
LIDAR-based 3D Object Perception

M. Himmelsbach, A. Müller, T. Lüttel and H.-J. Wünsche

Abstract— This paper describes a LIDAR-based perception
system for ground robot mobility, consisting of 3D object
detection, classification and tracking. The presented system
was demonstrated on-board our autonomous ground vehicle
MuCAR-3, enabling it to safely navigate in urban traffic-like
scenarios as well as in off-road convoy scenarios. The efficiency
of our approach stems from the unique combination of 2D and
3D data processing techniques. Whereas fast segmentation of
point clouds into objects is done in a 2 1

2
D occupancy grid,

classifying the objects is done on raw 3D point clouds. For
fast switching of domains, the occupancy grid is enhanced to
act like a hash table for retrieval of 3D points. In contrast to
most existing work on 3D point cloud classification, where real-
time operation is often impossible, this combination allows our
system to perform in real-time at 0.1s frame-rate.

I. INTRODUCTION

In this paper we address the problem of segmenting 3D
scan data into objects of known classes. Given the set of
points in 3D acquired by a range scanner, the goal of
segmentation is to attribute the points to a set of candidate
object classes. In the context of ground robot mobility, this
segmentation capability is not only essential for high-level
tasks like scene understanding and planning, but can also
be used for scan registration and robot localization, e.g. in a
SLAM framework [1]. Besides, knowing the object’s class is
especially useful in dynamic environments, both for planning
and estimation: estimation can be improved by making use
of appropriate dynamic models, and planning can incorporate
knowledge about the behavior or intentions typical of a
certain object class.

Our approach to perception is decomposed into three main
steps: segmentation, classification and tracking. The segmen-
tation step is performed on an occupancy grid, yielding con-
nected components of grid cells not belonging to the ground
surface. In an efficient operation, we determine all the 3D
LIDAR point measurements corresponding to the segmented
objects. In the classification step, we extract features from
an object’s point cloud, capturing the distribution of local
spatial and reflectivity properties extracted over a fixed-size
support volume around each point. In a supervised learning
framework, a support vector machine (SVM) classifier is
trained to discriminate the classes of interest, e.g. other traffic
participants in our case, given hand-labeled examples of
point clouds.

The method is not restricted to a particular robot or sensor,
however we describe and demonstrate it using our vehicle

This work was supported by COTESYS cluster of excellence.
All authors are with department of Aerospace Engineering, Autonomous

Systems Technology (TAS), University of the Bundeswehr Munich, Neu-
biberg, Germany.

Contact author email: michael.himmelsbach@unibw.de

Fig. 1. Inertially corrected cloud of 100000 3D points for one revolution
(0.1s) of the Velodyne LIDAR, mounted on the roof of MuCAR-3. Note
the different scales of gray, corresponding to the intensity of the reflected
beam. All figures are best viewed in color.

MuCAR-3 (Munich Cognitive Autonomous Robot Car, 3rd

generation), a VW Touareg equipped with a Velodyne HDL-
64 LIDAR (see Fig. 1).

A. Related Work

With range scanning devices becoming standard equip-
ment in mobile robotics, the task of 3D scan segmentation
and classification is one of increasing practical relevance.
Interestingly, although range scanners were the primary
sensor at the DARPA Urban Challenge 2007, segmentation
was primarily done on 2 1

2 -D occupancy grids. If at all, clas-
sification of segmented objects was done in the 2D domain,
by fitting L-shapes or bounding boxes and verifying them
against simple rules [2], [3]1. Classification was probably
omitted because of the strict rules of the competition, that
ensured that every object detected within the road boundaries
could only correspond to another vehicle.

In contrast, both Anguelov et. al. [4] and Lalonde et.
al. [5] describe methods where every single point of a
scan is assigned a class label. Given a labeled point cloud,
segmenting the scan is then straight-forward. While the
features extracted for each point do not differ considerably
– both methods use local point cloud statistics for feature
extraction, to be detailed later –, different classification
paradigms are followed. Anguelov et. al. [4] model a point’s

1Most of the finalist teams have not yet published the relevant work. This
insight is based on talks given at numerous workshops.

class label by a probability distribution conditioned on the
local features and the labels in the point’s neighborhood.
They thus enforce spatial contiguity, exploiting the fact that
adjacent points in the scan should have similar labels. This
distribution is modeled by a Markov Random Field (MRF),
whose parameters are determined in a supervised learning
stage such that the resulting classifier maximizes the margin
between the classes learned, like SVMs do. Although no
timing results are given in [4], it can be concluded from [6]
that the method does not permit real-time use.

Lalonde et.al. [5] learn a parametric model of the feature
distribution for each class by fitting a Gaussian mixture
model (GMM) using the Expectation Maximization (EM)
algorithm on a hand labeled training data set. Spatial con-
tiguity is accounted for by running simple rule-based filters
after classification, e.g. by changing a point’s label to the
most frequent class among its neighbors. However, to make
their method perform in real-time, some modifications are
necessary. Especially, they no longer classify individual
points, but an artificial prototype point of all points contained
in a 3D voxel grid cell, such that 7000 voxels/sec. can be
classified.

We take a quite different, unique approach to object
classification in 3D point clouds, in that segmentation is
based on the compressed data contained in a 2 1

2 D occupancy
grid. We then make use of the rich information contained
in the Velodyne’s 3D point clouds by again switching the
domain to 3D, now classifying only subsets of the scan’s
total point cloud, with evidence that each subset represents an
individual object. Thanks to the efficient combination of 2D
and 3D data processing techniques, classification of objects
represented by their 3D point clouds is possible in real-time
on-board an autonomous vehicle.

II. OBJECT DETECTION
A. Occupancy Grid

We use a 2 1
2 -D ego-centered occupancy grid of dimension

100m×100m, each cell covering a small ground patch of
0.15m×0.15m. Each cell stores a single value expressing the
degree of how occupied that cell is by an obstacle. In our
implementation this value is a metric length with the physical
unit [m]. Before we detail its meaning and calculation, note
that in our approach we create a new occupancy grid on
each new LIDAR revolution, i.e. every 0.1s. Thus, we do
not accumulate data for a longer time. The reasons for this
decision are twofold. First, one revolution of the Velodyne
supplies about 100000 3D points, which proved to be suffi-
cient. Second, the quality of an accumulated occupancy grid
can easily deteriorate if the physical movement of the sensor
is not estimated with very high precision. Small angular
deviations in the estimate of the sensor’s pose can result
in large errors. Registering scans against each other, e.g.
using the ICP algorithm [7] or some of its derivatives, could
solve this problem, but would require substantial additional
computational load.

For calculating the occupancy values, we first inertially
correct the LIDAR scan, taking the vehicle’s motion into

Fig. 2. Occupancy grid (with only profoundly occupied cells shown in red)
and superimposed point cloud. The geometric relation between discrete grid
coordinates and real ego coordinates remains static.

account (exploiting IMU and odometric information). This is
done by simultaneously moving the coordinate system of the
vehicle while transforming the local LIDAR measurements
to global 3D space. After a frame is completed, all points
are transformed back into the last local coordinate system of
the vehicle, simulating a scan as if all measurements were
taken at a single point of time instead of the 0.1s time period
of one LIDAR revolution.

Similar to Thrun et. al. [8], each cell’s value is then
calculated to be the maximum absolute difference in z-
coordinates of all points falling into the respective grid cell.
When a grid cell is hit by a laser beam and its occupancy
value is updated, we store the laser read at the cell such
that it can be queried for later processing, to be detailed in
Sec. III. Fig. 2 shows the occupancy grid with superimposed
point cloud.

B. Object Hypotheses from Segmentation

To get initial object hypotheses, we next perform a seg-
mentation of the occupied grid cells by finding connected
components of grid cells. In order to apply the connected
components algorithm, the grid first needs to be binarized.
This is achieved by simply thresholding the occupancy values
of all cells against a suitable value (0.15m for MuCAR-3,
derived from the diameter of its tires), setting all cells below
the threshold to zero and all others to one. Then, standard
connected component algorithms known from machine vi-
sion [9] can be applied, that assign each grid cell ci the
label labeli of the connected component it belongs to.

For each connected component cck, we formulate an
object hypothesis of unknown class, represented as a 3D
bounding box. The x- and y-axis of the object’s bounding
box can be calculated from the discrete grid coordinates
gci = (u, v)T of all cells ci belonging to the respective
connected component, cck = {gcego

i |labeli = k}. Here, the
“ego” superscript is used to denote that all grid coordinates
are now expressed in the ego coordinate system, a conversion

Fig. 3. Occupancy grid with objects detected by segmentation, represented
by 3D bounding boxes (green).

greatly simplified by the static geometric relation between
the ego and the grid cells. The axes then correspond to the
orthonormal eigenvectors e1, e2 of the coordinates’ covari-
ance matrix Σcck

, sorted in descending order w.r.t. to the
corresponding eigenvalues, i.e. d1 ≥ d2.

The boxes’ dimensions in the plane are found by lin-
early transforming all gcego

i ∈ cck into the coordinate sys-
tem defined by the eigenvectors (the so-called eigenspace),
gcego∗

i = (e1|e2)gcego
i , and taking the extremes over the

resulting coordinates. The position posk of the object hy-
pothesis is simply the center of gravity of the connected
component, i.e. posk = |cck|−1Σ(gcego

i ∈ cck). This 2D
box is assured to enclose all grid cells of the connected
component, but lacks some desirable properties, such as
having the minimum area of all possible enclosing boxes.
Although the current boxes work well, this could be subject
to future improvement.

With the assumption that the object’s z-axis is orthogonal
to the xy-plane and setting its z-dimension to the maximum
z-coordinate of all cells part of the connected component,
we obtain the final 3D bounding box object hypothesis.

Fig. 3 shows the result of applying the outlined object
detection algorithm to the occupancy grid shown in Fig. 2.
Note that detecting objects this way does not involve any
assumptions about an object’s shape, but rather performs
free-form object detection. This is in contrast to most work
on object detection for autonomous vehicles, where it is often
explicitly assumed that all interesting objects take on “L-
shape”, thus limiting the number of different types of objects
that can be recognized.

III. CLASSIFICATION

As mentioned earlier, we want to classify the detected
objects based on their 3D point measurements. However,
object detection just provides us with a bounding box rep-
resentation of an object. In this section we show how the
required points can be queried from the occupancy grid
given an object hypothesis and what features are extracted

Fig. 4. Querying data from the occupancy grid, with the query formulated
as a polygon. The polygon (with vertices shown blue) gets split into triangles
(2 in this example, white) and scan conversion is issued on all triangles
(yellow scan lines). The query is answered by returning all data within the
scanned grid cells (i.e. the laser reads, shown grey). Note that not all laser
reads fall into cells part of the connected component (red).

from the resulting point clouds. Finally, we show how we
train our object classifiers and briefly present some results
of classification.

A. Object Point Clouds

Remember that when updating a grid cell with a laser read,
we store the laser read at the cell2. The naive approach to
obtain the point cloud corresponding to an object would thus
be to simply collect all laser reads stored at the respective
connected component. This, however, is not expedient in
our case. The reason is that connected components are only
made of cells for which a certain z-coordinate difference
was observed, and it can not be taken for granted that all
measurements of an object fall into such cells. Thus, taking
only the points from the connected component cells would
probably miss a large number of object measurements and
harden the following classification step.

Instead, we would like to extract all laser reads contained
in the object’s 3D bounding box. To do so, we augment the
grid with a facility to answer queries for data formulated as
arbitrary (convex and non-convex) polygons, with vertices
defined in the ego coordinate system. Given such a query,
we first transform the vertex coordinates from ego to grid
coordinates and split the resulting polygon into triangles. We
next issue the triangle scan conversion algorithm on each
resulting triangle, such that every grid cell contained in the
original polygon formulation will be visited. Answering the
query is then a simple matter of collecting all the laser reads
stored at the visited cells.

This is illustrated in Fig. 4 for the case of extracting laser
reads for an object hypothesis, where the query is given
in terms of a polygon representation of the bottom plane
of the object’s 3D bounding box. Note that, as expected,
not all laser reads fall into grid cells that are part of the
corresponding connected component.

2In fact, the occupancy grid is implemented general enough to allow
storage of any kind of data at the cells. For this application, however, storing
laser reads is appropriate, and we use the terms “data” and “laser read(s)”
interchangeably.

B. Point Cloud Feature Extraction

The next step in the design of the object point cloud
classifer is to extract meaningful features from point clouds.
Here, the main difficulty is to find a compact representation
of a point cloud, thereby dramatically reducing dimension-
ality compared to the original point cloud. Otherwise, the
resulting classifier will not perform in real-time. At the same
time, discarding too much of the original data may cause the
classifier to make too many wrong decisions to be useful at
all.

The features used by Anguelov et.al. [4] and Lalonde et.
al. [5] provide us with a basis for this step. However, they
can not be applied directly, as in our case the extracted
features must provide a compact description of a cloud
of possibly many points, whereas the features used in the
works of Anguelov and Lalonde only need to describe
prominent properties of single points. On the other hand,
the features that can be computed from point clouds are
not restricted to local point properties. Instead, some of the
features should also capture global object properties, like the
object’s dimensions or volume etc.. Hence, we will use both
local and global features to describe the point clouds.

Formally, a point cloud P can be written as P =
{l1, ..., lM}, where li = {xi, yi, zi, Ii} denotes a single
laser read, consisting of the coordinates xi, yi, zi of the
measured 3D point and the intensity Ii ∈ [0, 255] of the
reflected beam. For real data, the size of an object’s point
cloud typically ranges from M = 100...1000. However, with
objects closer to the sensor, point clouds of M = 10000
points are possible in the extreme. Computing local statistics
for every laser read is intractable for such a large number of
points when targeting real-time operation. We thus perform
uniform down-sampling of each point cloud to reduce the
number of points to a constant of M := 200 prior to feature
extraction.

We now describe the features extracted from these reduced
point clouds in detail.

1) Object Level Features: We call features not involving
any local computations “object level feature”. We include
four of them in our final feature vector, all of which are
scalar valued.
• Maximum object intensity Imax = max Ii
• Mean object intensity µI = M−1ΣiIi
• Object intensity variance σI = Σi(Ii − µI)2

• Object volume V , computed from the corresponding 3D
bounding box

Obviously, i = 1...M in all the above computations.
2) Histograms of Point Level Features: Whereas object

level features do not involve local point properties, we now
turn to the types of features capturing local point cloud
statistics, evaluated at all points of the object point cloud. To
transfer the features from the point level to the object level,
we introduce a histogram for every point feature and update
the feature’s histogram with the evaluation of the feature
at every single point. After a feature has been computed
for all points, we normalize the corresponding histogram by

dividing every bin value by M . We then include the bins of
the resulting histograms into our final feature vector. To be
able to define the histogram bins over a fixed finite range,
we require that all point features be normalized to only take
values in the range 0...1.

• Lalonde features L1, L2 and L3

Lalonde et. al. [5] compute local point features express-
ing the scatter-ness (L1), linear-ness (L2) and surface-
ness (L3) at a point by inspecting the distribution
of neighboring points. To compute the features, they
perform an eigenvalue analysis of the covariance matrix
of the neighboring points’ 3D coordinates, yielding
eigenvectors e1, e2, e3 with eigenvalues d1 ≥ d2 ≥ d3.
They then set L1 = d1, L2 = d1−d2 and L3 = d2−d3.
As there is no practical upper bound to any of these
features, we make the substitution di 7→ di

Σidi
such

that ∀hi : 0 ≤ hi ≤ 1, as required3. For transforming
these point-level features to the object-level, we add 3
histograms to the final feature vector, each consisting
of 4 bins equally spaced over the range 0...1.

• Anguelov feature A1

Anguelov et. al. [4] describe two features, but only one
is used in our work as the other do not differ signifi-
cantly from the ones calculated above. The feature we
take defines a vertical cylinder of height 2m and radius
0.1m around the point the feature is computed for. This
cylinder is then vertically divided into 3 parts A1,i of
equal size, and each is assigned the fraction of all points
in the cylinder falling into it. This adds another three
4-bin histograms to the final feature vector, capturing
the distribution of A1 in the given point cloud.

We haven’t yet given a precise definition of the term “point
neighborhood” used in the above computations. This refers to
the point’s 20 nearest neighbors within a fixed-bound radius
of 0.5m. These are efficiently found by constructing a kD-
tree from the object’s point cloud once and doing the nearest
neighbor searches in this tree.

With regard to the final feature vector, we have four scalar
object-level features. In addition, we have six histograms
over point-level features, each contributing four bins. The
final feature vector thus has dimension 28 and takes the form
f = (Imax, µI , σI , V,H

4
L1
, H4

L2
, H4

L3
, H4

A1,1
, H4

A1,2
, H4

A1,3
),

where Hb
v denotes the b bin values of the histogram over the

scalar valued variable v.

C. Training the SVM classifier

For classifying objects, next a support vector machine
(SVM) classifier is trained on a hand-labeled training
data set. Like the maximum margin MRFs (M3) used by
Anguelov et. al., the SVM also maximizes the margin
between the different classes it is trained on, but lacks the
concept of spatial contiguity. However, segmentation is done
prior to classification in our approach, rendering the spatial

3This is possible as the covariance matrix is positive semi-definite, hence
all its eigenvalues are nonnegative.

contiguity property less important. We use the common ν-
SVM variant, that allows for some mislabeled examples in
case the classes are not completely separable in feature space
[10]. The approach taken to multi-class classification is that
of one-against-all classification, where one binary SVM is
trained for every class, separating it from all other classes.

The operation of the ν-SVM depends on two parameters:
C is a penalty parameter for weighting classification errors
and γ is a kernel function parameter. To also determine
the optimal choice of these parameters, we perform a grid-
search in a suitable subspace of parameter values. At each
grid resolution, the classification performance for different
pairings of C, γ, given by the grid cells, is evaluated by
randomly splitting the training data set into two folds of equal
size. Applying the concept of cross-validation, one fold is
then used for training the SVM using the current parameter
choices and the other fold for evaluation. The search then
iterates by refining the resolution of the grid and centering
it at the best parameter choices of the last iteration.

D. Two-class Classification Results

This framework for object classification has been tested on
a simplified task, the discrimination of objects belonging to
the class of passenger cars from all other objects. Bearing in
mind that the classifier will be presented features f extracted
from automatically detected objects in a real application,
semi-automatic data labeling was done. We ran our object
detection algorithm on the scans of diverse urban and non-
urban traffic scenes and visualized the detected objects in a
GUI. Via simple user interaction, each detected object could
be assigned one of the labels “vehicle” or “non-vehicle”. For
each labeled object, we extracted the corresponding point
cloud as described above and stored the points together with
the label for later training the SVM.

To get an impression of how such training data looks like,
Fig. 5 shows a few of the extracted examples. The complete
training set contained a total of 284 examples, split into 109
positive and 175 negative ones. As can be seen, the training
data set contained positive examples for vehicles sensed from
different viewing directions and distances. Also, comparing
the intensities across both classes, separating the classes
based on intensity information alone seems impossible.

We then run the described SVM training procedure on
the collected data. Note that the cross-validation result of
the last grid-search iteration already expresses the accuracy
of the trained classifier, where the classifier’s performance
is evaluated on data different from the one it was trained
on. We thus report the accuracy achieved in cross-validation
in the last iteration of grid-search. Here, only 6 of the 182
examples of the evaluated fold are assigned the wrong class
label, resulting in an accuracy of 176

182 ≈ 96.7%.
Unfortunately, we have not yet tested our method on

standard point cloud data sets known in the literature. A
comparison of the results with those obtained by other
methods can thus not be presented. This is left for future
work. Instead, we briefly describe a real-world application

Fig. 5. Some hand-labeled examples of point clouds used for training
a vehicle classifier. Positive examples (top 4 rows) and negative examples
(bottom 4 rows).

built on top of the presented perception system in the next
section.

IV. APPLICATION: OBJECT TRACKING

One example application of the presented perception sys-
tem is object tracking, as needed e.g. in a convoy scenario.
In a convoy scenario, MuCAR-3 is to autonomously follow
the path taken by the vehicle leading the convoy. Thus, the
task of the perception system is to constantly perceive the
convoy leader object and keep track of it.

Especially, when loosing sight of the leader object, the
perception system must guarantee that no other perceived
object is assigned the role of the leader by fault. Instead, in
this case the robot should stop and wait until it has again
found the leader object.

Fig. 6. A snap-shot of the on-board visualization of vehicle tracking. The
tracked vehicle and some position and velocity estimates are shown green.

To achieve this, the perception system makes use of the
classifier introduced in the previous section. Then, only
detected objects classified as a vehicle will be considered as
a convoy leader. To further improve robustness of perception
and to both allow smooth longitudinal (via adaptive cruise
control) and lateral control, the convoy leader’s pose and
velocity is estimated in a multiple model Kalman Filtering
framework4. At each iteration, i.e. at 10Hz, gated nearest
neighbor data association is performed to select one of
the possibly many vehicles as the one corresponding to
the current convoy leader, and the estimates are updated
accordingly. Fig. 6 shows a snapshot of vehicle tracking.

With this system, autonomous convoy following at speeds
up to 20m/s could be demonstrated for runs over distances of
up to 60km, leading through different kinds of environments,
including inner city, country roads, forest tracks, sharp
serpentines and trails with large potholes causing violent
pitch motions of the follower vehicle. Even in forests, where
the many tree trunks cast the detection and classification
of hundreds of objects, processing (including tracking and
evaluating “tentacles” [13] for local obstacle avoidance)
could always be finished before the arrival of the next scan,
i.e. within 0.1s.

Figures 8, 9, 10, 11 show some detailed results of con-
voy driving obtained for the scenario shown in Fig. 7.
A video showing a visualization of the processing going
on on-board MuCAR-3 during autonomous convoy driving
can be found at http://www.unibw.de/lrt13/tas/
medien/AudioVideo at the entry for Elrob 20085.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

We presented a complete system for perception of 3D
objects in LIDAR data. The success of the system was
demonstrated in an object tracking application used for

4An IMM estimator [11] based on an Unscented Kalman Filter [12].
5European Land-Robot Trial, http://www.elrob.org/

Fig. 7. Map view of the driven convoy scenario (blue: leader path,
red: follower path). The total length of the track is 5937m, driven at an
average speed of 6.9m/s, with 17.7m/s top speed. Both vehicles’ position
and heading were measured by two Inertial Navigation Systems (INS) with
D-GPS accuracy.

15 20 25 30 35 40

−496

−494

−492

−490

−488

−486

−484

−482

−480

−478

x [m]

y
[m

]

x

y
Fig. 8. Details of convoy driving during a sharp turn-over around t = 300s.
Convoy leader (dark green), convoy follower (blue), tracked convoy leader
(red) and target lane fit used to generate control commands (light green).

0 100 200 300 400 500 600 700
−0.5

0

0.5

1

1.5

2

time [s]

ab
so

lu
te

 p
os

iti
on

 e
rr

or
 [m

]

Fig. 9. Absolute position estimation error over the complete time of convoy
driving. Note the largest errors appear when driving sharp curves, where the
appearance of the convoy leader keeps rapidly changing (compare Fig. 10).

autonomous convoy following during the Elrob 2008. While
segmentation and classification of objects in 3D point clouds
has been done by several authors before, the way we combine
2D and 3D data processing techniques seems to be unique
to our approach. While more experiments are necessary to
thoroughly evaluate the classification performance, the main
benefit of our approach becomes obvious even at this stage

http://www.unibw.de/lrt13/tas/medien/AudioVideo
http://www.unibw.de/lrt13/tas/medien/AudioVideo
http://www.elrob.org/

0 100 200 300 400 500 600 700
−2

−1

0

1

2

time [s]

re
la

tiv
e

he
ad

in
g

[r
ad

]

Fig. 10. Relative heading of convoy leader (blue) and estimates (green)
over the complete time of convoy driving.

0 100 200 300 400 500 600 700
−20

−15

−10

−5

0

5

10

15

20

time [s]

ve
lo

ci
ty

 [m
/s

]

0 100 200 300 400 500 600 700
0

5

10

15

20

25

30

35

40

di
st

an
ce

 to
 le

ad
er

 v
eh

ic
le

 [m
]

Fig. 11. Convoy leader velocity (light green), estimated leader velocity
(blue), follower velocity (red, all left y-axis) and distance between follower
and leader vehicle (green, right y-axis). Note that the distance increases
with leader velocity, a property of the applied adaptive cruise control.

of development: being able to detect, classify and track
objects based on large-sized 3D point clouds, containing as
much as 100000 measurements, while still reaching real-time
performance of better than 10Hz.

B. Future Works

The paper introduced some issues worth to be considered.
Evidently, more object classes must be learned in order to
analyze the potential of the presented classification method.
This will truly show if transferring local point features to the
object level is general enough to describe and discriminate
various object classes. In this context, it would further be
interesting to see how the classification accuracy depends on
the resolution of the point level feature histograms. Besides,
research on more types of object level features should be
carried out, independent of the success of using point feature
statistics for object classification.

There are a number of immediate improvements possible,
at different stages of processing: For example, computing
minimal-area bounding boxes could improve segmentation of
the 3D point cloud. Also, the naive sampling approach for
reducing the number of points in feature extraction could
be augmented with models for point cloud saliency [14],
sampling points of higher saliency with higher probability. It
could further be investigated whether some of the parameters
involved can be determined automatically from the data. For
example, choosing the size of a point’s neighborhood for
local feature computation should depend on the distance to

the point, due to the low angular resolution typical to LIDAR
systems. The work of Unnikrishnan et. al. [15] on selecting
scale from point cloud data already points into that direction.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge funding by german
cluster of excellence COTESYS.

REFERENCES

[1] C.-C. Wang, C. Thorpe, and S. Thrun, “Online Simultaneous Local-
ization and Mapping with Detection and Tracking of Moving Objects:
Theory and Results from a Ground Vehicle in Crowded Urban Areas,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2003.

[2] S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent,
J. Schröder, M. Thuy, M. Goebl, F. von Hundelshausen, O. Pink,
C. Frese, and C. Stiller, “Team AnnieWAY’s autonomous system for
the DARPA Urban Challenge 2007,” International Journal of Field
Robotics Research, 2008.

[3] D. Ferguson, M. Darms, C. Urmson, and S. Kolski, “Detection, Predic-
tion, and Avoidance of Dynamic Obstacles in Urban Environments,”
in Proceedings of the IEEE International Conference on Intelligent
Vehicles (IV08), 2008, pp. 1149–1154.

[4] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta,
G. Heitz, and A. Ng, “Discriminative Learning of Markov Random
Fields for Segmentation of 3D Scan Data,” in CVPR ’05: Proceedings
of the 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05) - Volume 2. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 169–176.

[5] J.-F. Lalonde, N. Vandapel, D. Huber, and M. Hebert, “Natural terrain
classification using three-dimensional ladar data for ground robot
mobility,” Journal of Field Robotics, vol. 23, no. 10, pp. 839 – 861,
November 2006.

[6] B. Taskar, “Learning structured prediction models: a large margin
approach,” Ph.D. dissertation, Stanford, CA, USA, 2005.

[7] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, 1992.

[8] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau,
C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont,
L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niek-
erk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney, “Stanley: The robot that
won the DARPA Grand Challenge: Research Articles,” J. Robot. Syst.,
vol. 23, no. 9, pp. 661–692, 2006.

[9] L. G. Shapiro and G. Stockman, Computer Vision. Upper Saddle
River, NJ: Prentice Hall, 2001.

[10] B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett, “New
support vector algorithms,” Neural Computation, vol. 12, no. 5, pp.
1207–1245, 2000.

[11] Y. Bar-Shalom, T. Kirubarajan, and X.-R. Li, Estimation with Applica-
tions to Tracking and Navigation. New York, NY, USA: John Wiley
& Sons, Inc., 2002.

[12] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter
to nonlinear systems,” in Proc. SPIE Vol. 3068, p. 182-193, Signal
Processing, Sensor Fusion, and Target Recognition VI, I. Kadar, Ed.,
vol. 3068, July 1997, pp. 182–193.

[13] F. von Hundelshausen, M. Himmelsbach, A. Müller, and H.-J.
Wünsche, “Driving with Tentacles - integral structures of sensing and
motion,” International Journal of Field Robotics Research, 2008, to
appear.

[14] D. Cole, A. Harrison, and P. Newman, “Using Naturally Salient
Regions for SLAM with 3D Laser Data,” in Proc. International
Conference on Robotics and Automation, ICRA, 2005, 2005.

[15] R. Unnikrishnan and M. Hebert, “Multi-Scale Interest Regions from
Unorganized Point Clouds,” in Workshop on Search in 3D (S3D),
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
June 2008.

	INTRODUCTION
	Related Work

	OBJECT DETECTION
	Occupancy Grid
	Object Hypotheses from Segmentation

	CLASSIFICATION
	Object Point Clouds
	Point Cloud Feature Extraction
	Object Level Features
	Histograms of Point Level Features

	Training the SVM classifier
	Two-class Classification Results

	Application: Object Tracking
	CONCLUSIONS AND FUTURE WORKS
	Conclusions
	Future Works

	ACKNOWLEDGMENTS
	References

