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Abstract
Generation and animation of realistic humans is an essential part of many projects in today’s media industry.
Especially, the games and special effects industry heavily depend on realistic human animation. In this work a
unified model that describes both, human pose and body shape is introduced which allows us to accurately model
muscle deformations not only as a function of pose but also dependent on the physique of the subject. Coupled with
the model’s ability to generate arbitrary human body shapes, it severely simplifies the generation of highly realistic
character animations. A learning based approach is trained on approximately 550 full body 3D laser scans taken
of 114 subjects. Scan registration is performed using a non-rigid deformation technique. Then, a rotation invariant
encoding of the acquired exemplars permits the computation of a statistical model that simultaneously encodes
pose and body shape. Finally, morphing or generating meshes according to several constraints simultaneously
can be achieved by training semantically meaningful regressors.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Computer Graphics [I.3.5]: Computational Geometry and Object Modeling—

1. Introduction

The automatic generation and animation of realistic hu-
mans is an increasingly important discipline in the computer
graphics community. The applications of a system that si-
multaneously models pose and body shape include crowd
generation for movie or game projects, creation of custom
avatars for online shopping or games, or usability testing
of virtual prototypes. But also other problems such as hu-
man tracking or even biometric applications can benefit from
such a model.

Realistic results for human animation can be obtained by
simulating the tissue deformation on top of modeled skele-
tal bones [SPCM97, DCKY02]. This approach has been re-
searched extensively but involves a lot of manual modeling
since not only the surface but also the bones, muscles, and
other tissues have to be designed. Additionally, these meth-
ods tend to be computationally expensive since they involve
physically based tissue simulation.

In order to reduce the required amount of manual mod-
eling, several systems have been proposed that attempt to
create general human models from 3D scans. One of the ma-

Figure 1: Muscle bulging is not only a function of the un-
derlying skeleton but is instead closely correlated with the
physique of the subject.

jor difficulties with most previously suggested methods like
SCAPE [ASK∗05] or [ACP03, SMT04, WPP07, WSLG07]
is that they rely on different means for encoding shape and
pose. Pose (and the effects thereof, e.g., muscle bulging) are
stored with the help of an underlying skeleton while body
shape is encoded using variational methods or envelope skin-
ning. During animation, the outcomes of the two methods
have to be combined in an additional step.

Allen et al., on the other hand, presented a method that
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Figure 2: A few examples of scans included in our database.

learns skinning weights for corrective enveloping from 3D-
scan data [ACPH06]. They propose to use a maximum a
posteriori estimation for solving a highly nonlinear func-
tion which simultaneously describes pose, skinning weights,
bone parameters, and vertex positions. The authors are able
to change weight or height of a character during animation
and the muscle deformation looks significantly more real-
istic than linear blend skinning. However, since this func-
tion has a high number of degrees of freedom, the optimiza-
tion procedure is very expensive. Additionally, the number
of support poses that can be computed per subject is limited
by the complexity of the approach, which in turn bounds the
achievable realism.

A major benefit of the shared encoding is that it is eas-
ily possible to encode correlations between pose and body
shape, e.g., the body surface deformation generated by the
motion performed by an athletic person exhibits different
properties than the same motion carried out by a person with
less pronounced skeletal muscles (cf. Fig. 1).

The model we propose is based on statistical analysis of
over 550 full body 3D scans taken of 114 subjects. Addition-
ally, all subjects are measured with a commercially available
impedance spectroscopy body fat scale and a medical grade
pulse oximeter.

A sophisticated semi-automatic non-rigid model registra-
tion technique is used to bring the scans into semantic cor-
respondence, i.e. to fit a template model to every scan. This
approach is similar to [ARV07]. The registration ultimately
leads to a semantically unified description of all scans. I.e.
the same vertices denote the same semantic position on the
surface of a scan.

Models based on statistical analysis of human body shape
that operate directly on vertex positions have the distinct
disadvantage that body parts that are rotated have a com-
pletely differently representation. For this reason most pre-
vious techniques [ASK∗05, SMT04, WPP07, WSLG07] en-
code the surface relative to an embedded skeleton. Instead,
we opt to use an encoding that is locally translation and ro-
tation invariant in the sense that a body part retains its exact
encoding if it is translated or rotated relative to the rest of

the body. For example, the encoding of a hand remains un-
changed even if the arm is raised and rotated between two
scans. A similar encoding has recently been proposed by
Kircher and Garland [KG08] in the context of mesh editing.

The resulting shape coefficients and their variances are
analyzed using a statistical method. Similar to Blanz et
al. [BV99], regression functions are trained to correlate them
to semantically significant values like weight, body fat con-
tent, or pose. Allen et al. [ACP03] uses a simple linear
method to generate models conforming to a set of seman-
tic constraints. Allen et al. do not show quantitative analy-
sis of the accuracy of their morphing functions. In contrast
Seo and Magnenat-Thalmann describe a method for gener-
ating human bodies given a number of high level semantic
constraints [SMT04] and evaluate the accuracy of linear re-
gression based morphing functions. In Section 5 we present
a quantitative analysis comparing linear and non-linear re-
gression functions for various body measures. Scherbaum
et al. [SSSB07] have concluded in the context of face mor-
phing that although non-linear regression functions are nu-
merically more accurate, the visual difference to the linear
counterpart is minimal.

Thus, morphing a scan to conform to a given set of con-
straints only involves solving a single linear equation system
in the minimum norm sense. We present several applications
of our model, including animation of skeleton data produced
by a motion capture system (Sec. 5.4), fitting of 3D scan
data (Sec. 2), and generation of realistic avatars given only a
sparse number of semantic constraints (Sec. 5.2).

The primary contributions can be summarized as follows:

• A large statistical model of human bodies that jointly en-
codes pose and body shape is introduced. The primary ad-
vantage of this approach is that correlations between body
shape and pose are encoded in addition to the pure infor-
mation on pose and shape.

• A locally translation and rotation invariant encoding for
the meshes is introduced. This fundamentally non-linear
transformation subsequently allows us to compute a linear
statistical model on the data.

• A quantitative evaluation of linear and non-linear regres-
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sors for morphing according to semantically meaningful
constraints.

Additionally, an extension to a semi-automatic non-rigid
registration scheme is proposed that establishes semantic
correspondence between the scans, a handle based paradigm
for modeling human body shapes is presented, and our
database of approx. 550 full body 3D scans is made avail-
able for scientific purposes [Has08].

The rest of the paper is structured as follows. In the fol-
lowing Section the scan database and the registration scheme
that brings scans into semantic correspondence are intro-
duced. The rotation invariant model representation is de-
scribed in Section 3. The regression framework is presented
in Section 4, applications and experimental evaluation re-
sults are shown in Section 5, and a brief summary is given in
Section 6.

2. Scan Database & Registration

The procedure to register all scans from the database has to
be robust and almost fully automatic since the massive num-
ber of scans does not allow tedious manual intervention to
be performed on every scan. We have consequently opted
for a two stage process. First, skeleton-based deformation of
the template is used to estimate pose and rough size of the
scanned subject. Then a non-rigid deformation technique is
employed to fit the template to the scanned point cloud. This
is necessary and desirable since the stability of non-rigid reg-
istration increases significantly when the initial mesh config-
uration is close to the point cloud that is to be matched. For
complex poses (cf. Fig. 2) direct non-rigid deformation con-
verges very slowly. In contrast, due to the limited number
of degrees of freedom, a skeleton based method converges
quickly even in extreme cases. Using skeleton fitting for a
first estimate also allows us to use the resulting data for pose
regression.

The process depends only on a few manually placed cor-
respondences for each scan as the scans do not feature any
prescribed landmarks as present for example in the CAE-
SAR database [RDP99]. The template, an example of a la-
beled scan, the skeleton based fitting, and the final registra-
tion result are shown in Figure 4.

2.1. Scan Database

The project is based on a database of dense full body 3D
scans, captured using a Vitronic laser scanner. Of the 114
subjects aged 17 to 61, 59 are male and 55 female. In ad-
dition to one standard pose that allows the creation of a
shape-only model, all subjects are scanned in at least 9
poses selected randomly from a set of 34 poses, see Fig. 3
for the scan distribution. Unlike SCAPE or more recently
[ACPH06] we sample the space more densely. This allows
our model to capture pose-body-shape correlations more

Figure 3: Every dot marks a scan taken from a subject in
a given pose. Top: SCAPE-like approach - only one subject
is scanned in different poses Bottom: Our model covers the
space of body shapes more densely.

easily. Furthermore, sex, age, and self-declared fitness level
are noted. Likewise, a number of measures are captured with
a commercially available impedance spectroscopy body fat
scale, namely weight, body fat percentage, percentage of
muscle tissue, water content, and bone weight. We also use
a medical grade pulse oximeter to capture the oxygenation
of the subjects’ hemoglobin and their pulse. The scans are
arranged in a database Ss,p, where s is the subject identifier
and p the pose, containing the points and their respective
normals as generated by the scanner. This database is avail-
able to the scientific public [Has08].

In order to create a unified model of all the captured data,
the scans have to be brought into semantic correspondence.
The simplest and most common way to achieve this is to fit
a single template model to every scan (cf. [BV99, ACP03,
SMT04, ASK∗05]).

We create a symmetric template by triangulating a 3D
scan, enforcing symmetry by hand and manually fitting a
skeleton into the model. Skinning is performed using the
technique by Baran and Popović [BP07]. The template t can
be parameterized by the parameter vector Y consisting of n
points Pt = pt

1, · · · ,p
t
n and l triangles Tt = tt

1, · · · , t
t
l .

2.2. Skeleton Based Pose Estimation

The skeleton based fitting employs an approach commonly
used in marker-less motion capture systems [BM98]. Any
rigid body motion can be modeled as a single rotation around
a chosen axis followed by a suitable translation. Together,
the transformation can be stored as a twist ξ with 6 degrees
of freedom. See Murray et al. [MSZ94] for mathematical
properties and a more in depth description. The deformation
of the template model is additionally governed by a kine-
matic chain with k joints which arises from the embedded
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Figure 4: The registration pipeline. Left to right: The tem-
plate model, the result after pose fitting, the result after non-
rigid registration, transfer of captured surface details, and
the original scan annotated with manually selected land-
marks are shown.

skeleton. Only simple revolute joints are considered, which
can be parameterized by a single angle γi. By parameterizing
the complete pose of a person as a vector Ξ = [ξ,γ1 . . .γk] we
can easily generate a linear system of constraint equations to
optimize the pose. An ICP style optimisation scheme similar
to Bregler et al. [BMP04] is used that generates up to three
constraint equations per point of the template surface. Ad-
ditionally, the manually selected landmark coordinates are
used to ensure global stability of the fitting process. The re-
sults from this step are used on the one hand as training data
to learn regression functions that aim to modify the pose of
a subject. On the other hand, the extracted pose can be used
to initialize the non-rigid registration technique described in
the following.

2.3. Non-Rigid Registration

The posed template from Section 2.2 is used as initialization
for a more detailed non-rigid registration step, that captures
the remaining details of the current scan. The procedure fol-
lows the ideas presented in the work by Allen et al. [ACP03]
and Amberg et al. [ARV07]. The registration is expressed as
a set of 3× 4 affine transformation matrices Ti associated
with each vertex pt

i of the posed template, which are orga-
nized in a single 4n×3 matrix

X = [T . . .Tn]> (1)

We define the cost function E(X) of our deformation as a
combination of three energy terms: Ed(X), which penalizes
distance between template and target surface, Es(X), which
acts as a regularization term to generate a smooth deforma-
tion, and finally El(X), which is a simple landmark distance
term,

E(X) = αEd(X)+βEs(X)+ γEl(X). (2)

Unlike Amberg et al., we do not express the distance term
using the closest point of the target surface from the tem-

plate vertices, but as a projection onto a plane fitted to a lo-
cal patch of the target. Amberg et al. are forced to handle
vertices bordering on holes in the target surface specially to
avoid artefacts. This is not necessary if the inverse procedure
is used and allows us to skip the border labeling step.

To find this projection, we first find the closest mesh ver-
tex pt

i for each target surface point ps
j. We discard matches

where the angle between the respective normals are above a
threshold εn = 30◦ or the distance between the points is big-
ger than εd = 50mm. We now go through all mesh vertices
pt

i and gather the set Pi of all points that were matched to
it. We then use a least-squares procedure to fit a local plane
to them and project the point pt

i onto that plane, resulting in
a target point p̃t

i unless Pi contains fewer than 4 points. In
the latter case the set is discarded and we assign the closest
point of the surface ps

j as the target position p̃t
i unless this

point also fails the requirements given above. Our distance
energy term can now simply be expressed as

Ed(X) = ∑‖p̃t
i −Tip

t
i‖

2
(3)

The regularization term Es(X) in Amberg’s original paper
is expressed as the Frobenius-Norm of the transformation
matrices of neighboring vertices in the mesh. This original
term does not take into account irregular sampling of the
mesh, and thus may exhibit some artifacts. Additionally, in
our case missing data needs to be extrapolated only in lo-
calized regions where we have holes in the scan. In our ex-
periments we therefore confine the second order differences
of the transformation matrices by applying a Laplacian con-
straint with cotangent edge weights. This regularization term
tries to make changes in the transformation matrices over the
mesh as smooth as possible, and not as similar as possible as
originally proposed. The regularization term can be written
as

Es(X) = ∑‖∑
j

wi j(Ti −T j)‖
F (4)

where wi j are the cotangent Laplacian weights based on the
original template mesh configuration and ‖‖F denotes the
Frobenius Norm.

The final term El(X) is a simple landmark distance term:

El(X) = ∑‖l̃ti −Tipt
i‖

2
(5)

The general registration procedure follows the work of
Amberg and coworkers. The energy term (2) can be written
as a linear system and solved in the least-squares sense for
a given configuration. This process is iterated tmax = 1500
times, during which we change the energy function weight-
ing terms in the following way:

β = k0 · eλt (6)

where t is the number of the iteration, k0 = 3000, and

λ = ln
(

k0

k∞

)
/tmax (7)
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with k∞ = 0.01. Additionally, α can be kept constant at 1
and γ = kγ ·β with kγ = 2.

3. Model Representation

It is useful to encode the registered models in such a way that
the relevant differences between a pair of scans can easily be
extracted. For example, if the subject raises an arm between
two considered scans, we want the representation of the hand
of the person to be identical, although both position and ro-
tation of the hand relative to the main body have changed.
A common method to achieve this is to embed a skeleton
into the model and encode the surface relative to the skele-
ton [ASK∗05]. This method, however, is forced to resort to
interpolation when a given surface point cannot be assigned
uniquely to a single bone of the skeleton. Additionally, the
correlation between pose and body shape becomes harder to
capture. So in the following we describe an encoding that
allows us to describe both pose and body shape in a unified
way. As we show in Section 5.1, this non-linear transforma-
tion allows us to work with linear functions for modifying
pose or body shape without significant loss of accuracy.

Translational invariance can easily be achieved by using
variational approaches, as for example introduced by Yu et
al. [YZX∗04] or Sorkine et al. [SCOL∗04]. The mesh can
be reconstructed given only the original connectivity and the
triangle gradients by solving a sparse linear Poisson system.
We can also edit and modify the shape by ‘exploding’ it,
applying an arbitrary transformation to each triangle sepa-
rately. If we then solve the so modified linear system, we
effectively stitch the triangles back together in such a way
that the prescribed triangles transformations are maintained
as good as possible. This fundamental idea has been used for
shape editing (as for example in [ZRKS05]), but also forms
the basis of SCAPE [ASK∗05].

Unfortunately, this variational representation is not
rotational-invariant, meaning that the same shape will be en-
coded differently depending on its orientation. To remedy
this, we encode each triangle as a transformation Ui relative
to a rest-pose triangle ti. This transformation can be split up
into a rotation Ri and a remaining stretching deformation
Si using polar-decomposition. The stretching deformation is
by construction rotation-invariant, which means that we only
need to construct a relative encoding for the rotation matri-
ces Ri. This can be achieved by storing relative rotations be-
tween pairs of neighboring triangles, i.e.

Ri, j = Ri ·R−1
j (8)

where i and j are neighboring triangles. So, for every triangle
three relative rotations connecting it with its neighbors can
be generated. This encoding may seem wasteful as three ro-
tations are stored instead of just one but this redundancy sig-
nificantly improves the stability of the reconstruction when
a deformation is applied to the encoded model. Recently,

Figure 5: Due to the relative rotation encoding (RRE) di-
rect linear interpolation of two scans (left and right) results
in realistic intermediate poses (middle right) whereas linear
interpolation of vertex positions fails as can be seen, e.g., in
the subject’s degenerated right arm (middle left).

Kircher and Garland [KG08] have introduced a similar rep-
resentation for editing mesh animations.

Reconstructing a mesh from this encoding involves solv-
ing two sparse linear systems. First we need to reconstruct
Ui = RiSi. Then a Poisson reconstruction yields the com-
plete mesh. Creating the per-triangle rotations Ri from the
relative rotations Ri, j requires solving a sparse linear sys-
tem, which can be created by reordering Equation (8). For
every set of neighbouring triangles equations of the form

Ri, j ·R j −Ri = 0 (9)

are added to a sparse linear equation system. As long as the
model is encoded and decoded without modification, the ro-
tations Ri we receive from this system are identical to the
input up to floating point accuracy and a global rotation
Rg. However, if any modification is applied to the encoded
model, the resulting matrices Ri are not necessarily pure ro-
tation matrices but may contain scale or shear components.
To improve the stability of the reconstruction we perform
matrix ortho-normalization of the resulting Ri using singu-
lar value decomposition.

Now that a reversible procedure for encoding a model in
a locally rotation invariant way has been described, we can
think about how exactly the different components of the de-
scription are represented. The main requirement of the en-
coding is that linear interpolation leads to intact represen-
tations. Shear matrices are already in a suitable format if
only one half of the symmetric matrices are stored. Rotation
matrices, however, are badly suited for direct interpolation.
Evaluation of a number of different encodings leads directly
to rotation vectors because this representation allows easy
interpolation and unlike quaternions all possible combina-
tions of values are valid and, in contrast to Euler Angles, the
encoding does not suffer from gimbal lock [Ple89]. Addi-
tionally, in order to further linearise the encoding space, all
parameters are stored relative to the corresponding triangle
of the mean model, which is constructed by averaging all
components of all models in the relative encoding. The re-
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sulting final encoding has 15 degrees of freedom per triangle
(nine for rotation and six for in-plane deformation).

The advantage of this complex representation is that it is
hard to generate inconsistent meshes and that many com-
mon deformations, namely scaling during shape morphing
and rotation during pose modification, are linear operations.
This improves the quality of trained regression functions sig-
nificantly and allows us to use linear regressors without vis-
ible loss of quality. As shown in Figure 5 it is even possible
to linearly interpolate between two poses of a subject and
obtain realistic results.

Unfortunately, high frequency information, as present for
example in the wrinkles of the pants the subjects are wear-
ing, is very hard to represent with our model. Subjects some-
times adjust the fit of the pants between scans and the in-
tra subject variance of wrinkles is even higher. So we opted
to use a simple detail transfer procedure to re-add high fre-
quency information after morphing, similar to displacement
subdivision surfaces by Lee et al. [LMH00]. This step im-
proves firstly the accuracy of the estimated regression func-
tions as noise is removed, secondly the efficiency since
the computationally intensive steps operate on lower qual-
ity meshes, and thirdly the visual quality as high frequency
information is retained during morphing instead of getting
smoothed out. It works as follows: After fitting, the base
mesh is subdivided using the simple mid-edge scheme and
projected onto the scan. The offsets of the subdivision ver-
tices in normal direction of the base mesh are stored with
each triangle. During recall the mesh is subdivided again and
the stored offsets are added.

4. Regression

In Section 3 a model jointly encoding human pose and shape
has been presented. In this section regression is introduced
as a powerful tool to incorporate further information such
as gender, height, or joint angle into the model to obtain a
fully statistical and morphable model. Starting from a set of
encoded scans A = [a1 . . .ai] and a function l() discretised
at the positions of the scans, attaching semantic values l =
[l1 . . . li]> to every scan, we compute a gradient direction s
and a corresponding offset o such that

argmin
[os]

[1|A]
[

o
s

]
− l (10)

This function can simply be computed in a least-squares
sense. However, the achievable generalisation is limited,
since the function is severely overtrained. Much better gen-
eralization performance can be achieved if the number of
components is reduced. Cross validation provides a well es-
tablished means to select the optimal number of components.
The classical approach discards components in the order the
PCA suggests, starting with the elements corresponding to
the smallest eigenvalues.

However, these components correspond to the eigenvec-
tors with the smallest variation in the space of body shapes
and poses and not the variation of l(). Consider, for ex-
ample, a function that subtly changes the shape of a per-
son’s kneecaps. This function primarily depends on certain
components that probably correspond to low eigenvalues be-
cause they do not dramatically impact the whole body. So,
when solving Equation (10) the coefficients of s for these
components are comparably high, whereas the main compo-
nents primarily concerned with changing height or weight
are low.

Consequently, we propose to perform cross validation
slightly differently. The order in which components are dis-
carded is not determined by their variance in the space
spanned by A but by their correlation with l() which is in-
dicated by the magnitude of the initial components of s. A
comparison of cross validation accuracy for both methods
plus a non-linear Support Vector Regression based technique
is shown in Table 1. The accuracy of our filtered approach is
very close to the precision of the non-linear approach.

Obviously, morphing a subject d to conform to a semantic
constraint k just involves walking along the function’s gra-
dient d′ = d + v, where v = λs for a suitable λ. For several
semantic constraints, the solution is slightly more involved
since the gradients are not necessarily orthogonal. Basically
we want to find a new gradient z, such that

〈z,vi〉
‖vi‖

= ‖vi‖. (11)

Equation (11) is used to generate one row for every con-
straint vi. Solving the frequently underdeterminded system
for z in the minimum norm sense yields a solution that
changes the subject as little as possible.

4.1. Semantic Model Basis

It is interesting to rotate the original PCA basis such that
the first vectors correspond to semantically meaningful di-
rections since this allows morphing a subject while keep-
ing some constraints constant. For example, increasing body
height normally results in additional weight. However, by
keeping weight constant while increasing height results in
slimmer subjects.

The Gram-Schmidt algorithm [GVL96] is used to span
the subspace of the original PCA space such that it is or-
thogonal to all given semantic morphing vectors. Then PCA
is used to generate a basis for the remaining subspace. The
new basis and all morphing vectors now span the original
PCA space. Thereafter, all scans are transformed to the new
base. The reconstruction of these models using only the sub-
space not spanned by semantic variables leads to a represen-
tation in which all models are invariant to the semantic con-
straint variables. The PCA of these reconstructions in com-
bination with the semantic constraint vectors represents the
final basis. The desirable properties of this basis are that the

submitted to EUROGRAPHICS 2009.



N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H.-P. Seidel / A Model of Pose and Body Shape 7

Regressor Height Weight Body Fat Muscles Waist
simple linear 3.68 3.03 3.38 5.63 2.78
filtered linear 1.43 1.33 2.02 2.41 0.945
non-linear 1.15 1.17 1.66 2.38 0.858

Table 1: Root mean squared errors estimated by 10-fold
cross validation for different semantic variables and regres-
sors on a model that contains every subject exactly once.
Weight is measured in kg, Body Fat, and Muscles in %, and
Height and Waist Girth in cm.

first vectors directly represent semantically meaningful gra-
dient directions and the remaining human body shape space
is spanned by a PCA basis. By applying Gram-Schmidt on
the semantic vectors as well and normalizing their lengths,
we can enforce orthonormality of the transformation. A mix-
ing matrix and scale factors can be used to directly specify
semantically meaningful constraints. However, in most cases
this step is unnecessary because the semantic constraints are
held constant at specific values and solving of linear systems
is only performed on the remaining subspace. So minimum
norm solutions behave as expected.

5. Applications and Results

In this section applications of our model are presented. First
the foundation of our model is validated by quantitatively
evaluating the accuracy of different semantics based mor-
phing strategies. Then character modeling schemes are de-
scribed and last our approach for animating characters based
on skeletal angles is introduced.

5.1. Semantic Morphing

In line with research conducted by Allen et al. [ACP03]
and Seo and Magnenat-Thalmann [SMT04] we present body
shape morphing driven by high level semantic variables. We
also conduct quantitative analysis of the accuracy of the
trained functions. In Table 1 mean squared errors generated
by 10-fold cross validation of different semantic functions
are presented. It is doubtful that changes within the range
of these error bounds would be perceptible. The data also
shows that, as a result of the non-linear relative rotation en-
coding, the achievable accuracy is only slightly better when
using non-linear rather than linear regression. This assump-
tion is confirmed by the observations summarised in Table 2.
Mean and standard deviation of the angles between morph-
ing directions for selected functions computed for all sub-
jects in the shape only model are shown. All of these val-
ues are small indicating that morphing directions are highly
collinear independent of the position in shape space. Appar-
ently, the relative rotation encoding linearises the space suf-
ficiently so that it is now admissible to use a linear function
to represent the changes.

Unfortunately, many semantically meaningful functions

Figure 6: The effects of applying the muscledness function.
Left to right: Original, a selective mask was applied to in-
crease only upper body muscles, full body muscle augmen-
tation, and an extremely muscular caricature.

Height Weight Body Fat Waist Girth
µ 2.04 1.47 2.78 2.00
σ 0.688 0.520 0.853 0.715

Table 2: Mean and standard deviation of angles (in degrees)
between morphing directions computed by the non-linear
model for all subjects.

cannot easily be evaluated quantitatively. For example, in
order to define a muscledness function the subjects in the
database have to be labelled somehow. Yet, it is hard for a
human judge to assign a number to the muscledness of a per-
son. It is much easier to compare two given scans and decide
on the more muscled subject. Each random pairing of scans
defines a gradient direction. The judge only chooses the sign
of the gradient towards greater muscularity. By first normal-
izing and then averaging the gradients, a general muscularity
function can be generated. Results of applying the function
are shown in Figure 6.

Since morphing functions can operate directly on the rel-
ative encoding, it is trivial to constrain morphing to selected
body parts. A multiplicative mask allows deformation to oc-
cur in selected areas. The reconstruction process spreads out
the error arising at the edge of the selected region evenly,
preventing the development of steps in the surface. Figure 6
shows selective morphing of the upper body using the mus-
cledness function.

5.2. Character Generation

As shown recently, it is essential for the perception of the
diversity of a crowd that the body shapes of the characters
differ significantly [MLD∗08]. It is consequently important
to have a simple method that allows the generation of di-
verse body shapes. Yet, it may also be important to be able to
tightly control a generated character’s body shape. Employ-
ing our model both objectives can be achieved by combining
two different approaches.
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Figure 7: Several women were randomly generated using
the semantic basis. We applied the constraints sex = female
and weight = 65 kg. As expected the taller the woman the
slimmer she is.

The PCA projects the largest variances of a dataset in
the first components while noise like features are displaced
to the last components. This is a most welcome feature for
many applications. For the purpose of generating a random
character that exhibits a unique physique while creating a
natural, human look, a PCA based shape-only model is the
tool of choice. We use a model consisting only of scans of
subjects in the resting pose. The model that contains all scans
cannot be used for this purpose since it contains pose depen-
dent components in the first PCA vectors. So, a randomly
generated character with the limited model would exhibit
not just changes in shape but also in pose. Yet, for animation
the generated characters can be plugged directly into the full
model as described in Section 5.4.

The advantage of the PCA based technique is that the
diversity of the generated characters is very high. On the
downside, control over the type of generated character is
fairly low. Neither gender nor body weight or height can
easily be controlled as the PCA vectors do not, unlike often
assumed, directly pertain to a single semantically relevant
measure. We can, however, take a given starting point, gen-
erated e.g. with the above technique and apply the morphing
described in Section 4 to enforce a given set of constraints.
Unfortunately, this approach, although workable, may pro-
duce suboptimal results since the morphed distance may be
large, introducing artifacts on the way.

It is much more efficient to use the semantic basis intro-
duced in Section 4.1. This technique allows us to specify se-
mantic constraints such as height between 1.70 m and 1.90 m
and sex between 0.9 and 1.1 male and allow the system to fill
in the details. Ultimately, this approach is used to generate
the models displayed in Figure 7 whereas Figure 8 shows a
crowd that was generated without constraints.

5.3. Handle Based Body Shape Modeling

Additional adjustments may be deemed necessary by the
responsible artist. Obviously morphing along semantic tra-

Figure 8: An example of a randomly generated set of char-
acters.

jectories is a simple option. In this section a different ap-
proach is introduced. By adding moveable handles to the
body model a very intuitive way of changing body shape
is established. This avenue is opened by our use of Pois-
son reconstruction in the last step which allows the inclusion
of additional positional constraints. The deformation that is
required to conform to the constraints is distributed evenly.
In fact, mesh editing has been performed using this tech-
nique [YZX∗04]. However, we want the constraints to influ-
ence the body shape realistically instead of just deforming
the initial shape in the least squares sense because this in-
evitably leads to unrealistic distortions. This, however, can
easily be mended by projecting the candidate body model
into the PCA space spanned by the body shape database
since primarily valid body models can be represented in this
space. It may thus not be possible to represent the proposed
model in shape-space and constraints are not met exactly.
So, we iterate between deforming the model and project-
ing it back into the space of body shapes. After about 10
iterations the system converges. Still, the method acts as a
very strong regularizer, so that constraints are frequently not
met exactly and it may be necessary to exaggerate them to
achieve a desired effect. A simple editing session is shown
in Figure 9.

5.4. Animation

Every scan’s pose is estimated during registration. Thus we
can easily train functions that each change a specific degree
of freedom of the pose. That way, we can morph any scan
into a specified pose. Since animations are frequently pa-
rameterised by a set of joint angles for every frame, we can
simply morph a given model to conform to these constraints
to animate it. This works well for most joints and poses.

However, improvements are possible if two minor issues
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Figure 9: A handle based interface for editing body shapes.
The red markers are held in place while the yellow arrows
show where attached markers are moved. First the height is
increased, then hip width is decreased, and last the crotch is
raised.

are addressed. Some functions’ areas of influence are not lo-
calised to the expected area but also include areas on the
mirrored side of the body. This is a result of the choice of
scanned poses. In most poses arm movements are symmet-
ric. Fortunately, the effect can be compensated for by com-
puting some functions, namely all functions concerning arm
movement, only on one side of the body. Similarly, it proved
beneficial to split PCA vectors into left and right halfs dur-
ing reprojection of candidate models to assist independent
motion of left and right arms.

Furthermore, absolute positioning accuracy of end effec-
tors can be improved by following Wang et al. [WPP07] who
propose to add positional constraints to the tips of limbs dur-
ing the poisson reconstruction step. This step also serves to
correct correlations that were wrongly learned. For exam-
ple, in one of the poses the subjects stand on one leg (cf.
Fig. 2). In order to keep balance and not to move for the
10 s it takes to perform the scan a very unrelaxed upper body
posture was commonly adopted by the subjects. This has led
to undesired correlations. Also note that these artifacts can-
not be prevented unless fast 3D-scanning of moving subjects
is performed, which is not available today at a comparable
accuracy. A side-by-side comparison of using end effector
constraints vs. not using them is shown in Figure 10. Fig-
ure 11 shows several frames from an animation. In one of
the frames the subject crosses his legs. This is significant as
no pose of a scan in the database is even close to the dis-
played pose. A subject is morphed into a pose that is not
in the database and compared to a scan in a similar pose in
Fig. 12. Additionally, a person who is not in the database is
represented by our model.

6. Conclusions and Future Work

We describe a model of human pose and body shape. A ro-
tation invariant encoding of the scan database allows us to

Figure 10: By adding positional constraints during recon-
struction of deformed models it is possible to ameliorate ac-
cumulated pose errors. Here the effect of using positional
constraints is demonstrated. Left: No constraints, Middle:
Constraints, Right: Reference Pose.

Figure 11: Animation result. The subject on the right is
crossing his legs. This is significant as no subject in the
database has been scanned in a similar pose.

Figure 12: left: Morphing a scan into a pose that is not
in the database in comparison with the original scan. The
hands are not turned into the same direction which results in
the main difference between the two. Middle: The scan of a
person who is not in the database is projected into the space
of body shapes. Right: The subject on the left is morphed
into the spear-thrower’s pose.
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train semantic regression functions. These in turn can be
used to generate and animate human avatars. Since pose and
body shape are stored in a single model, correlations be-
tween them are automatically exploited to induce realistic
muscle bulging and fat deformation during animation.

Comparison of linear and non-linear regression shows that
the numerical cross-validation errors are slightly lower for
non-linear regression but the visual quality is equivalent. So
for display oriented applications linear regression is suffi-
cient.

A designer can perform semantic morphing either on the
whole body or by applying a simple mask to selected body
parts. This allows the fine grained generation of realistic hu-
man models. Additionally, a handle based body shape edit-
ing paradigm provides the artist with an intuitive tool that
seamlessly integrates with semantic constraint based editing.

As most of our system is implemented in Matlab the per-
formance is not optimal. Reconstructing one model takes ap-
prox. 20 s on a recent machine. However, a more efficient
implementation and possibly a hierarchical multi-resolution
approach could improve the performance significantly.

It may also be interesting to estimate body shapes from
images as this would open a number of applications for ex-
ample in the human motion capture field or in biometric
identification.
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