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Abstract

Following the increasing demand to make the creation
and manipulation of 3D geometry simpler and more acces-
sible, we introduce a modeling approach that allows even
novice users to create sophisticated models in minutes. Our
approach is based on the observation that in many mod-
eling settings users create models which belong to a small
set of model classes, such as humans or quadrupeds. The
models within each class typically share a common com-
ponent structure. Following this observation, we introduce
a modeling system which utilizes this common component
structure allowing users to create new models by shuffling
interchangeable components between existing models. To
enable shuffling, we develop a method for computing a com-
patible segmentation of input models into meaningful, inter-
changeable components. Using this segmentation our sys-
tem lets users create new models with a few mouse clicks,
in a fraction of the time required by previous composition
techniques. We demonstrate that the shuffling paradigm al-
lows for easy and fast creation of a rich geometric content.

1 Introduction

In recent years there has been an increase in demand for
design and modeling tools aimed at non-expert users, driven
in part by the increasing popularity of computer games that
support player-driven development of new content [20, 23].
As a result there is an emerging effort to make creation and
manipulation of 3D geometry accessible to a wider range
of users by simplifying the user interfaces and reducing
the amount of time users need to spend to create interest-
ing models. Two popular approaches for simplifying model
creation are sketch based modeling and mesh composition.
While sketch based modeling is often restricted to creation
of relatively simple models from scratch [15], composi-
tion tools [22, 10, 7] allow users to create more sophisti-
cated models by combining parts of existing ones. State-
of-the-art methods, such as Modeling by Example [7] and
SnapPaste [22], have made the composition process faster
and simpler. However, researchers acknowledge that it still

Figure 1. Interchangeable component corre-
spondences computed by our system. An
alien generated by shuffling the parts.

takes the user an hour or more to create new non-trivial
models using these systems [7]. We propose to take com-
position based modeling a step further, eliminating the need
for the user to perform any time-consuming geometry ma-
nipulations and thus reducing the total time of a modeling
session to minutes instead of hours.

We observe that users of modeling tools often concen-
trate on generating new instances within specific classes of
models. This is true for movie and game design where
artists create crowds of people or other creatures, player-
driven game content creation where players design avatars,
and even home setups where users personalize everyday ob-
jects. Models within each class typically have a natural de-
composition into interchangeable, meaningful components.
For instance, all quadrupeds have a similar body part struc-
ture: four legs, a body, a head, and, typically, a tail. We
utilize these observations, introducing a modeling system,
Shuffler, where users can create new models by composing
interchangeable components from objects within the same
class. The system employs a shuffling paradigm where
users start from a base or target model and modify it by re-
placing components of the model with corresponding com-
ponents from other models. We observe that even with a
small number of input models, this paradigm allows us to
create a large number of new models. Specifically, given
n input models with k components in each, nk models can
be synthesized by shuffling. Since numerous models from



the commonly used model classes are readily available in
web databases, shuffling is an effective modeling metaphor
permitting the creation of countless new models.

To facilitate the proposed modeling paradigm we re-
quire a compatible segmentation of input models into inter-
changeable, meaningful components. While such segmen-
tation has been mentioned as open problem by many re-
searchers [21, 16], we are not familiar with any algorithms
addressing it. In our system, we take a two step approach to
computing compatible segmentations. We first segment the
input models into meaningful parts and then find a corre-
spondence between interchangeable components, or groups
of parts, on different models (Sections 4-5). To generate
a meaningful compatible segmentation we use similar no-
tions of meaningfulness in both stages of the algorithm. The
combined method is able to identify and match the inter-
changeable components for a large variety of models from
different classes, including humans, quadrupeds, planes,
chairs, and tables.

Utilizing the interchangeable part structure we com-
pletely eliminate the need for a novice user to perform any
geometric operations, reducing the interface to a number of
mouse click operations (Section 6). For expert users we
provide several ways to influence the composition process
and adjust the results to their liking. As we demonstrate,
Shuffler supports the creation of sophisticated 3D shapes
and characters in minutes (Section 7).

2 Previous Work

Commercial modeling and design tools geared toward
non-expert users typical utilize a procedural modeling ap-
proach where users can select shape components or proper-
ties from a restricted pre-processed dataset [20, 23]. Sketch
based modeling interfaces [15] allow users to create more
diverse content, but are so far useful mostly for creating rel-
atively simple shapes.

Mesh composition is emerging as an alternative simple
modeling metaphor that allows even non-expert users to cre-
ate complex models within a reasonable timeframe [7, 22].
In a typical composition setup, users first cut the two com-
posed components from their respective input models and
then align them such that the corresponding cut boundaries
match reasonably well. The composition software is then
used to connect the two components into a single model and
define the geometry in the boundary region using a blending
mechanism.

Several researchers proposed ways to simplify the user
interaction during the boundary cutting and alignment [10,
7, 18, 22]. Smart scissoring methods [7, 18, 22] simplify the
specification of the cut boundaries. Sharf et al. [22] require
the user to provide only a coarse alignment and then im-
prove the alignment further using a variation of deformable

ICP. Funkhouser et al. [7] use the correspondence between
the shuffled-in and out components to compute the align-
ment. This approach can lead to unintuitive alignment if
the shuffled-in and out components differ significantly. By
relying on the pre-computed interchangeable segmentation,
Shuffler fully automates both the cutting and the alignment.

All the existing composition systems operate on one pair
of components at a time. Thus composition involving mul-
tiple components, such as replacing a torso from one model
by a torso from another (Figure 2) which requires compos-
ing together five components, can only be performed as a
sequence of several composition operations. In our system,
only a single operation is required to shuffle the two tor-
sos, using the interchangeable component structure to facili-
tate the composition. Combining this ability with automatic
alignment and component boundary extraction, Shuffler re-
duces the amount of user time required to create non-trivial
models by one to two orders of magnitude, compared to
state of the art methods [7]. Regrettably, more recent publi-
cations do not list user times for comparison.

Our pre-processing mechanism segments the input mod-
els into meaningful, interchangeable components. We are
not familiar with any methods that provide such compati-
ble segmentation. There is a large number of methods for
meaningful segmentation of individual meshes, surveyed by
Shamir [21] and Attene et al. [1]. Most methods rely on
definitions of meaningful parts based on a study showing
that humans segment models in regions of high negative
curvature [11]. Geodesic distances are commonly used to
steer the segmentation and negative curvature is taken into
account when generating the actual cuts [17, 25, 16]. Am-
ato et al. [19] consider the depth of the concave, negative-
curvature, regions on the model to determine where to gen-
erate the cuts between the components. Chaselle et al. [3]
use a dual approach, where instead of generating cuts in
concave regions they generate parts which correspond to
convex regions. The method searches for exact convex de-
composition and shows that this problem is NP-hard. None
of the methods have obvious extensions to compatible seg-
mentation, though some mention it as a topic of future re-
search [16].

In recent years, several authors addressed the problem
of establishing point-wise or part-wise correspondences be-
tween models. Several methods do this by matching mod-
els skeletons [24, 5] or feature vertices [9]. Others compute
complete point-to-point correspondences [2, 14, 8]. Most
feature based methods are robust only under rigid trans-
formations. Skeleton based methods [24, 5] are more ro-
bust to changes in pose but typically do not distinguish be-
tween symmetric skeleton branches such as arms or legs.
Global point-to-point correspondence methods are closest
to the task we address, and successfully find maps between
models within the same class. The more recent methods
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Figure 2. Shuffling interface: (a) shuffled-in
and out components highlighted; (b) compo-
sition result computed automatically. Note
that the shuffled-in component shares mul-
tiple boundaries with the rest of the target
model.

[14, 8, 2] correctly map major features, however the map-
ping they provide may not map the natural part boundaries
in a consistent manner and thus may not always preserve the
geometric meaning of the parts. These methods operate on
watertight models and thus cannot be used on many avail-
able models of man-made objects, such as chairs, which
contain multiple connected components. Partial matching
[7] focuses on finding models that contain a part similar to
one particular part in the given model. Since selecting the
best match for one part may enforce poor matches for other
parts, our algorithm uses a global approach that considers
all the correspondences at once.

3 Overview

The Shuffler editing system operates on commonly used
classes of both natural and man-made objects. It works on
both watertight and non-watertight meshes including mod-
els with any number of connected components, which are
quite common in online databases. The system consists of
a modeling interface and a pre-processor that segments the
input meshes into meaningful interchangeable components.
The pre-processing can be performed on the fly once the
user selects the set of models they want to work with or can
be carried out beforehand for a database of models.

Compatible segmentation: When considering a com-
patible segmentation of a large set of models, one option is
to consider all the models at once, locating the interchange-
able components which are present on all the models. How-
ever, this setup is very restrictive, as any component not
present on one of the models would no longer be considered
as an interchangeable component. Considering each pair of
models completely individually is even more problematic,
as it can lead to pairwise segmentations which have noth-
ing in common and thus can not be combined in a shuffling
setup. Therefore, we opt for a hybrid solution. We first seg-
ment all the models in each class into meaningful parts us-
ing the same level-of-detail threshold, providing very sim-
ilar segmentations. We then use a matching algorithm that

computes pairwise correspondences between models using
the located parts. The algorithm aims at finding a one-to-
one correspondence between parts of the two models, if one
exists. For instance, it finds a complete part correspondence
including that of geometric facial features between a lion
and a cat (Figure 6). Since such a correspondence may
not always exist, the method automatically groups parts
into larger meaningful components and establishes a one-to-
one correspondence between these larger components when
necessary. For example, for a lion and a bull where a de-
tailed matching is ambiguous (e.g., the lion’s ears could
correspond to either the bull’s ears or its horns (Figure 5)),
Shuffler groups the facial parts into a single ”head” com-
ponent and matches one head to the other. This approach
allows us to use multiple pairwise correspondences during
shuffling, enabling the user to shuffle components between
models with different degrees of similarity. In the example
of shuffling components between a cat, a bull, a camel and a
lion (Figure 9 (a)) the detailed correspondence between the
lion and the cat enabled the user to replace the ears of the
lion with cat ears. At the same time, the user was able to use
a much coarser correspondence between a lion and a camel
to swap the legs. While theoretically, grouping can lead
to contradictory components formed by individual matches,
such as grouping a neck with the body in one match and
with the head in another, we found that the constraint that
the components represent meaningful pieces of the model
makes such situations extremely rare.

Shuffling Interface: After loading a set of models the
user first selects one model as target and then picks any
number of components which should be shuffled-in from
the other models. Given each shuffled-in component, the
system uses the precomputed correspondences to locate the
corresponding shuffled-out component on the target (Figure
2(a)). The algorithm then automatically swaps the compo-
nents (Figure 2(b)) using the correspondences to align and
blend the shuffled-in component with the rest of the model
(Section 6). For expert users we provide a number of addi-
tional controls to fine tune the alignment.

4 Segmentation

Our segmentation method is designed to create a percep-
tually meaningful decomposition of input meshes into parts
that can be successfully matched by the subsequent corre-
spondence computation step. The approach we use is in-
spired by the work of Chaselle et al. [3], who used con-
vexity as a measure of meaningfulness and generated ex-
act convex decompositions. In our setup we search for ap-
proximate convex decomposition, where the approximation
tolerance, or threshold, reflects the level of detail required
in the segmentation. The NP-hardness proof of Chaselle
et al. for computing the most compact convex decomposi-



Figure 3. Part compactness (the semi-
transparent images on the left show the part
convex hulls): (left) convex parts created
without the compactness metric; (right) parts
generated by the segmentation using the
combined part cost.

tion extends to the approximate setup. However, we found
that using an incremental constrained Lloyd-type method
we obtain segmentations which are close to optimal in terms
of the number of parts generated and the part compactness
(Figure 4).

4.1 Metrics

Before describing the algorithm we define the metrics of
part convexity and compactness used to obtain the desired
segmentation.

Convexity: Part convexity is the main criterion for our
algorithm. We measure it as the distance between the part P
and its convex hull H(P ). The distance is defined as an area
weighted average of the distances from the part triangles t
to the convex hull:

conv(P ) =

∑
t∈P

dist(t,H(P )) · area(t)∑
t∈P

area(t)
, (1)

where area(t) is the area of the triangle t, and
dist(t,H(P )) is the distance from the triangle t to
the convex hull H(P ). Specifically, dist(t, H(P )) is
defined as the distance along the imaginary line that
proceeds in the direction of the triangle’s normal, and
connects the center of the triangle to the convex hull. While
there are other ways to measure distances between meshes,
we found that the normal distance yields excellent results
and is cheap to compute. The distances are measured as
percentages of the bounding box diagonal of the object.

Compactness: Our primary objective is to segment the
mesh into nearly convex parts. However, to achieve a use-
ful segmentation, it is not enough for the parts to be convex,
they must also be compact. In particular, we want to prevent
random segmentation in areas that can be equally well oc-
cupied by more than one neighboring part, thereby avoiding
the possibility of complex part boundaries (Figure 3 (left)).
To evaluate the compactness we consider the convex hull of
the part. When the part is close to convex, its convex hull
captures well the volumetric shape of the part. Therefore,
we introduce a metric aimed at the generation of compact,

(a) (b) (c)

(d) (e) (f)

Figure 4. Segmentation stages: (a) the hull
of the first potential part (the entire model)
and its center; (b) first seed triangle; (c) first
part after convergence; (d) hulls of the exist-
ing part and the new potential parts; (e) new
seed triangles; (f) final result.

relatively spherical convex hulls. We calculate the compact-
ness as an area to volume ratio of the convex hull H(P ),

comp(H) =
area(H)

volume(H)2/3
. (2)

This value is minimal for a perfect sphere and increases
for all other shapes. Since the hull is convex, its volume
is trivial to compute. We note that this metric is close to
infinity for a nearly planar part. We discuss the implica-
tions of this observation on the algorithm in the next section.

Part Cost: We define the cost function of a potential part
as a combination of convexity and compactness,

pCost(P ) = (1 + conv(P )) · (1 + comp(H(P )))α, (3)

where α controls the trade-off between the two. We experi-
mented with different values of α and found that α = 0.007
appears to provide an optimal balance between convexity
and compactness measures. We use this value in all the ex-
amples in this paper. We use multiplication to avoid the
need to normalize both components to the same scale. The
addition of 1 prevents the cancellation of one component as
the other approaches zero.

4.2 Part Formation

Given these metrics, the goal of our decomposition
algorithm is to segment the model into a small number
of nearly convex, compact parts such that the convexity
error (Equation 1) for each part is below the specified
threshold Dmax. The threshold values we used for each
class of models are listed in Table 1. To generate the parts
we use a Lloyd iteration scheme [17, 4]. In contrast to
previous Lloyd-type methods we do not expect the user to
provide an estimate number of parts for the segmentation.
Instead we use the threshold to control the number of



parts. Starting with zero parts, our algorithm generates the
parts incrementally using the following four step procedure.

1. Potential part generation collects the unassigned tri-
angles, which do not belong to any part, into connected
components and classifies each component as a poten-
tial new part. A triangle can be unassigned either at
the beginning of the algorithm or during part grow-
ing when all parts have reached the convexity bound
Dmax (Figure 4 (c)). Both possibilities are a good in-
dication that a new part is required in the unassigned
region. This method of formation of new parts allows
us to implicitly handle models with multiple compo-
nents (Figure 10 (d) and (e)). After forming the po-
tential parts, the method computes the convex hull for
each of them (Figure 4 (a) and (d)).

2. Seed generation for both existing and potential parts
selects the seed triangle t ∈ P that minimizes the fol-
lowing cost function:

sCost(t) = (1 + dist(t,H(P ))) · (1 + comp(h))α,

where h is the seed convex hull and H(P ) is the cur-
rent convex hull (Figure 4 (b) and (e)). We define
the seed convex hull h as the tetrahedron formed by
the seed triangle and the center of the current convex
hull, highlighted in Figure 4 (a) and (d). The described
choice of seed hull construction explicitly avoids the
formation of zero-volume hulls preventing instability
in the behaviour of our compactness metric. The mini-
mized function is nearly identical to the part cost func-
tion (Equation 3), facilitating the convergence of the
Lloyd iterations.

3. Part growing is performed on all the parts simulta-
neously using a Dijkstra search algorithm to find at
each step the best adjacent vertex to add to one of the
parts. The insertion cost of a vertex is defined as the
cost of the potential part formed by adding v to P ,
pCost(P + v). The growth of each individual part
is terminated when any vertex addition will cause the
convexity error conv(P + v) to go above the threshold
Dmax. Growing is repeated until all triangles are as-
signed to parts or until parts can no longer grow with-
out violating the threshold.

4. Termination: If the new parts differ from the ones
grown in the previous iteration, the algorithm repeats
the reseeding and growing loop (Stages 2 and 3). Once
parts no longer change we check if they cover the en-
tire model. If they do the algorithm terminates, other-
wise the algorithm returns to Stage 1.

Our algorithm typically takes only two to three iterations
to converge each time new parts are added. Thus the dom-
inant component of the algorithm runtime is the part grow-
ing, which requires the use of incremental convex hull con-
struction to measure the cost of adding a vertex to a part.
On a 3 GHz Pentium IV the method takes 25 seconds to
segment the 10K faces lion (Figure 5). The algorithm can
be sped up by using a progressive mesh, using a similar ap-
proach to [16].

4.3 Improving Compactness

The parts generated by the Lloyd algorithm satisfy the
convexity threshold, and are on average well shaped. How-
ever we observe that in some cases the compactness of the
patches can be significantly improved while only slightly
worsening convexity. After the algorithm’s convergence the
level of compactness is directly linked to the amount of con-
vex hulls overlap (Figure 3 left). Reducing the overlap be-
tween the hulls is tantamount to improving compactness.
To measure the extent of the overlaps we consider the sum
of volumes of the convex hulls of adjacent parts. Since this
sum double counts the volume of the overlapping region, re-
ducing it implicitly reduces the overlap. The improvement
algorithm considers the triangles adjacent to the boundary
between the parts and recursively reassigns triangles from
one part to the other if the reassignment reduces the sum
of convex hull volumes and does not violate the convexity
threshold for either part.

When the overlap between hulls is minimal the bound-
aries between the parts are typically fairly straight. If users
are interested in even straighter boundaries, methods which
modify the connectivity of the input [18] can be applied as
a postprocessing step. As explained in Section 6 our shuf-
fling interface uses boundary midpoints and part hulls to
facilitate component alignment and uses the actual location
of the boundary only to assign blending weights. Thus, the
shape of the part boundaries has little influence on the mod-
eling results, and such straightening is unnecessary.

4.4 Hierarchical Segmentation

Hierarchical segmentation, where coarse parts are unions
of finer parts, is useful for several processing applications
[21]. In our setting, it helps speed up the part correspon-
dence computation and increase its robustness. Our algo-
rithm computes a hierarchical segmentation from the bot-
tom up. Given a set of increasing convexity threshold val-
ues, it first computes a fine segmentation using the small-
est threshold. It computes the subsequent hierarchy layers
incrementally, using as input the segmentation in the pre-
vious layer. Given the new convexity threshold it recur-
sively merges adjacent parts if the combined part satisfies



this threshold (Figure 5 (a),(b)). Our matching algorithm
uses a two level hierarchical segmentation, where the coarse
segmentation uses Dmax = 1% for all the example models
in this paper.

5 Component Correspondence

The correspondence algorithm matches the interchange-
able components between pairs of segmented models. It
does this by optimizing a cost function which takes into ac-
count both the meaningfulness of each component and the
quality of the matching between components. Like in the
segmentation stage we use convexity as a measure of mean-
ingfulness. We define matching as high quality if the ap-
proximated geodesic distances between matching compo-
nents on both models are roughly the same. The method
uses the convex hulls of the parts as proxies for all compu-
tations. Since we have no prior registration of the models,
to enable comparison between them, we scale the models to
be of equal size, based on volume for articulated models, or
bounding boxes for rigid ones. The volume is computed as
the sum of part hull volumes.

5.1 Matching Cost

To describe the cost function we first introduce some ter-
minology. We denote the parts of the first model as P11

to P1n, and those of the second as P21 to P2m. The com-
ponents C11 to C1k on the first model have a one-to-one
correspondence to the components C21 to C2k on the sec-
ond, where the matching maps C1i to C2i, µ(C1i) = C2i. A
component Cij consists of any number of parts Pia. Given
two adjacent parts Pia and Pib we define their midpoint as
the center of the intersection between their convex hulls.
For watertight models, the midpoints are efficiently esti-
mated as the average of the vertices on the shared boundary
between the parts. We define the midpoint graph by con-
necting all the midpoints adjacent to each part with straight
line edges (Figure 5 (c) and (d)). Our cost function is based
on two main components: midpoint graph distances and
component convexity.

Midpoint Graph Distances: We define the distance be-
tween two components d(Cia, Cib) as the shortest distance
between their parts on the midpoint graph. Note that using
this definition the distance between adjacent components is
zero. We found that the midpoint distances capture best the
global shape of our models. For instance, on mammals the
distances clearly distinguish the legs from the head and the
tail. In contrast to Euclidean distances between part centers
these distances are well preserved between different poses.
The difference of distances metric is defined as

mgd(µ) =
k∑

a=1,b=1

(d(C1a, C1b)/s1 − d(C2a, C2b)/s2)2,

si =
k∑

a=1,b=1

d(Cia, Cib).

Due to the normalization by si, the metric remains compa-
rable across matches with a different number of components
or different groupings.

Component Convexity: This metric measures the qual-
ity of the part grouping and is measured independently on
each model. Since components should remain meaningful,
they should be as convex as possible. Each component
already consists of a number of nearly convex parts, hence
there is no need to explicitly compute its convexity by
measuring the distance from the actual mesh component to
its hull. Instead, it is much faster to evaluate convexity by
measuring the volume of each component’s convex hull,
which indicates how much larger the component is than the
sum of its parts,

cconv(µ) =
k∑

j=1

volume(H(C1j))+
k∑

j=1

volume(H(C2j)).

Cost function: The cost function we use also includes a
volume similarity metric defined as

vol(µ) =
1
k

k∑
j=1

(
volume(C1j)− volume(C2j)
volume(C1j) + volume(C2j)

)2

to evaluate the correspondence in terms of component vol-
umes volume(Cij), defined as the sum of volumes of the
convex hulls of the parts in the component. This metric is
not a good indicator of similarity on its own, as models in
the same class can have very different proportions, however
it is often useful for matching fine-level details. Thus, we
include this metric in the combined cost function, but give
it a relatively small weight.

The combined cost function is

mCost(µ) = (1+mgd(µ))(1+cconv(µ))(1+vol(µ))β . (4)

Note that the first two terms are always given equal weight.
This proportion was determined empirically as optimal. We
investigated the influence of β, the weight given to the vol-
ume similarity, on the obtained matches and found that pro-
viding different values for different classes of models leads
to better results (Table 1). To find the best correspondence
the algorithm described below looks for the global mini-
mum of the cost function.

5.2 Coarse Level Matching

Finding a local minimum of the cost function is insuffi-
cient for a shuffling application as it may contain unaccept-
able choices of interchangeable parts. Therefore we employ
a global approach known as stochastic local search [12] to
locate the global minimum. The stochastic local search
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Figure 5. Segmentations and matches: (a)(b)
fine and coarse level segmentations; (c) (d)
midpoint graphs for the fine and coarse seg-
mentations; (e) coarse level correspondence;
(f) fine level correspondence.

combines randomized selection of multiple initial guesses
with a steepest decent minimization to compute local min-
ima starting from those guesses. At the limit, when run
an infinite number of iterations, the search is guaranteed
to find the global minimum of the cost function. In prac-
tice, a small number of initial guesses is typically sufficient.
To make the process more robust and efficient, we utilize
the hierarchical segmentation of the models. The algorithm
uses stochastic local search to establish correspondences be-
tween the components at the coarse level of the hierarchical
segmentation (Figure 5 (e)) and then refines those.

Randomized Initial Guess: To initiate a new search
we start by randomly selecting an initial guess that con-
sists of three parts: the number of components, the com-
ponents themselves, and an initial correspondence. During
the coarse level matching the system uses upper and lower
bounds on the number of components, defined per class of
models. The upper bound is slightly higher than the typi-
cal number of anticipated coarse components for the class.
For instance, for quadrupeds we typically have seven coarse
components: body, head, tail, and four legs (Table 1). The
upper bound we use is nine. The lower bound is provided
to speed up the process and avoid testing all groupings be-
tween two and the upper bound. Note that the upper bound
is enforced only during coarse level matching. The number
of components generated by the fine level matching is un-
bounded. The number of components is set randomly with
equal probability for any number between the upper and
lower bounds. The number of components is the same for
both models, and remains constant during the local search.
The selection of parts that form each initial component is
also randomized, but with higher probability given to better
groupings based on component convexity mConv(µ). The
initial correspondence is set at random with equal probabil-

ity for any assignment.
Local Search: The local search starts from an ini-

tial guess and searches for a local minimum using two
atomic operations: swap and regroup. The swap operation
switches the correspondences between two pairs of com-
ponents C2i = µ(C1j) and C2j = µ(C1i). The regroup
operation has two stages and is performed separately for
each model. First, a new component is formed by separat-
ing one part from a component containing multiple parts.
Next, two components are merged; thus the total number of
components remains constant. The local search uses steep-
est decent, at each step performing the atomic operation that
improves the cost the most. If neither swaps nor regrouping
can improve the current match, the process terminates.

5.3 Refinement

After obtaining the optimal match at the coarse level, we
switch to the fine level in the segmentation hierarchy (Fig-
ure 5 (a),(c)). Since the coarse parts were obtained by merg-
ing fine parts, the component structure of the match remains
unchanged while the number of parts in each component in-
creases. Following the switch, the algorithm performs one
iteration of the local search using the final coarse correspon-
dences as an initial guess. This iteration typically improves
the part grouping, moving some of the fine parts from one
component to an adjacent one (Figure 6 (c)).

Finally, the method tests if the matching can be refined
by constructing correspondences between sub-components
of the matching coarse components. For each pair of cor-
responding components and each possible number of sub-
components the method finds the sub-component match
that is optimal in terms of both the overall cost and sub-
component convexity. If this match is an improvement on
the coarse match in terms of cost then the algorithm up-
dates the match to include the sub-component correspon-
dences. The process is repeated recursively for each pair
of matching components (Figure 6 (d)). We found that the
constraint of considering both overall cost and convexity
improves the matching results at the fine level, preventing
undesirable fine correspondences.

5.4 Registration

Our inputs are not aligned prior to processing. Given the
variety of poses and shapes for many of our models, global
registration beforehand is unreliable. However, to use the
results of the matching to facilitate composition, we need
to be able to position the model components with respect
to one another. To align the models, we use the point-to-
point correspondence between the centers of the hulls of the
matching components. The algorithm finds the best similar-
ity transformation between the centers using the quaternion
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Figure 6. (a) Top coarse match for the cat and lion, prior to registration. (b) Top coarse match after
registration. (c) Top match on the fine level after one iteration of local search (the matching of the
thighs is now correct). (d) Final fine level match.

method of Horn [13].
The registration serves another important purpose, as it

allows us to detect matches with global mirroring (Figure
6 (a)). For symmetric models, a cost function based on
distances and volumes, like ours, typically assigns low cost
to both the correct and the mirrored results. During the
stochastic search instead of only storing the best match
found, we store the top one hundred matches obtained.
After the search terminates, for each of the stored results,
we use the correspondences to align the models. We then
use the alignment to recompute the cost of the stored
matches taking registration cost into account,

reg(µ) =
1
k

k∑
j=1

‖c1j − c2j‖2

mCost′(µ) = mCost(µ)(1 + reg(µ))γ .

Following empirical testing, we used γ = 0.5 for nearly all
model classes. For planes, which are both flat and symmet-
ric, a one hundred and eighty degree rotation gives a very
small registration error. Hence, to avoid such rotations, we
used a higher registration weight (Table 1). We then select
the best match as the one that minimizes mCost′. To speed
up processing the registration and subsequent re-evaluation
are performed using the coarse level matches, prior to re-
finement (Figure 6(a),(b)).

The matching algorithm complexity is a function of the
number of model parts, which is typically in the double dig-
its. While the search space is exponential, we found that
our stochastic local search approach efficiently locates the
global optima using just a hundred initial guesses. For ex-
ample, the algorithm only took 25 seconds to find the coarse
level correspondence for the lion and the bull (Figure 5) and
another 15 seconds to refine it.

6 Shuffling Interface

The shuffling interface utilized the component corre-
spondences to provide a mouse-click based composition in-
terface. After a user loads the models of interest, they select
a target model from which to start the processing. They can
subsequently shuffle-in components from the other source
models by simply clicking on them. As the components are
swapped, the system automatically aligns each shuffled-in
component with the rest of the target model. If desired, it

(a) (b) (c) (d)

Figure 7. Chair seat shuffle: (a) source (top)
and target (bottom) chairs showing the com-
ponents to be shuffled in and out in dark
blue; (b) a common adjacency graph for both
models constructed by our algorithm; (c) ini-
tial component positioning; (d) position after
automatic alignment.

then zippers and blends the composed components together
to create a watertight output model.

Alignment: The global alignment of source and tar-
get models (Section 5.4) establishes a fixed common frame
which can be used as-is to specify the rotation and scale for
the shuffled-in component. Alternatively, rotation and scal-
ing can be performed when individual components are shuf-
fled in and out, optimally aligning the convex hulls of the
shuffled in and out components using geometric moments
[6]. Since the components are nearly convex, the hulls pro-
vide a good approximation of their shape. We observe that
using the global alignment better preserves the pose of the
models typically leading to more visually intuitive results.
Shuffler supports both alternatives, using the global align-
ment as the default.

Shuffler adjusts the translational alignment for each in-
dividual shuffling operation to ensure that the constructed
model remains connected despite differences in individual
component sizes. The alignment is computed using the
common adjacency graph of the source and target models
(Figure 7 (b)), which has a node for each pair of corre-
sponding components. The graph has an edge between two
nodes if and only if the corresponding components are ad-
jacent on both models. Each edge of the graph is associated
with a pair of midpoints defined as in Section 5.1. The mid-
points serve as the connection points between neighbouring
components. We observe that removing the node that cor-
responds to the shuffled-out component from the adjacency
graph can break it into multiple connected components or
branches (Figure 7). The algorithm translates each indi-
vidual branch of the target model to align the shared mid-



Figure 8. Component shuffle: (a) initial po-
sition of the shuffled-in component; (b) po-
sition after automatic midpoint alignment; (c)
and (d) zoom in onto the boundary region; (e)
formation of overlap region for blending; (f)
final result.

points between the branch and the shuffled-in component
(Figure 7 (c) and (d)). In case there is more than one mid-
point between the branch and the shuffled-in component it
uses the average of the midpoints to calculate the transla-
tion. For additional user control we provide an interface to
manually adjust the alignment if desired. We observe that
using the common adjacency graph Shuffler can compose
multiple mesh components in a single operation, something
other existing composition algorithms do not support.

For models which do not need to be watertight, such as
tables or chairs, the process ends here. For watertight mod-
els we use a method similar to Sharf et al. [22] to blend the
components along shared boundaries. We first extend each
boundary by a few layers of triangles (Figure 8) forming an
overlap region and then use a variant of soft ICP to snap the
two meshes together and generate a common connectivity.

7 Results

In Figures 1 and 9 we demonstrate several models cre-
ated using our system. For each of the models it took the
user only a few mouse clicks to specify the combination of
components they want. In the camow (Figure 9 (b)) and two
of the chair models (Figure 9 (i)) the user adjusted the align-
ment of the components to achieve the desired composition
effect.

We tested the combined segmentation and matching ap-
proach for compatible segmentation on several dozen mod-
els, computing over a hundred pair-wise correspondences
using the per-class parameters defined in Table 1. Several
representative examples are shown in Figure 10. Figure
10 (a) shows three compatible segmentations computed be-
tween the cat and several other animal models with different
degrees of similarity. As demonstrated the level-of-details
in the obtained compatible segmentations depends on the
level of similarity between the models, as desired. At the
same time the obtained segmentations can be easily com-

Figure 9. Shuffling: (a) cambuliot; (b) camow;
(c) triceradog; (d) dinowoman; (e) shelion;
(f) a table; (g) a stealth-jet; (h) a six engine
super-jumbo; (i) a bunch of chairs.

Class Dmax bounds on group # (coarse level) β γ
quadrupeds 0.3% 6 − 9 0.2 0.5
humans 0.23% 6 − 9 0.2 0.5
chairs 0.3% 4 − 6 0.1 0.5
planes 0.6% 3 − 6 0.01 2

Table 1. Algorithm parameters.
bined by the shuffling interface as they share common com-
ponent boundaries. Figures 10 (b)–(e) demonstrate a similar
effect on compatible segmentations of animals, humanoids,
planes and chairs. Note that our algorithm correctly com-
puted compatible segmentation for the male and the David
models (Figure 10 (c) bottom) despite the two models hav-
ing different genus. In several shuffling examples (Figure
9) we created chimeras combining components from mod-
els in different classes for which perceptually correct cor-
respondences exist. Our algorithm successfully computed
the compatible segmentations for such models as shown in
Figure 10 (f).

8 Summary

We presented a prototype modeling system, Shuffler,
which allows users to generate detailed geometric models
with a few mouse cicks. As part of the system we intro-
duced a method for automatically computing compatible
segmentation of models into interchangeable components.
We believe such segmentation can be used by many other
modeling operations, beyond shuffling. We plan to inves-
tigate using the established correspondences to compute



(a) (b) (c) (d) (e) (f)

Figure 10. Compatible segmentations.

cross-parameterization between the components enabling
local blending and morphing, as well as transfer of skele-
tons and associated animations.

We observe that our definition of parts is purely geomet-
ric and does not account for semantics, thus it is not suit-
able for processing shapes such as faces where some parts
(cheeks, forehead, chin) have no clear geometric bound-
aries in the sense defined by Hoffman and Richards [11].
In our work we did not explicitly consider symmetry, thus
the computed segmentations are not necessarily symmetric.
Given the recent advances in detecting symmetries in 3D, it
would be interesting to introduce symmetry constraints into
our system.
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