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Abstract
Over the last years, object detection has become a more and more active field

of research in robotics. An important problem in object detection is the need for
sufficient labeled training data to learn good classifiers. In this paper we show how
to significantly reduce the need for manually labeled training data by leveraging
data sets available on the World Wide Web. Specifically, we show how to use ob-
jects from Google’s 3D Warehouse to train an object detection system for 3D point
clouds collected by robots navigating through both urban and indoor environments.
In order to deal with the different characteristics of the web data and the real robot
data, we additionally use a small set of labeled point clouds and perform domain
adaptation. Our experiments demonstrate that additional data taken from the 3D
Warehouse along with our domain adaptation greatly improves the classification
accuracy on real-world environments.

1 Introduction
In order to operate safely and efficiently in populated urban and indoor environments,
autonomous robots must be able to distinguish between objects such as cars, people,
buildings, trees, chairs and furniture. The ability to identify and reason about objects in
their environment is extremely useful for autonomous cars driving on urban streets as
well as robots navigating through pedestrian areas or operating in indoor environments.
Domestic housekeeping and elderly care robots will need the ability to detect, classify
and locate common objects found in indoor environments if they are to perform useful
tasks for people. A key problem in this context is the availability of sufficient labeled
training data to learn classifiers. Typically, this is done by manually labeling data
collected by the robot, eventually followed by a procedure to increase the diversity of
that data set (Sapp et al., 2008). However, data labeling is error prone and extremely
tedious. We thus conjecture that relying solely on manually labeled data does not scale
to the complex environments robots will be deployed in.

The goal of this research is to develop techniques that significantly reduce the need
for labeled training data for classification tasks in robotics by leveraging data available
on the World Wide Web. Unfortunately, this is not as straightforward as it seems.
A key problem is the fact that the data available on the World Wide Web is often very
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Figure 1: (Upper row) Part of a 3D laser scan taken in an urban environment (ground
plane points shown in cyan). The scan contains multiple cars, a person, a fence, and
trees in the background. (lower row) Example models from Google’s 3D Warehouse.

different from that collected by a mobile robot. For instance, a robot navigating through
an urban environment will often observe cars and people from very close range and at
angles different from those typically available in data sets such as LabelMe (Russell
et al., 2008). Furthermore, weather and lighting conditions might differ significantly
from web-based images.

The difference between web-based data and real data collected by a robot is even
more obvious in the context of classifying 3D point cloud data. A number of online
shape databases have emerged in recent years, including the Princeton Shape Bench-
mark (Shilane et al., 2004) and Google’s 3D Warehouse (Google, 2008). Google’s 3D
Warehouse is particularly promising, as it is a publicly available database where any-
one can contribute models created using Google’s SketchUp 3D modeling program.
It already contains tens of thousands of user-contributed models such as cars, street
signs, furniture, and common household objects. In this paper, we use objects from
Google’s 3D Warehouse to help classify 3D point clouds collected by mobile robots in
both urban terrain (see Fig. 1) and an indoor tabletop scenario (see Fig. 2). We would
like to leverage such an extremely rich source of freely available and labeled training
data. However, virtually all objects in this dataset are created manually and thus do not
accurately reflect the data observed by actual range sensing devices.

2



Figure 2: (Upper row) Part of a point cloud taken in an indoor environment (table plane
points shown in cyan). The scan contains a single soda can. (lower row) Example
models from Google’s 3D Warehouse.

The aim of domain adaptation is to use large sets of labeled data from one domain
along with a smaller set of labeled data from the target domain to learn a classifier that
works well on the target domain. In this paper we show how domain adaptation can be
applied to the problem of object detection in 3D point clouds. The key idea of our ap-
proach is to learn a classifier based on objects from Google’s 3D Warehouse along with
a small set of labeled point clouds. Our classification technique builds on an exemplar-
based approach developed for visual object recognition (Malisiewicz and Efros, 2008).
To obtain a final labeling of individual 3D points, our system first labels a soup of seg-
ments (Malisiewicz and Efros, 2007) extracted from the point cloud. Each segment is
classified based on the labels of exemplars that are “close” to it. Closeness is measured
via a learned distance function for spin image signatures (Johnson and Hebert, 1999;
Assfalg et al., 2007) and other shape features. We show how the learning technique
can be extended to enable domain adaptation. In the experiments we demonstrate that
additional data taken from the 3D Warehouse along with our domain adaptation greatly
improves the classification accuracy on point clouds of real-world environments.

This paper makes the following key contributions:

• We introduce an exemplar-based approach to object recognition and scene un-
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derstanding in 3D point clouds. To do so, we enhance a technique developed for
visual object recognition with 3D shape features and introduce a probabilistic,
exemplar-based classification method. Our resulting approach significantly out-
performs alternative techniques such as boosting and support vector machines.

• We demonstrate how to leverage large, human-generated datasets such as Google’s
3D Warehouse to further increase the performance of shape-based object recog-
nition. To do so, we introduce two techniques for domain adaptation, one based
on previous work done in the context of natural language processing and one we
developed specifically for our exemplar-based approach.

This paper is organized as follows. In the next section, we provide background on
exemplar-based learning and on the point cloud segmentation method used in our sys-
tem. Then, in Section 3, we show how the exemplar-based technique can be extended
to the domain adaptation setting. Section 4 introduces a method for probabilistic clas-
sification. Experimental results are presented in Section 5, followed by a discussion of
related work and conclusions.

2 Learning Exemplar-based Distance Functions for 3D
Point Clouds

In this section we describe the details of our approach to point cloud classification.
We review the exemplar-based recognition technique introduced in Malisiewicz and
Efros (2008). While the approach was developed for vision-based recognition tasks,
we show how to adapt the method to object recognition in point clouds. In a nutshell,
the approach takes a set of labeled segments and learns a distance function for each
segment, where the distance function is a linear combination of feature differences.
The weights of this function are learned such that the decision boundary maximizes
the margin between the associated subset of segments belonging to the same class and
segments belonging to other classes.

2.1 Point Cloud Segmentation and Feature Extraction
Given a 3D point cloud of a scene, we first segment out points belonging to the ground
from points belonging to potential objects of interest. In our indoor dataset, we assume
that the objects are located on a table, which allows us to extract the ground plane
via straightforward RANSAC plane fitting. For the more complex outdoor scenes, we
first bin the points into grid cells of size 25 × 25 × 25cm3, and run RANSAC plane
fitting (Fischler and Bolles, 1981) on each cell to find the surface orientations of each
grid cell. We take only the points belonging to grid cells whose orientations are less
than 30 degrees with the horizontal and run RANSAC plane fitting again on all of
these points to obtain the final ground plane estimation. The assumption here is that
the ground has a slope of less than 30 degrees, which is usually the case and certainly
for our data sets. Points close to the extracted plane are labeled as “ground” and not
considered in the remainder of our approach. Fig. 1 displays a Velodyne LIDAR scan
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Figure 3: (left) Point cloud of a car extracted from a laser scan. (right) Segmentation
via mean-shift. The soup of segments additionally contains a merged version of these
segments.

of a street scene with the extracted ground plane points shown in cyan, while Fig. 2
shows a point cloud of an indoor scene.

Since the extent of each object is unknown, we perform segmentation to obtain indi-
vidual object hypotheses. We experimented with the mean-shift clustering (Comaniciu
and Meer, 2002) and normalized cuts (Shi and Malik, 2000) algorithms at various pa-
rameter settings and found that the former provided better segmentation. In the context
of vision-based recognition, (Malisiewicz and Efros, 2007) showed that it is beneficial
to generate multiple possible segmentations of a scene, rather than relying on a single,
possibly faulty segmentation. Similar to their technique, we generate a “soup of seg-
ments” using mean-shift clustering and considering merges between clusters of up to 3
neighboring segments. An example segmentation of a car automatically extracted from
a complete scan is shown in Fig. 3. The soup also contains a segment resulting from
merging the two segments.

We next extract a set of features capturing the shape of a segment. For each point,
we compute spin image features (Johnson and Hebert, 1999), which are 16 × 16 ma-
trices describing the local shape around that point. Following the technique introduced
by Assfalg et al. (2007) in the context of object retrieval, we compute for each point a
spin image signature, which compresses information from its spin image down to an
18-dimensional vector. Representing a segment using the spin image signatures of all
its points would be impractical, so the final representation of a segment is composed
of a smaller set of spin image signatures. In Assfalg et al. (2007), this final set of sig-
natures is obtained by clustering all spin image signatures describing an object. The
resulting representation is rotation-invariant, which is beneficial for object retrieval.
However, in our case the objects of concern usually appear in a constrained range of
orientations. Cars and trees are unlikely to appear upside down, for example. The
orientation of a segment is actually an important distinguishing feature and so unlike
in Assfalg et al. (2007), we partition the points into a 3 × 3 × 3 grid and perform k-
means clustering on the spin image signatures within each grid cell, with a fixed k = 3.
Thus, we obtain for each segment 3 · 3 · 3 = 27 shape descriptors of length 3 · 18 = 54
each. We also include as features the width, depth and height of the segment’s bound-
ing box, as well as the segment’s minimum height above the ground. This gives us a
total of 27 + 4 = 31 descriptors.
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Figure 4: (left) Tree model from the 3D Warehouse and (right) point cloud extracted
via ray casting.

To obtain similar representations of models in the 3D Warehouse, we perform ray
casting on the models to generate point clouds and then perform the same procedure
described in the previous paragraph (see Fig. 4).

2.2 Learning the Distance Function
Assume we have a set of n labeled point cloud segments, E = {e1, e2, . . . , en}. We
refer to these segments as exemplars, e, since they serve as examples for the appearance
of segments belonging to a certain class. Let fe denote the features describing an
exemplar e, and let fz denote the features of an arbitrary segment z, which could also
be an exemplar. dez is the vector containing component-wise, L2 distances between
individual features describing e and z: dez[i] = ||fe[i]− fz[i]||. In our case, features fe
and fz are the 31 descriptors describing segment e and segment z, respectively. dez is a
31+1 dimensional distance vector where each component, i, is theL2 distance between
feature i of segments e and z, with an additional bias term as described in Malisiewicz
and Efros (2008). Distance functions between two segments are linear functions of
their distance vector. Each exemplar has its own distance function, De, specified by
the weight vector we:

De(z) = wT
e dez (1)

Note that since each exemplar has its own set of weights, the functions do not define
a true distance metric, as it is asymmetric. Instead, a given exemplar e’s function
evaluates the similarity of other exemplars to e based on a particular weighing of feature
differences learned specifically for e. This is advantageous since different exemplars
may have different sets of features that are better for distinguishing itself from other
exemplars.

To learn the weights of this distance function, it is useful to define a binary vector
αe, the length of which is given by the number of exemplars with the same label as e.
During learning, αe is non-zero for those exemplars that are in e’s class and that should
be similar to e, and zero for those that are in the same class but considered irrelevant
for exemplar e. The key idea behind these vectors is that even within a class, different
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segments can have very different feature appearance. This could depend, for example,
on the angle from which an object is observed.

The values of αe and we are determined for each exemplar separately by the fol-
lowing optimization:

{w∗e ,α∗e} = argmin
we,αe

∑
i∈Ce

αeiL(−wT
e dei) +

∑
i 6∈Ce

L(wT
e dei)

subject to we ≥ 0; αei ∈ {0, 1};
∑

i

αei = K (2)

Here, Ce is the set of examplars that belong to the same class as e, αei is the i-th
component of αe, and L is the squared hinge loss function. The constraints ensure
that K values of αe are non-zero. In (2), the K positive exemplars are considered
via the non-zero terms in the first summation, and the negative exemplars are given in
the second summation. The resulting optimization aims at maximizing the margin of
a decision boundary that has K segments from e’s class on one side, while keeping
exemplars from other classes on the other side. The optimization procedure alternates
between two steps. The αe vector in the k-th iteration is chosen such that it minimizes
the first sum in (2):

αk
e = argmin

αe

∑
i∈Ce

αeiL(−wkT
e dei) (3)

This is done by simply setting αk
e to 1 for the K smallest values of L(−wT

e dei), and
setting it to zero otherwise. The next step fixes αe to αk

e and optimizes (2) to yield the
new wk+1

e :

wk+1
e = argmin

we

∑
i:∈Ce

αk
eiL(−wT

e dei) +
∑
i 6∈Ce

L(wT
e dei) (4)

When choosing the loss function L to be the squared hinge loss function, this optimiza-
tion yields standard Support Vector Machine learning (Boser et al., 1992). The iterative
procedure converges when αk

e = αk+1
e . Malisiewicz and Efros (2008) showed that the

learned distance functions provide excellent recognition results for image segments.

3 Domain Adaptation
So far, the approach assumes that the exemplars in the training set E are drawn from the
same distribution as the segments on which the approach will be applied. While this
worked well in Malisiewicz and Efros (2008), it does not perform well when training
and test domain are significantly different. In our scenario, for example, the classifica-
tion is applied to segments extracted from 3D point clouds, while most of the training
data is extracted from the 3D Warehouse data set. As we will show in the experimental
results, combining training data from both domains can improve classification over just
using data from either domain, but this performance gain cannot be achieved by simply
combining data from the two domains into a single training set.
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In general, we distinguish between two domains. The first one, the target domain,
is the domain on which the classifier will be applied after training. The second domain,
the source domain, differs from the target domain but provides additional data that can
help to learn a good classifier for the target domain. In our context, the training data
now consists of exemplars chosen from these two domains: E = Et ∪ Es. Here, Et

contains exemplars from the target domain, that is, labeled segments extracted from
the real laser data. Es contains segments extracted from the 3D Warehouse. As typical
in domain adaptation, we assume that we have substantially more labeled data from
the source domain than from the target domain: |Es| � |Et|. We now describe two
methods for domain adaptation in the context of the exemplar-based learning technique.

3.1 Domain Adaptation via Feature Augmentation
Daumé III (2007) introduced feature augmentation as a general approach to domain
adaptation. It is extremely easy to implement and has been shown to outperform var-
ious other domain adaptation techniques and to perform as well as the thus far most
successful approach to domain adaptation (Daumé III and Marcu, 2006). The approach
performs adaptation by generating a stacked feature vector from the original features
used by the underlying learning technique. Specifically, let fe be the feature vector
describing exemplar e. The approach in Daumé III (2007) generates a stacked vector
f∗e as follows:

f∗e =

 fe
fs
e

f t
e

 (5)

Here, fs
e = fe if e belongs to the source domain, and fs

e = 0 if it belongs to the target
domain. Similarly, f t

e = fe if e belongs to the target domain, and f t
e = 0 otherwise.

Using the stacked feature vector, it becomes clear that exemplars from the same domain
are automatically closer to each other in feature space than exemplars from different
domains. Daumé III (2007) argued that this approach works well since data points
from the target domain have more influence than source domain points when making
predictions about test data.

3.2 Domain Adaptation for Exemplar-based Learning
We now present a method for domain adaptation specifically designed for the exemplar-
based learning approach. The key difference between our domain adaptation technique
and the single domain approach described in Section 2 lies in the specification of the
binary vector αe. Instead of treating all exemplars in the class of e the same way, we
distinguish between exemplars in the source and the target domain. Specifically, we
use the binary vectors αs

e and αt
e for the exemplars in these two domains. The domain

adaptation objective becomes

{w∗e ,αs∗
e ,α

t∗
e } =

argmin
we,αs

e,αt
e

∑
i∈Cs

e

αs
eiL(−wT

e dei) +
∑
i∈Ct

e

αt
eiL(−wT

e dei) +
∑
i 6∈Ce

L(wT
e dei) , (6)

8



where Cs
e and Ct

e are the source and target domain exemplars with the same label as e.
The constraints are virtually identical to those for the single domain objective (2), with
the constraints on the vectors becoming

∑
i αs

ei = Ks and
∑

i αt
ei = Kt. The values

forKs andKt give the number of source and target exemplars that must be considered
during the optimization.

The subtle difference between (6) and (2) has a substantial effect on the learned
distance function. To see this, imagine the case where we train the distance function
of an exemplar from the source domain. Naturally, this exemplar will be closer to
source domain exemplars from the same class than to target domain exemplars from
that class. In the extreme case, the vectors determined via (3) will contain 1s only
for source domain exemplars, while they are zero for all target domain exemplars.
The single domain training algorithm will thus not take target domain exemplars into
account and learn distance functions for source domain exemplars that are good in
classifying source domain data. There is no incentive to make them classify target
domain exemplars well. By keeping two differentα-vectors, we can force the algorithm
to optimize for classification on the target domain as well. The values for Ks and Kt

allow us to trade off the impact of target and source domain data. They are determined
via grid search using cross-validation, where the values that maximize the area under
the precision-recall curve are chosen.

The learning algorithm is very similar to the single domain algorithm. In the k-
th iteration, optimization of the α-vectors is done by setting αs k

e and αt k
e to 1 for the

exemplars yielding theKs andKt smallest loss values, respectively. Then, the weights
wk+1

e are determined via convex SVM optimization (Keerthi et al., 2006) using the
most recent α-vectors within (6).

4 Probabilistic Classification
To determine the class of a new segment, z, we first determine the set of associated ex-
emplars, which are those for whichDe(z) ≤ 1. This corresponds to all exemplars e for
which z fall on e’s side of the decision boundary. Malisiewicz and Efros (2008) showed
that this threshold is not only natural, but also empirically gave good performance. We
found this to be the case as well.

In Malisiewicz and Efros (2008), segment z is labeled with the majority class
among the associated exemplars. However, this approach does not model the reliability
of individual exemplars and does not lend itself naturally to a probabilistic interpreta-
tion. Furthermore, it does not take into account that the target domain is different from
the source domain.

To overcome these limitations, we choose the following Naı̈ve Bayes model over
exemplars. We define the class-conditional probability for each exemplar e in the train-
ing set to be

p(e | c) :=
| {e′ | De(e′) ≤ 1} |

Nc
, (7)

where e′ are target domain training exemplars in class c and Nc is the number of target
domain training exemplars in class c. (7) states that the class-conditional probability is
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the proportion of exemplars e′ in class c that are close to e (De(e′) ≤ 1). We use only
target domain exemplars because the ultimate goal is to label segments from the target
domain only.

Given a set of exemplars E , the class-conditional probability of a test segment z is
defined to be

p(z | c) :=
∏

e∈E ∧ De(z)≤1

p(e | c) /
∑
c′

∏
e∈E ∧ De(z)≤1

p(e | c′). (8)

Here we have assumed independence between the class-conditional probability dis-
tributions over exemplars. Intuitively, the class-conditional distribution of z should be
similar to that of exemplars that are similar to it and (8) captures this. The denominator
is a normalization factor to ensure that we have indeed defined a probability distribu-
tion. Applying Bayes’ rule, the probability that segment z belongs to class c is simply

p(c | z) =
p(c) p(z | c)∑
c′ p(c′) p(z | c′)

. (9)

The prior p(c) is estimated via class frequencies in the target domain training data.
We can apply the results of the above segment classification to individual points.

As described in Section 2.1, we extract a soup of segments from a 3D point cloud.
Thus, each point may belong to multiple segments. Using the probability distributions
over the classes of these segments, the distribution over the class of a single point l is
given by

p(c | l) ∝
∏

z∈Zl

p(c | z), (10)

where Zl is the set of segments that contain point l. This combines the class hypotheses
from multiple segments in the “soup” in a probabilistic manner to produce the final
classification. In our setup, points in a test scene are assigned to the class with the
highest probability.

5 Experiments
We evaluate the different approaches to 3D point cloud classification mostly in the
context of outdoor scenes. The task here is to segment and classify point clouds col-
lected in an urban environment into the following seven classes: cars, people, trees,
street signs, fences, buildings, and background. Our experiments demonstrate that our
two domain adaptation methods lead to improvements over approaches without domain
adaptation and alternatives including LogitBoost (Friedman et al., 2000) and a regular
Multi-class SVM (Chang and Lin, 2001). In particular, our exemplar-based domain
adaptation approach obtains the best performance. To demonstrate that our approach
can be applied to different environments and sensors, we also show results on detecting
tabletop objects belonging to six classes: apple, book, laptop, mug, soda can, and water
bottle.

Our exemplar-based learning code is based on a MATLAB implementation pro-
vided by Malisiewicz. The distance function learning takes around 15 minutes. We
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Figure 5: A scene from the urban driving data set. Starting with the image in the top
left and going clockwise, they are captured with left-, forward-, right-, and rear-facing
cameras mounted on the vehicle.

implemented the classification phase as a single-threaded C++ application. It takes on
average 80 seconds to classify an outdoor scene and 17 seconds to classify an indoor
scene. For outdoor scenes, which are large and complex, the majority of the time (60
seconds) is consumed by segmentation and feature extraction. For indoor scenes, these
two steps take a negligible amount of time. In both cases, computing the distances be-
tween every test segment to every training exemplar currently takes 10 seconds. Much
of the procedure, including the distance computation, operates on the different test seg-
ments and training exemplars independently; the code is highly parallelizable. Hence,
a multi-threaded CPU or GPU implementation should speed this up to near real-time
performance.

5.1 Urban Driving Data Set
We evaluated our approach using models from the Google 3D Warehouse as our source
domain set, Es, and ten labeled street scenes as our target domain set, Et. The ten
scenes, collected by a Velodyne LIDAR mounted on a vehicle navigating through the
Boston area, were chosen so that they did not overlap spatially. Each scene is a single
rotation of the LIDAR, yielding a cloud of nearly 70,000 points. Scenes may contain
objects including, but not limited to, cars, bicycles, buildings, pedestrians and street
signs. Camera images taken at one of these scenes are shown in Fig. 5. Manual label-
ing of 3D scans was done by inspecting the camera data collected along with the laser
data. We automatically downloaded the first 100 models of each of cars, people, trees,
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Approach Training Data Domain Adaptation
3D Warehouse Real Scans None Simple Stacked Alpha

3DW x x
Real x x

3DW+Real,Simple x x x
3DW+Real,Stacked x x x
3DW+Real,Alpha x x x

Boosting x x x
Multi-class SVM x x x

Table 1: Table summarizing the training data and domain adaptation methods used in
the approaches compared in Section 5.2.

street signs, fences and buildings from the Google 3D Warehouse and manually pruned
out low quality models, leaving around 50 models for each class. We also included a
number of models to serve as the background class, consisting of various other objects
that commonly appear in street scenes, such as garbage cans, traffic barrels and fire
hydrants. Recall that orientation information is preserved in our feature representation.
To account for natural orientations that the objects can take in the environment, we
generated 10 simulated laser scans from evenly-spaced viewpoints around each of the
downloaded models, giving us a total of around 3,200 exemplars in the source domain
set. The ten labeled scans totaled to around 400 exemplars in the six actual object
classes. We generate a “soup of segments” from these exemplars, using the data points
in real scans not belonging to the six actual classes as candidates for additional back-
ground class exemplars. After this process, we obtain a total of 4,900 source domain
segments and 2,400 target domain segments.

5.2 Comparison with Alternative Approaches
We compare the classification performance of our exemplar-based domain adaptation
approach to several approaches, including training the single domain exemplar-based
technique only on Warehouse exemplars, training it only on the real scans, and training
it on a mix of Warehouse objects and labeled scans. The last combination can be viewed
as a naı̈ve form of domain adaptation. We also tested the stacked feature approach to
domain adaptation described in Section 3.1. The different approaches being compared
are summarized in Table 1. “3DW” stands for exemplars from the 3D Warehouse, and
“Real” stands for exemplars extracted from the Velodyne laser scans. Where exemplars
from both the 3D Warehouse and real scans are used, we also specify the domain
adaptation technique used. By “Simple” we denote the naı̈ve adaptation of only mixing
real and Warehouse data. “Stacked” refers to the stacked feature approach, applied to
the single domain exemplar technique. Finally, “Alpha” is our exemplar-based domain
adaptation technique.

The optimal K values (number of non-zero elements in the α vectors) for each
approach were determined separately using grid search and cross validation. Where
training involves using real scans, we repeated each experiment 10 times using random
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Figure 6: Precision-recall curves comparing performance of the various approaches
trained using five (upper panel) and three (lower panel) real scans where applicable.

train/test splits of the 10 total available scans. Each labeled scan contains around 240
segments on average.

The results are summarized in Fig. 6. Here the probabilistic classification described
in Section 4 was used and the precision-recall curves were generated by varying the
probabilistic classification threshold between [0.5, 1]. The precision and recall values
are calculated on a per-point basis over entire scenes, including all seven object classes,
but omitting the ground plane points. Note that this evaluation criterion is different
from the evaluation used in Malisiewicz and Efros (2008), where they considered any
correctly labeled segment with an overlap of more than 50% with a ground truth object
to be correct. Each curve in Fig. 6 corresponds to a different experimental setup. The
left plot shows the approaches trained on five real scans, while the right plot shows the
approaches trained on three real scans. All approaches are tested only on the remaining
real scans that were not seen during training. Note that since the first setup (3DW) does
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not use real laser scans for training, the curves for this approach on the two plots are
identical.

It comes as no surprise that training on Warehouse exemplars only performs worst.
This result confirms the fact that the two domains actually have rather different char-
acteristics. For instance, the windshields of cars are invisible to the Velodyne laser,
thereby causing a large hole in the object segment. In Warehouse cars, however, the
windshields are considered solid, causing a locally very different point cloud. Also,
Warehouse models, created largely by casual hobbyists, tend to be composed of sim-
ple geometric primitives, while the shape of objects from real data can be both more
complex and more noisy.

The naı̈ve approach of training on a mix of both Warehouse and real scans does
not perform well. In fact, it leads to worse performance than just training on real
scans alone. This shows that domain adaptation is indeed necessary when incorporating
training data from multiple domains. Both domain adaptation approaches outperform
the approaches without domain adaptation. Our exemplar-based approach marginally
outperforms the stacked feature approach when target domain training data is very
scarce (when trained with only 3 real scans).

To gauge the overall difficulty of the classification task, we also trained two base-
line classifiers, LogitBoost (Friedman et al., 2000) and Multi-class (one-versus-all)
SVM (Chang and Lin, 2001), on the mix of Warehouse and real scans. We evaluated
these two baselines in the same manner as the approaches described above. We used
the implementation of LogitBoost in Weka (Hall et al., 2009) and the implementa-
tion of multi-class SVMs in LibSVM (Chang and Lin, 2001). Parameters were tuned
via cross-validation on the training set. The precision-recall values for these two ap-
proaches are shown in Fig. 6. We do not show the full curves since LogitBoost gave
very peaked class distributions and there is no single value to threshold on in a one-
versus-all Multi-class SVM.

In an application like autonomously driving vehicles, recall and precision are equally
important. The vehicle must detect as many objects on the road as possible (high re-
call), and try to identify them correctly (high precision). Thus, the F-score is a good
measure of the overall capability. The F-score is the harmonic mean between preci-
sion and recall: F = 2 · Precision · Recall/(Precision + Recall) (van Rijsbergen,
1979). LogitBoost achieved a maximum F-score of 0.48 when trained on five scans,
and a maximum F-score of 0.49 when trained on three scans, while the multi-class
SVM achieved a maximum F-score of 0.60 when trained on five scans, and 0.59 when
trained on three scans. (see Fig. 6). As a comparison, our approach achieves an F-score
of 0.70 when trained on five scans and 0.67 when trained on three scans. The inferior
results achieved by LogitBoost and the multi-class SVM demonstrate that this is not
a trivial classification problem and that the exemplar-based approach is an extremely
promising technique for 3D point cloud classification. Also, there is no significant
degradation in performance between training on five scans and training on three scans.

5.3 Urban Data Set Examples
Fig. 7 provides examples of exemplars matched to the three laser segments shown in
the panels in the left column. The top row gives ordered matches for the car segment

14



Figure 7: Exemplar matches. The leftmost column shows example segments extracted
from 3D laser scans: car, person, tree (top to bottom). Second to last columns show
exemplars with distance below threshold, closer exemplars are further to the left.

on the left, the middle and bottom row show matches for a person and tree segment, re-
spectively. As can be seen, the segments extracted from the real scans are successfully
matched against segments from both domains, real and 3D Warehouse. The person
is mismatched with one object from the background class “other” (second row, third
column). Part of the laser scan from the scene in Fig. 5 and its ground truth labeling
is shown in color in Fig. 15 and in grayscale in Fig. 16 and Fig. 17. These figures
also include the labeling achieved by our exemplar-based domain adaptation approach
described in Section 3.2. Fig. 8 presents both the precision (column-normalized) and
recall (row-normalized) confusion matrices between the six classes over all 10 scenes.

5.4 Feature Evaluation
To verify that all of the selected features contribute to the success of our approach,
we also compared the performance of our approach using three different sets of fea-
tures. We looked at using just bounding box dimensions and the minimum height off
the ground (Dims), adding in the original, rotation-invariant spin image signatures as
described in Assfalg et al. (2007) (SISO + Dims), and adding in our 3 × 3 × 3 grid of
Spin Image Signatures (SISG + Dims). Fig. 9 (left) shows the precision-recall curves
obtained by the three sets of features. Once again the precision-recall curves are gen-
erated by varying the probabilistic classification threshold between [0.5, 1]. Although
using just dimensions features or the original spin image signatures can lead to higher
precision values, this comes at the cost of much lower recall.

When trained on 3 scans (randomly selected and repeated for 10 trials) using di-
mensions features only, our approach achieves a maximum F-score of 0.63. Using the
original Spin Image Signatures and dimensions features, we achieved an F-score of
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Figure 8: Confusion matrices between the six urban object classes. (left) Column-
normalized precision matrix, (right) row-normalized recall matrix.

Figure 9: Precision-recall curves comparing different approaches: (left) using various
sets of features. (right) Using our probabilistic classification and recognition confi-
dence scoring.

0.64. Finally, using our Grid Spin Image Signatures and dimensions features achieved
an F-score of 0.67. Due to noise and occlusions in the scans, as well as imperfect seg-
mentation, the classes are not easily separable just based on bounding box dimensions
alone. Also, our Grid Spin Image Signature features perform better than the original,
rotation-invariant, Spin Image Signatures, justifying our modification to remove their
rotation-invariance.

5.5 Classification Method Comparison
In this experiment, we compared our probabilistic classification approach to the recog-
nition confidence scoring method described in Malisiewicz and Efros (2008). Letting
E be the list of exemplars associated with segment z (i.e. E = {e | De(z) ≤ 1}), the
recognition confidence is defined as

s(z, E) = 1/
∑
e∈E

1
De(z)

(11)
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The intuition here is that a lower score is better, and this is attained by having many
exemplars with low distances to our segment z. The resulting precision-recall curves
are shown in Fig. 9 (right). Just as in the previous experiments, the precision-recall
curve for our probabilistic classification is generated by varying the probability thresh-
old between [0, 1]. The precision-recall curve for recognition confidence scoring is
generated by thresholding on the recognition confidence, with the label for each point
being the majority label of all segments containing that point. For clarity, only the re-
sult from training on 5 scans (randomly selected and repeated for 10 trials) is shown,
but the trend from training on 3 scans is identical. As evident from the plot, the prob-
abilistic classification method attains recalls between 30-50 percentage points above
recognition confidence scoring for corresponding precision values.

5.6 Effect of Varying the K Parameters
Two important parameters in our domain adaptation approach are Ks and Kt, which
control the number of source domain and target domain exemplars to associate with
each exemplar during the distance function learning process. The optimal setting for
these parameters depends on a number of factors. The absolute number of Ks and Kt

depends on the number of training exemplars and the amount of intra-class variation,
while the ratio between the two depends on how different the source and target domains
are from each other. Ks and Kt are determined via a grid search over possible settings
of these two parameters. Cross-validation within the training data is used to select the
setting that yields the highest F-score. Fig. 10 shows a plot of how the performance
of our approach varies with different settings of Ks and Kt. A higher value for Kt

than Ks is favored, which is to be expected since target domain exemplars tend to be
more useful than source domain exemplars. Although the approach does best when
Ks is set to be low, source domain exemplars are not completely ignored. They still
play an important role as negative exemplars. Increasing either parameter beyond a
certain value leads to degradations in performance. There is a single mode around
which the maximum performance is attained. The specific optimum setting was found
to be Ks = 3, Kt = 15.

5.7 Indoor Objects Data Set
Aside from the urban driving data set, we also evaluated our approach on an indoor
objects data set, classifying objects placed on a table. As before, we manually down-
loaded objects from the Google 3D Warehouse to serve as source domain exemplars.
We downloaded objects from six classes: apple, book, laptop, mug, soda can, and
water bottle, totaling 1, 700 source domain exemplars. Target domain exemplars are
recorded by the prototype stereo camera and textured light projector system developed
by Konolige (2010) (see Fig. 11). The system is mounted on a tripod so that it stands
approximately 50cm above the table, giving it a viewpoint similar to a person sitting
next to the table. The stereo camera is a Videre STOC (Stereo on a Chip) with 640x480
resolution. The textured light projector projects a fixed, red textured light pattern into
the environment. Almost all of our objects have large textureless parts, such as many of
the mugs, the screens of laptops, and even apples at the resolution of our camera. The

17



Figure 10: F-scores for different values of the Ks and Kt parameters used during
training of the exemplar-based domain adaptation approach.

Figure 11: Stereo camera and textured light projector system.

textured light projection dramatically improves the number of correspondences found
by the stereo camera in these cases. We recorded depth images of 16 objects from the
six classes, placed on top of a table. The ground plane subtraction method described
in Section 2.1 was used to remove points corresponding to the table. Each object was
recorded from between 4 to 7 views, giving just under 150 exemplars in total. Thus,
target domain exemplars are much more scarce here than in the urban data set. In this
experiment, we performed leave one object out cross-validation. That is, we trained on
all source domain exemplars and all target domain exemplars except those from one
particular object, and evaluated on all views of that object. This was repeated with
each of the 16 objects being left out. Once again, the Ks and Kt parameters were
determined by cross-validation on the training data. This time the optimal setting was
found to be Ks = 20, Kt = 5. The approach used more source domain exemplars
than target domain ones, unlike in the urban data set where the reverse was true. We
believe this is due both to the fact that target domain data is scarce, and because there
is less difference between source and target domain exemplars; the depth images were
quite accurate and the objects were placed neatly on the table with no occlusions.

Fig. 12 shows example segments and their matched exemplars in a similar manner
to Fig. 7 for the urban data set, except that real exemplar point clouds are also shown as
images for better visualization. The apples in the target domain set were very similar
to each other, so the query apple was most closely matched to depth images of other
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Figure 12: Indoor exemplar matches. The leftmost column shows example segments:
apple, book, mug (top to bottom). Second to last columns show exemplars with dis-
tance below threshold, closer exemplars are further to the left.

apples. The other two query objects matched to a mix of both depth images and 3D
Warehouse models. Fig. 13 shows several example classification results. To create this
visualization, 3D points from the depth image are classified using our approach and
projected back onto the camera image. The corresponding pixels are colored based on
the classification returned by the system. The first 12 objects are correctly classified,
while the last 3 are misclassified. Notice that since the training data contains both
3D Warehouse and real exemplars in different orientations, the approach is mostly
able to correctly classify the objects even though they are placed in various different
orientations. However, most of the misclassifications still occur when the object is seen
from oblique or unusual viewpoints, as in the last 3 scenes. Due to the lack of stereo
correspondences and the presence of noise in the depth images, object segmentations
are not perfect. Objects with dark, textureless and reflective surfaces, such as laptop
screens and mugs pose the greatest challenge for the stereo camera. Nevertheless, the
algorithm is still often able to correctly classify these objects. The water bottles are
particularly challenging since significant portions of them are transparent and so we do
not get any depth readings.

Fig. 8 presents both the precision (column-normalized) and recall (row-normalized)
confusion matrices between the six classes. The system did very well distinguishing
between these objects, which are quite challenging. For laptops, the stereo camera was
only able to obtain 3D points from the edges because the laptop surfaces were often
dark and reflective. Other objects, like apples, mugs and soda cans, can be quite similar
in size and shape. Overall, our domain adaptation approach obtains a precision of 0.80,
a recall of 0.75 and an F-score of 0.77. An approach trained on just target domain data
obtained a precision of 0.73, a recall of 0.73 and an F-score of 0.73. The precision
improvement corresponds to a > 25% reduction in error.
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Figure 13: Classification of indoor objects. Colors indicate labels of pixels for which
depth information was available (red: apple, blue: book, orange: laptop, purple: soda
can, cyan: water bottle).

6 Related Work
The problem of object recognition has been studied extensively by the computer vision
community. Recently, there has been a focus on using large, web-based data sets for
object and scene recognition (Li et al., 2007; Malisiewicz and Efros, 2008; Russell
et al., 2008; Torralba et al., 2008) and scene completion (Hays and Efros, 2007). These
techniques take a radically different approach to the computer vision problem; they
tackle the complexity of the visual world by using millions of weakly labeled images
along with non-parametric techniques instead of parametric, model-based approaches.
The goal of our work is similar to these previous works, but these approaches have
been both trained and evaluated on web-based data. In our case, we are applying the
learned classifier to shape-based object recognition using data collected from a robot,
which can have characteristics very different from the web-based data used to train the
system.

The shape retrieval community has designed many 3D shape description features
and methods for searching through a database to retrieve objects that match a given
query object. Shape retrieval methods have been proposed using a number of features
including 3D shape contexts (Körtgen et al., 2003), 3D Zernike descriptors (Novotni
and Klein, 2003), and spin image signatures (Johnson and Hebert, 1999; Assfalg et al.,
2007). However, the focus of this line of work is retrieving similar objects rather
than the classification of the query object. Our approach uses one particular shape
descriptor, spin image signatures, from this community, but with a modification that
eliminates its rotation-invariance. Rotation-invariance makes sense in the context of
shape retrieval if the query object can be presented in any orientation. Real-world data,
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Figure 14: Precision (left) and recall (right) confusion matrices between the six indoor
object classes.

however, often appears in very constrained set of orientations and so it can be a very
useful cue.

Recently, several robotics research groups have also developed techniques for clas-
sification tasks based on visual and laser range information (Wellington et al., 2005;
Anguelov et al., 2005; Douillard et al., 2008; Triebel et al., 2007; Sapp et al., 2008).
In robotics, Saxena and colleagues (Saxena et al., 2008) used synthetically generated
images of objects to learn grasp points for manipulation. Their system learned good
grasp points solely based on synthetic training data. Newman’s group has also done
classification in maps constructed using laser range and camera data (Posner et al.,
2008). Their work has thus far been concerned with terrain classification as opposed
to the classification and localization of specific objects. Nüchter et al. (2004) is an
earlier work on 3D point cloud classification using Gentle AdaBoost. Although they
demonstrated good results detecting office chairs in several indoor scenes, our compar-
ison against a LogitBoost classifier suggests that an off-the-shelf boosting algorithm
will not perform well on our data set, which contains a lot of variability in objects,
orientations, and occlusions.

None of the prior work in all of these communities have, to our knowledge, explic-
itly addressed differences between data from different sources as we have done with
domain adaptation. The problem of combining data from different sources is a major
area of research in natural language processing (Hwa, 1999; Gildea, 2001; Bacchiani
and Roark, 2003; Roark and Bacchiani, 2003; Chelba and Acero, 2004). Here, text
sources from very different topic domains are often combined to help classification.
Several relevant techniques have been developed for transfer learning (Caruana, 1997;
Dai et al., 2007) and, more recently, domain adaptation (Chelba and Acero, 2004; Jiang
and Zhai, 2007; Daumé III and Marcu, 2006; Daumé III, 2007). In this paper, we have
applied one of the state-of-the-art domain adaptation techniques from the NLP commu-
nity (Daumé III and Marcu, 2006) to the problem of 3D point cloud classification and
showed that it can significantly improve performance. In addition, we also presented
an alternative domain adaptation technique specific to per-exemplar distance function
learning and showed that it attains slightly better performance.
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7 Conclusion
The computer vision community has recently shown that using large sets of weakly
labeled image data can help tremendously to deal with the complexity of the visual
world. When trying to leverage large data sets to help classification tasks in robotics,
one main obstacle is that data collected by a mobile robot typically has very different
characteristics from data available on the World Wide Web, for example. For instance,
our experiments show that simply adding Google 3D Warehouse objects to manually
labeled 3D point clouds without treating them differently can decrease the accuracy of
the resulting classifier.

In this paper we presented a domain adaptation approach that overcomes this prob-
lem. Our technique is based on an exemplar learning approach developed in the context
of image-based classification (Malisiewicz and Efros, 2008). We showed how this ap-
proach can be applied to 3D point cloud data and extended it to the domain adaptation
setting. For each scene, we generate a “soup of segments” in order to generate multi-
ple possible segmentations of the point cloud. The experimental results show that our
domain adaptation improves the classification accuracy of the original exemplar-based
approach and clearly outperforms boosting and multi-class SVM classifiers trained on
the same data. The approach was additionally evaluated on a data set of indoor objects
and achieved very promising results, demonstrating the effectiveness of the approach
in a wide range of problem domains.

There are several areas that warrant further research. First, we classified objects
solely based on shape. While adding other sensor modalities is conceptually straight-
forward, we believe that the accuracy of our approach can be greatly improved by
adding visual information. Here, one might be able to leverage additional data sources
on the Web. In both the urban and the indoor data sets, we only distinguish between six
object classes. Obviously, a realistic application will require distinguishing between
many more classes. So far, we only used small sets of objects extracted from Google’s
3D Warehouse. A key question will be how to incorporate many thousands of objects
for both outdoor and indoor object detection. Finally, our current implementation is not
yet running in real-time. In particular, the scan segmentation and spin image feature
computation take up the bulk of the time. Although the learning technique scales lin-
early with the number of exemplars, the computation required at test time only involves
element-wise vector multiplications, which are very fast. All of these computations are
performed independently for each exemplar during training, and for each test segment
during classification, much of the code can be parallelized and the technique should
achieve real-time performance if implemented on a GPU. An efficient implementation
and the choice of more efficient features will be a key part of future research. Over-
all, we believe that this work is a promising first step toward robust many-class object
recognition for mobile robots.
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Figure 15: (top) Ground truth classification for part of a 3D laser scan. Colors indicate
ground plane (cyan) and object types (green: tree, blue: car, yellow: street sign, pur-
ple: person, red: building, grey: other, white: not classified). (bottom) Classification
achieved by our approach. As can be seen, most of the objects are classified correctly.
The street signs in the back and the car near the center are not labeled since they are
not close enough to any exemplar.
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Figure 16: Labeling results for individual object classes. Black points in the left row
panels show ground truth points for person, tree, and building (top to bottom). Right
row shows labels by our approach. All three classes are perfectly detected in this
scene. The tree labeled by our approach in the upper right portion of the scene strongly
resembles a tree and may be a mislabeling of the ground truth.
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Figure 17: Labeling results for individual object classes (continued). Black points in
the left row panels show ground truth points for car and street sign (top to bottom).
Right row shows labels by our approach. There are some false negatives for these two
classes.
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