinSVM 53.1± 1.7 74.3± 3.3 81.9± 2.8
kSVM 64.7± 2.2 74.5± 3.1 83.8± 3.5

RF 66.8± 2.5 74.7± 3.6 79.6± 4.0
Instance (Alternating contiguous frames)

LinSVM 32.4± 0.5 90.9± 0.5 90.2± 0.6
kSVM 51.2± 0.8 91.0± 0.5 90.6± 0.6

RF 52.7± 1.0 90.1± 0.8 90.5± 0.4
Instance (Leave-sequence-out)

LinSVM 32.3 59.3 73.9
kSVM 46.2 60.7 74.8

RF 45.5 59.9 73.1

Fig. 8. Category and instance recognition performance of various classifiers
on the RGB-D Object Dataset using shape features, visual features, and with
all features. LinSVM is linear SVM, kSVM is gaussian kernel SVM, RF is
random forest.

(ICP) using a point-to-plane error metric [5]. The initial
alignment from 3D SIFT matching is used to initialize ICP-
based alignment. Henry et al. [15] show that this allows the
system to handle situations in which only vision or shape
alone would fail to generate good alignments. Loop closures
are performed by matching video frames against a subset
of previously collected frames using 3D SIFT. Globally
consistent alignments are generated with TORO, a pose-
graph optimization tool developed for robotics SLAM [13].

The overall scene is built using small colored surface
patches called surfels [22] as opposed to keeping all the raw
3D points. This representation enables efficient reasoning
about occlusions and color for each part of the environment,
and provides good visualizations of the resulting model. The
labeling tool displays the scene in this surfel representation.
When the user selects a set of surfels to be labeled as an
object, they are projected back into each video frame using
transformations computed during the scene reconstruction
process. Surfels allow efficient occlusion reasoning to de-
termine whether the labeled object is visible in the frame
and if so, a bounding box is generated.

V. OBJECT RECOGNITION USING THE RGB-D OBJECT
DATASET

The goal of this task is to test whether combining RGB and
depth is helpful when the well segmented or cropped object
images are available. To the best of our knowledge, the RGB-
D Object Dataset presented here is the largest multi-view
dataset of objects where both RGB and depth images are
provided for each view. To demonstrate the utility of having
both RGB and depth information, in this section we present
object recognition results on the RGB-D Object dataset using
several different classifiers with only shape features, only
visual features, and with both shape and visual features.

In object recognition the task is to assign a label (or
class) to each query image. The possible labels that can
be assigned are known ahead of time. State-of-the-art ap-
proaches to tackling this problem are usually supervised
learning systems. A set of images are annotated with their

ground truth labels and given to a classifier, which learns
a model for distinguishing between the different classes.
We evaluate object recognition performance at two levels:
category recognition and instance recognition. In category
level recognition, the system is trained on a set of objects.
At test time, the system is presented with an RGB and
depth image pair containing an object that was not present in
training and the task is to assign a category label to the image
(e.g. coffee mug or soda can). In instance level recognition,
the system is trained on a subset of views of each object.
The task here is to distinguish between object instances (e.g.
Pepsi can, Mountain Dew can, or Aquafina water bottle). At
test time, the system is presented with an RGB and depth
image pair that contains a previously unseen view of one of
the objects and must assign an instance label to the image.

We subsampled the turntable data by taking every fifth
video frame, giving around 45000 RGB-D images. For
category recognition, we randomly leave one object out from
each category for testing and train the classifiers on all
views of the remaining objects. For instance recognition, we
consider two scenarios:

• Alternating contiguous frames: Divide each video into
3 contiguous sequences of equal length. There are 3
heights (videos) for each object, so this gives 9 video
sequences for each instance. We randomly select 7 of
these for training and test on the remaining 2.

• Leave-sequence-out: Train on the video sequences of
each object where the camera is mounted 30◦ and
60◦ above the horizon and evaluate on the 45◦ video
sequence.

We average accuracies across 10 trials for category recog-
nition and instance recognition with alternating contiguous
frames. There is no randomness in the data split for leave-
sequence-out instance recognition so we report numbers for
a single trial.

Each image is a view of an object and we extract one
set of features capturing the shape of the view and another
set capturing the visual appearance. We use state-of-the-art
features including spin images [17] from the shape retrieval
community and SIFT descriptors [21] from the computer
vision community. Shape features are extracted from the 3D
locations of each depth pixel in physical space, expressed in
the camera coordinate frame. We first compute spin images
for a randomly subsampled set of 3D points. Each spin image
is centered on a 3D point and captures the spatial distribution
of points within its neighborhood. The distribution, captured
in a two-dimensional 16 × 16 histogram, is invariant to
rotation about the point normal. We use these spin images
to compute efficient match kernel (EMK) features using
random fourier sets as proposed in [1]. EMK features are
similar to bag-of-words (BOW) features in that they both
take a set of local features (here spin images) and generate a
fixed length feature vector describing the bag. EMK features
approximate the gaussian kernel between local features and
gives a continuous measure of similarity. To incorporate
spatial information, we divide an axis-aligned bounding cube



around each view into a 3×3×3 grid. We compute a 1000-
dimensional EMK feature in each of the 27 cells separately.
We perform principal component analysis (PCA) on the
EMK features in each cell and take the first 100 components.
Finally, we include as shape features the width, depth and
height of a 3D bounding box around the view. This gives us
a 2703-dimensional shape descriptor.

To capture the visual appearance of a view, we extract
SIFT on a dense grid of 8 × 8 cells. To generate image-
level features and capture spatial information we compute
EMK features on two image scales. First we compute a
1000-dimensional EMK feature using SIFT descriptors from
the entire image. Then we divide the image into a 2 × 2
grid and compute EMK features separately in each cell from
only the SIFT features inside the cell. We perform PCA
on each cell and take the first 300 components, giving a
1500-dimensional EMK SIFT feature vector. Additionally,
we extract texton histograms [20] features, which capture
texture information using oriented gaussian filter responses.
The texton vocabulary is built from an independent set of
images on LabelMe. Finally, we include a color histogram
and also use the mean and standard deviation of each color
channel as visual features.

We evaluate the category and instance recognition per-
formance of three state-of-the-art classifiers: linear support
vector machine (LinSVM), gaussian kernel support vector
machine (kSVM) [8], [4], random forest (RF) [3], [12]. Fig. 8
shows the classification performance of these classifiers
using only shape features, only visual features, and using
both shape and visual features. Overall visual features are
more useful than shape features for both category level
and instance level recognition. However, shape features are
relatively more useful in category recognition, while visual
features are relatively more effective in instance recognition.
This is exactly what we should expect, since a particular
object instance has a fairly constant visual appearance across
views, while objects in the same category can have dif-
ferent texture and color. On the other hand, shape tends
to be stable across a category in many cases. The most
interesting and significant conclusion is that combining both
shape and visual features gives higher overall category-
level performance regardless of classification technique. The
features compliment each other, which demonstrates the
value of a large-scale dataset that can provide both shape
and visual information. For alternating contiguous frames
instance recognition, using visual features alone already
gives very high accuracy, so including shape features does
not increase performance. The leave-sequence-out evaluation
is much more challenging, and here combining shape and
visual features significantly improves accuracy.

We also ran a nearest neighbor classifier under the same
experimental setup and using the same set of features and
found that it performs much worse than learning-based
approaches. For example, its performance on leave-sequence-
out instance recognition when using all features is 43.2%,
much worse than the accuracies reported in Fig. 8.

Fig. 9. Original depth image (left) and filtered depth image using a
recursive median filter (right). The black pixels in the left image are missing
depth values.

VI. OBJECT DETECTION USING THE RGB-D OBJECT
DATASET

We now demonstrate how to use the RGB-D OBject
Dataset to perform object detection in real-world scenes.
Given an image, the object detection task is to identify and
localize all objects of interest. Like in object recognition,
the objects belong to a fixed set of class labels. The object
detection task can also be performed at both the category
and the instance level. Our object detection system is based
on the standard sliding window approach [6], [10], [14],
where the system evaluates a score function for all positions
and scales in an image, and thresholds the scores to obtain
object bounding boxes. Each detector window is of a fixed
size and we search across 20 scales on an image pyramid.
For efficiency, we here consider a linear score function (so
convolution can be applied for fast evaluation on the image
pyramid). We perform non-maximum suppression to remove
multiple overlapping detections.

Let H be the feature pyramid and p the position of a
subwindow. p is a three-dimensional vector: the first two
dimensions is the top-left position of the subwindow and the
third one is the scale of the image. Our score function is

sw(p) = w>φ(H, p) + b (1)

where w is the filter (weights), b the bias term, and φ(H, p)
the feature vector at position p. We train the filter w using
a linear support vector machine (SVM):

L(w) =
w>w

2
+ C

N∑
i=1

max(0, 1− yi(w>xi + b)) (2)

where N is the training set size, yi ∈ {−1, 1} the labels, xi
the feature vector over a cropped image, and C the trade-off
parameter.

The performance of the classifier heavily depends on the
data used to train it. For object detection, there are many
potential negative examples. A single image can be used
to generate 105 negative examples for a sliding window
classifier. Therefore, we follow a bootstrapping hard neg-
ative mining procedure. The positive examples are object
windows we are interested in. The initial negative examples
are randomly chosen from background images and object
images from other categories/instances. The trained classifier
is used to search images and select the false positives with the
highest scores (hard negatives). These hard negatives are then
added to the negative set and the classifier is retrained. This
procedure is repeated 5 times to obtain the final classifier.



Fig. 10. Precision-recall curves comparing performance with image features only (red), depth features only (green), and both (blue). The top row
shows category-level results. From left to right, the first two plots show precision-recall curves for two binary category detectors, while the last plot
shows precision-recall curves for the multi-category detector. The bottom row shows instance-level results. From left to right, the first two plots show
precision-recall curves for two binary instance detectors, while the last plot shows precision-recall curves for the multi-instance detector.

Fig. 11. Three detection results in multi-object scenes. From left to right, the first two images show multi-category detection results, while the last image
shows multi-instance detection results.

As features we use a variant of histogram of oriented
gradients (HOG) [10], which has been found to work slightly
better than the original HOG. This version considers both
contrast sensitive and insensitive features, where the gradient
orientations in each cell (8×8 pixel grid) are encoded using
two different quantization levels into 18 (0◦ − 360◦) and
9 orientation bins (0◦ − 180◦), respectively. This yields a
4 × (18 + 9) = 108-dimensional feature vector. A 31-D
analytic projection of the full 108-D feature vectors is used.
The first 27 dimensions correspond to different orientation
channels (18 contrast sensitive and 9 contrast insensitive).
The last 4 dimensions capture the overall gradient energy in
four blocks of 2× 2 cells.

Aside from HOG over RGB image, we also compute
HOG over depth image where each pixel value is the actual
object-to-camera distance. Before extracting HOG features,
we need to fill up the missing values in the depth image.
Since the missing values tend to be grouped together, we
here develop a recursive median filter. Instead of considering
all neighboring pixel values, we take the median of the
non-missing values in a 5 × 5 grid centered on the current
pixel. We apply this median filter recursively until all missing
values are filled. An example original depth image and the
filtered depth image are shown in Fig. 9.

Finally, we also compute a feature capturing the scale (true
size) of the object. We make the observation that the distance

d of an object from the camera is inversely proportional to
its scale, o. For an image at a particular scale s, we have
c = o

sd, where c is constant. In the sliding window approach
the detector window is fixed, meaning that o is fixed. Hence,
d
s , which we call the normalized depth, is constant. Since the
depth is noisy, we use a histogram of normalized depths over
8× 8 grid to capture scale information. For each pixel in a
given image, d is fixed, so the normalized depth histogram
can choose the correct image scale from the image pyramid.
We used a histogram of 20 bins with each bin having a range
of 0.15m. Helmer et al. [14] used depth information to define
a score function. However, the method of exploiting depth
information is very different from our approach: Helmer et
al. used depth information as a prior while we construct a
scale histogram feature from normalized depth values.

We evaluated the above object detection approach on the 8
natural scene video sequences described in Section IV. Since
consecutive frames are very similar, we subsample the video
data and run our detection algorithm on every 5th frame.
We constructed 4 category-level detectors (bowl, cap, coffee
mug,and soda can) and 20 instance-level detectors from
the same categories. We follow the PASCAL Visual Object
Challenge (VOC) evaluation metric. A candidate detection
is considered correct if the size of the intersection of the
predicted bounding box and the ground truth bounding box
is more than half the size of their union. Only one of



multiple successful detections for the same ground truth is
considered correct, the rest are considered as false positives.
We report precision-recall curves and average precision,
which is computed from the precision-recall curve and is
an approximation of the area under this curve. For multiple
category/instance detections, we pool all candidate detection
across categories/instances and images to generate a single
precision-recall curve.

In Fig. 10 we show precision-recall curves comparing
detection performance with a classifier trained using image
features only (red), depth features only (green), and both
(blue). We found that depth features (HOG over depth image
and normalized depth histograms) are much better than HOG
over RGB image. The main reason for this is that in depth
images strong gradients are mostly from true object bound-
aries (see Fig. 9), which leads to much less false positives
compared to HOG over RGB image, where color change
can also lead to strong gradients. The best performance
is attained by combining image and depth features. The
combination gives higher precision across all recall levels
than image only and depth only, if not comparable. In
particular, combining image and depth features gives much
higher precision when high recall is desired.

Fig. 11 shows multi-object detection results in three
scenes. The leftmost scene contains three objects observed
from a viewpoint significantly different than was seen in the
training data. The multi-category detector is able to correctly
detect all three objects, including a bowl that is partially
occluded by a cereal box. The middle scene shows category-
level detections in a very cluttered scene with many distracter
objects. The system is able to correctly detect all objects
except the partially occluded white bowl that is far away
from the camera. Notice that the detector is able to identify
multiple instances of the same category (caps and soda cans).
The rightmost scene shows instance-level detections in a
cluttered scene. Here the system was able to correctly detect
both the bowl and the cap, even though the cap is partially
occluded by the bowl. Our current single-threaded imple-
mentation takes approximately 10 seconds to run the four
object detectors to label each scene. Both feature extraction
over a regular grid and evaluating a sliding window detector
are easily parallelizable. We are confident that a GPU-based
implementation of the the described approach can perform
multi-object detection in real-time.

VII. DISCUSSION

In this paper, we have presented a large-scale, hierarchical
multi-view object dataset collected using an RGB-D camera.
We have shown that depth information is very helpful for
background subtraction, video ground truth annotation via
3D reconstruction, object recognition and object detection.
The RGB-D Object Dataset and a set of tools, which are
fully integrated into the Robot Operating System (ROS), for
accessing and processing the dataset is publicly available at
http://www.cs.washington.edu/rgbd-dataset.

REFERENCES

[1] L. Bo and C. Sminchisescu. Efficient Match Kernel between Sets of
Features for Visual Recognition. In Advances in Neural Information
Processing Systems (NIPS), December 2009.

[2] Jean-Yves Bouguet. Camera calibration toolbox for matlab. http:
//www.vision.caltech.edu/bouguetj/calib_doc/.

[3] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
[4] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support

vector machines, 2001.
[5] Y. Chen and M. Gérard. Object modelling by registration of multiple

range images. Image Vision Comput., 10(3):145–155, 1992.
[6] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2005.

[7] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-fei. ImageNet:
A Large-Scale Hierarchical Image Database. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009.

[8] R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. Liblinear: A library
for large linear classification. Journal of Machine Learning Research
(JMLR), 9:1871–1874, 2008.

[9] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object
categories. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 28(4):594–611, 2006.

[10] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively
trained, multiscale, deformable part model. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2008.

[11] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6):381–395, 1981.

[12] Yoav Freund and Robert E. Schapire. Experiments with a new boosting
algorithm. In International Conference on Machine Learning (ICML),
pages 148–156, 1996.

[13] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, and W. Burgard.
Estimation of accurate maximum likelihood maps in 3d. In IEEE
International Conference on Intelligent Robots and Systems (IROS),
2007.

[14] Scott Helmer and David G. Lowe. Using stereo for object recognition.
In IEEE International Conference on Robotics & Automation (ICRA),
pages 3121–3127, 2010.

[15] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. RGB-D
Mapping: Using depth cameras for dense 3D modeling of indoor
environments. In the 12th International Symposium on Experimental
Robotics (ISER), December 2010.

[16] A. Howard and N. Roy. The robotics data set repository (radish),
2003.

[17] A. Johnson and M. Hebert. Using spin images for efficient object
recognition in cluttered 3D scenes. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 21(5), 1999.

[18] P. Kaewtrakulpong and R. Bowden. An improved adaptive background
mixture model for realtime tracking with shadow detection. In
European Workshop on Advanced Video Based Surveillance Systems,
2001.

[19] Microsoft Kinect. http://www.xbox.com/en-us/kinect.
[20] T. Leung and J. Malik. Representing and recognizing the visual

appearance of materials using three-dimensional textons. Int. J.
Comput. Vision, 43(1):29–44, June 2001.

[21] David G. Lowe. Object recognition from local scale-invariant features.
In IEEE International Conference on Computer Vision (ICCV), 1999.

[22] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface
elements as rendering primitives. In ACM Transactions on Graphics
(Proc. of SIGGRAPH), 2000.

[23] PrimeSense. http://www.primesense.com/.
[24] B. Russell, K. Torralba, A. Murphy, and W. Freeman. Labelme:

a database and web-based tool for image annotation. International
Journal of Computer Vision, 77(1-3), 2008.

[25] S. Savarese and Li Fei-Fei. 3d generic object categorization, local-
ization and pose estimation. In IEEE International Conference on
Computer Vision (ICCV), pages 1–8, 2007.

[26] C. Vondrick, D. Ramanan, and D. Patterson. Efficiently scaling
up video annotation with crowdsourced marketplaces. In European
Conference on Computer Vision (ECCV), 2010.


