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Abstract— Generating rich representations of environments
can significantly improve the autonomy of mobile robotics. In
this paper we introduce a novel approach to building object-type
maps of outdoor environments. Our approach uses conditional
random fields (CRF) to jointly classify laser returns in a 2D
scan map into seven object types (car, wall, tree trunk, foliage,
person, grass, and other). The spatial connectivity of the CRF
model is determined via Delaunay triangulation of the laser map.
Our model incorporates laser shape features, visual appearance
features, structural information extracted from clusters of laser
returns, and visual object detectors trained on image data sets
available on the internet. The parameters of the CRF are trained
from partially labeled laser and camera data collected by a car
moving through an urban environment. Our approach achieves
91% accuracy in classifying objects observed along a 3 kilometer
trajectory.

I. I NTRODUCTION

Generating rich representations of environments can bring
another level of autonomy to mobile robotics. Over the last
decade, much of the research in map building has focused on
the simultaneous localization and mapping (SLAM) problem,
i.e., the problem of estimating the joint posterior distribution
over the robot’s location and the map of the environment.
Research in this topic has produced various techniques thatare
able to build spatially consistent maps of large scale, cyclic
environments [22].

More recently, several research groups extended SLAM
approaches to generate maps that describe environments in
terms of object types and places. Such representations can
be extremely valuable, since they enable robots to perform
high-level reasoning about their environments and the objects
therein. For instance, in search and rescue tasks, a mobile
robot that can reason about objects such as doors, and places
such as rooms is able to coordinate with first responders in
a much more natural way, being able to accept commands
such as “Search the room behind the third door on the right
of this hallway”, and conveying information such as “There
is a wounded person behind the desk in that room” [11]. As
another example, consider autonomous vehicles navigatingin
urban areas. While the recent success of the DARPA Urban
Challenge [5] demonstrates that it is possible to develop
autonomous vehicles that can navigate safely in constrained
settings, successful operation in more realistic, populated
urban areas requires the ability to distinguish between objects

such as cars, people, buildings, trees, and traffic lights.
In this paper we introduce a novel approach to building ob-

ject type maps of outdoor environments. Our approach applies
standard scan matching techniques to align 2D laser scans
collected by a vehicle driving through urban environments.
We use conditional random fields (CRF) to classify each
laser return into the seven object types: car, wall, tree trunk,
foliage, person, grass, and other. In contrast to previous work
on outdoor object mapping [18], our model performs joint
classification of the laser returns. This is done by connecting
the nodes of the CRF based on a Delaunay triangulation of
the laser data. An important aspect of CRFs is their ability
to incorporate many features with arbitrary dependencies.Our
model takes advantage of this ability by incorporating large
sets of laser shape features and visual appearance features
extracted from camera data. The parameters of our models
are learned from partially labeled laser and camera data. We
show that classification can be further improved by explicitly
modeling within a CRF the information contained in the
arrangement of clusters of returns. We also present resultson
the incorporation of visual object detectors trained on publicly
available image data sets such as the LabelMe set [2].

We evaluate our technique on laser and camera data col-
lected by a vehicle navigating through an urban environment.
Tested using ten-fold cross validation, objects observed along
a 3 kilometer long trajectory are identified with an accuracy
of 91%.

This paper is organized as follows. Related work is dis-
cussed first, in Section II. In Section III, we introduce the
probabilistic models underlying our mapping approach, fol-
lowed by a description of features used for classification.
Experimental results are presented in Section V. Finally, we
conclude in Section VI.

II. RELATED WORK

Object recognition is a long-standing problem in robotics
and computer vision. Most of the approaches in computer vi-
sion aim at recognizing objects from single images. Classifiers
are trained on labeled data and used to either classify images
as containing or not an instance of the object, or to segment
the object in the image. Examples are [8, 23, 25]. In robotics,
the problem is different. Recognition can be performed in a
sequence of images, in many cases combined with other sensor



modalities. Alternatively, object recognition can be required on
a full map, as addressed in this paper.

Within the robotics community, recent developments have
created representations of the environment integrating more
than one sensor modality. In [17], a 3D laser scanner and
loop closure detection based on photometric information are
brought together into the Simultaneous Localization and Map-
ping (SLAM) framework. This approach does not generate
a semantic representation of the environment which can be
obtained from the same multi-modal data using the approach
proposed here.

In [20], a robust landmark representation is created by prob-
abilistic compression of high-dimensional vectors containing
laser and camera information. This representation is used in
a SLAM system and updated on-line when a landmark is re-
observed. However, it does not reason about landmark classes
and therefore does not support the higher-level object detection
described in this work.

Object recognition based on laser and video data has
been demonstrated in [15]. Using a sum rule, this approach
combines the outputs of two classifiers, each of them being
assigned to the processing of one type of data. More recently,
Posner and colleagues combine 3D laser range data with
camera information to classify surface types such as brick,
concrete, grass, or pavement in outdoor environments [18,
19]. The authors classify each laser scan return independently
which can disregard important neighborhood information. As
other researchers have shown, classification results can be
improved by jointly classifying laser beams using techniques
such as associative Markov networks [24] or conditional
random fields [7].

In [3], a Markov Random Field is used to segment objects
from 3D laser scans. The model is trained discriminatively
using a max-margin objective function. The features used
were simple geometric features capturing plane properties
of groups of points. The authors considered four classes:
ground, building, tree and shrubbery. Friedman and colleagues
introduced Voronoi Random Fields, which generate semantic
place maps of indoor environments by labeling the points on
a Voronoi graph of a laser map using conditional random
fields [10].

The key contribution of this paper is a methodology to build
maps of objects in which accurate classification is achievedby
exploiting the ability of CRFs to represent spatial correlations
and to model the structural information contained in clusters
of laser returns.

III. M APPING IN CONDITIONAL RANDOM FIELDS

To augment geometric maps with semantic information,
we have developed three approaches corresponding to three
different models. All these models are based on the framework
provided by conditional random fields. Before describing how
these models are built from laser and camera data, we provide
background on learning and inference in conditional random
fields.

A. Conditional Random Fields

Conditional random fields (CRF) are undirected graphical
models developed for labeling sequence data [12]. CRFs
directly modelp(x|z), the conditional distribution over the
hidden variablesx given observationsz. In our framework,
x is the set of object types to be estimated, a hidden state
being instantiated for each laser return. The observationsz

correspond to shape and appearance features extracted from
laser and vision data, respectively. A CRF can be formulated
as follows:

p(x|z) =
1

Z
exp

(

wA

∑

i

A(xi, z) + wI

∑

e

I(xe, xe′ , z)

)

(1)

Here, the term1/Z is a normalization factor. The func-
tions A and I are the association and interaction potentials,
respectively. In our framework, an association potentialA is
instantiated as a logitboost classifier [9] and estimates the
object type of nodexi using the set of observationsz but does
not take into account information contained in the structure
of the neighborhood. An interaction potentialI is a function
associated to each edgee of the CRF graph, wherexe andxe′

are the nodes connected by edgee. Intuitively, interaction po-
tentials measure the compatibility between neighboring nodes
and act as smoothers by correlating the estimation across the
network.

In our system, the first step of the CRF training is learning
the logitboost classifierA which is performed as in [7]. The
second step of the learning consists in finding optimal values
for the set of weightswA and wI based on a labeled data
set. Depending on the connectivity structure of the network
to be trained, the system uses exact or approximate learning
techniques. For non-cyclic networks, the systems uses a Max-
imum Likelihood approach since inference can be performed
exactly. For networks containing cycles, the system uses the
approximate version of this technique which is known as
Maximum Pseudo-Likelihood learning [4].

Since the values of the local potential functionA are ob-
tained as the output of a logitboost classifier, our approachfor
training can be seen as an extension of boosting to structured
classification tasks. As a result, this approach is very flexible
and powerful. It not only learns the weights of the potentials,
but also selects the subset of dimensions in the observation
vectorsz which are useful for classification [10, 13].

In this work, the maximum pseudo-likelihood learning is
slightly extended in such a way that the labels of neighbor
nodes are not required, allowing training to be performed
on partially labeled data. This is achieved by optimizing the
pseudo-likelihood written as:

pl(x|z) =

N
∏

i=1

p(xi|MB(xi), z) ∝

N
∏

i=1

exp(wAA(xi, z))

∏

k∈MB(xi)

exp(wII(xi, xk, z) + wAA(xk, z))

where the last equation is obtained by breaking the expo-
nential in Eq. 1 into two terms (the full derivation is not given



here due to space constraints).N refers to the number of nodes
in the network andMB(xi) is the Markov blanket of nodexi.
The parameters to be adjusted to find the maximum value of
the pseudo-likelihood arewA andwI . In this formulation, the
usually required neighbor labels are replaced by the estimated
distribution over the neighbor’s label:exp(wAA(xk, z)). Via
this formulation, the learning algorithm can use the unlabeled
nodes in the neighborhood of each labeled node and be
performed on partially labeled data.

Inference in CRFs estimates either the marginal distribution
of each hidden variablexi or the most likely configuration of
all hidden variablesx (i.e., MAP estimation), based on their
joint conditional probability (Eq. 1). We solve both tasks using
belief propagation (BP) for non-cyclic networks. For cyclic
networks, we use the approximate version of BP called Loopy
Belief Propagation (loopy BP) [16].

B. From Laser Scans to Conditional Random Field

The input to our system is a collection of spatially aligned
laser scans obtained by performing scan matching with the
iterative closest point (ICP) algorithm [27]1. In this section,
we present three types of CRFs which will be compared in
order to better understand how to model the spatial correlations
in a semantic map. We show how the three different models
can be instantiated from aligned laser data and indicate which
learning and inference techniques are used in each case. For
these three networks, the hidden state for each node ranges
over the seven object types: car, trunk, foliage, people, wall,
grass, and other (any other object type).

1) Delaunay CRF:In this first type of network, each laser
return is instantiated as one node in the CRF. The connections
between the nodes are found using the Delaunay triangulation
procedure [6] which efficiently finds a triangulation with non-
overlapping edges. The system then removes links which are
longer than a pre-defined threshold (50 cm in our application)
since distant nodes are not likely to be strongly correlated.
The resulting network is displayed as a set of blue edges in
Fig. 2.

Since a Delaunay CRF contains cycles, training and in-
ference are performed with maximum pseudo-likelihood and
loopy BP, respectively.

2) Delaunay CRF with link selection:Generally speaking,
structured classification as performed by CRFs is expected
to improve on local classification since independence is not
assumed,i.e., neighborhood information is modelled through
interaction potentials. However, as illustrated by the experi-
mental results, the first type of CRF previously described does
not improve on local classification. A too coarse modelling
of the spatial correlations is responsible for this result.The
term exp(wII(xi, xk, z)) of Eq. 1 is learnt in this first type
of network as a constant matrix instantiated at each of the
links. This gives the network a smoothing effect on top of the
local classification. Since all the links are represented with
the same matrix, only one type of node-to-node relationship

1In spatially more complex data sets containing loops, consistently aligned
scans can be generated using various existing SLAM techniques [22]

is encoded, for example: neighbor nodes should have the same
label. Such links are appropriate in very structured parts of the
environment but may over-smooth in areas where the density
of objects increases.

In order to model more than one type of node-to-node rela-
tionships, the network is augmented with an additional node
T for every pair of nodes{xi, xj} as displayed in Fig. 1. The
state of this node specifies which type of link is instantiated.
For this second type of network, we consider two types of
links encoding the following node-to-node relationships:(1)
neighbor nodes have the same label, (2) neighbor nodes have
a different label. Node T receives an observation S which is
the output of a logitboost classifier learned to estimate whether
node xi and xj are similar based on their respective local
observationzi andzj . The observation S is a direct observation
of the state of node T.

Since this second type of network contains loops, training
and inference are also performed with maximum pseudo-
likelihood and loopy BP, respectively.
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Fig. 1. Representation of the additional infrastructure required in a Delaunay
CRF to perform link selection.

3) Tree based CRF:The previous two types of network
contain cycles, which implies the use of approximate learning
and inference algorithms. We now present a third type of
network which is cycle free and does not require the use of
approximate techniques. To design non-cyclic networks we
start from the following observation: laser returns in a scan
map are naturally organized into clusters. These clusters can
be identified by analysising the connectivity of the Delaunay
graph and finding its disconnected sub-components. Discon-
nected components appear when removing longer links of
the original triangulation. In Fig. 2, the extracted clusters are
indicated by green rectangles.

Once the clusters are identified, the nodes of a particular
cluster are connected by a tree of depth one. A root node
is instantiated for each cluster and each node in the cluster
becomes a leaf node. The trees associated to the clusters in
Fig. 2 are represented by green volumes. A tree-based CRF
does not encode node-to-node smoothing but rather performs
smoothing based on the identified clusters of laser returns.

The root node does not have an explicit state. It allows
the instantiation of a network which does not contains cycles
enabling learning and inference to be performed exactly. With
this third type of network, the system uses a maximum
likelihood approach for learning and belief propagation for



inference. The possibility of using exact learning and inference
is a strong advantage compared to the absence of theoretical
results in terms of convergence of maximum pseudo-likelihood
learning and loopy belief propagation.

Fig. 2. Representation of a Tree based CRF in one region of a graph generated
from data. The trajectory of the vehicle is displayed in orange. Laser returns
are instantiated as nodes in the network and connected usingthe Delaunay
triangulation. Nodes and edges are plotted in dark and lightblue, respectively.
Identified clusters are indicated by the green rectangles while root nodes are
plotted in green. Root nodes are connected to all nodes in thecluster but for
clarity this is represented by a rectangle enclosing the cluster.

IV. FEATURESFOR OBJECTMAPPING

As formulated in Eq. 1, the computation of the posterior
probability requires the set of observationsz. In this work,
z consists of high-dimensional feature vectorsf computed
for each scan return.f results from the concatenation of
three types of features, geometric features, visual features and
features extracted from on-line datasets:

f = [fgeo, fvisu, fwww], (2)

Geometric and visual features are first described. We then
show how on-line labeled datasets freely available on the
internet can provide additional binary features.

A. Geometric Features

Geometric features capture geometric properties of the
objects in the laser returns. The feature vector computed for
one scan return has a dimensionality of231 and results from
the concatenation of 38 different multi dimensional features.
Due to limited space we only present a subset of these features
below:

fgeo(i, zA) = [fdist, fangle, foor, fcluster, . . .] , (3)

wherei indexes one of the returns in scanzA.
fdist or distance features are computed for each returnzA,i

in scanA as its distance to other points in scanA:

fdist (i, k, zA) = ‖zA,i − zA,i+k‖ , (4)

wherek varies from−10 to +10.

fangle or angle features are computed as angles formed by
various configurations of neighbor returns:

fangle (i, k, l, zA) = ‖6 (zA,i−kzA,i, zA,izA,i+l)‖ . (5)

wherek and l vary from −10 to +10. These two first types
of features provide information about the local shape of the
scan around returni.

foor or out of range features count the number of “out
of range” beams between pairs of successive returns. These
features allow the representation of open areas between valid
beams of the laser scan.

fcluster consists of various features computed to describe
a cluster of laser returns. Cluster of returns within a single
scan are extracted based on a simple distance criteria and
characterized through the following quantities: geodesiclength
of the cluster, length of its two principal components, error
generated by the fit of a spline to the cluster points. Note that
two returns in the same cluster have the samefcluster vector.
The aim of thefcluster features is to capture the organization
of objects at the scale of one laser scan.

B. Visual Features

In addition to laser range scans, our system incorporates
visual appearance by projecting the laser returns into camera
images collected by a calibrated camera mounted on the
vehicle, similar approach to [7, 19].

The CRF learned with a logitboost based algorithm can
not only integrate geometric information but also any other
type of data and, in particular, visual features extracted from
monocular color images. As a consequence, the system ex-
tracts features in a region of interest (ROI) defined around the
projection of each return into the corresponding image. The
parameters required to carry out the projection are defined
through the camera laser calibration procedure developed in
[26]. The size of the ROI is changed depending on the range
of the return. This provides a mechanism to deal with changes
in scales across images. It was verified that the use of a size
varying ROI improves classification accuracy by4%.

The visual feature vector associated to each return has a
dimensionality of1239 and results from the concatenation of
51 multi-dimensional features computed in the ROI. Due to
limited space, we only describe the most important of these
features:

fvisu(i) = [fpyr, frgb, fhsv, fhaar, fedges, flines, fsift, . . .] , (6)

where indexi refers to the ROI associated to returni.
fpyr returns texture information encoded as a vector con-

taining the steerable pyramid [21] coefficients of ROIi as
well as the minimum and the maximum of these coefficients.
These extrema are useful to classify cars which from most
point of views have a relatively low texture maxima due to
their smooth surface.

frgb and fhsv return a 3D histogram of the RGB and HSV
data in ROIi.

fhaar returns Haar features of ROIi computed using the
integral image approach proposed in [25].



fedges uses a Canny edge detector to extract the number of
pixels within ROI i recognized as belonging to an edge.

flines processes the whole image with the line detector [1]
and extracts the number of lines intersecting ROIi as well as
the maximum length of this subset of lines.

fsift counts the number of Sift features [14] found in ROIi.

C. Using On-line Datasets

In our datasets, some of the classes such as the class people
have no more than one hundred training samples. This can be
detrimental to the accuracy of the classifier. To compensate
for the lack of training data, we have used binary features
computed with classifiers trained on on-line datasets. Across
the web, large labeled datasets such as the LabelMe dataset [2]
can be used to learn binary classifiers on large amount of
training data. We used the LabelMe data to train binary object
detectors for each of the ten classes: car, tree trunk, foliage,
pedestrian, building, grass, road, pole, fence and road; and
applied these detectors to our data to generate an additional
binary feature vectorfwww of dimensionality10.

In addition to an algorithm which can be trained with
partially labeled data, the use of on-line labeled data sets
decrease the labelling effort. The results reported in Sec.V-
B.4 with respect to thefwww features show the right trend
while no significant improvement has been obtained yet. This
part of the work is preliminary and aims at introducing the
idea of generating additional features as output of classifiers
trained on on-line datasets. We believe that understanding
the requirements for features to be portable from standard
datasets to a given robotics application is crucial for large-scale
autonomy and this paper opens up this direction of research.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Experiments were performed using outdoor data collected
with a modified car traveling at 0 to 40 km/h along a
3km long trajectory. The car drove in a university campus
which has structured areas with buildings, walls and cars,
and unstructured areas with bush, trees and lawn fields. The
overall dataset contains 4500 images representing 20 minutes
of logging. Laser and vision data was acquired at a frequency
of 4Hz. The laser sensor used belongs to the family of SICK
devices and the camera was a high-resolution wide angle
Hanvision camera.

The evaluation of the classifier was performed on a ten-fold
cross validation setup which involves training each classifier
on nine tenth of the trajectory and testing it on the remaining
one tenth. These two operations are repeated ten times by
changing the testing and training sets accordingly. The results
presented below are averaged over the cross validation runs.

Each set of scans was converted into a probabilistic network
as described in Sec. III-B. Training and testing sets were partly
hand labeled to provide labels to the learning algorithm anda
ground truth to evaluate classification accuracy.

The properties of the training and testing sets averaged over
the ten tests are provided in Table I.

Length vehicle # scans # nodes
trajectory total total

labeled labeled
Training set 2.6 km 3843 67612

72 5168
Testing set 290 m 427 7511

8 574

TABLE I

PROPERTIES OF THETRAINING AND TESTING SETS

B. Classification Performance

This section presents the classification performances ob-
tained with the three models presented in Sec. III-B. Results
for local classification are first presented in order to provide a
baseline for comparison.

1) Local Classification:A seven-class logitboost classifier
is learned and instantiated at each node of the network as
the association potentialA (Eq. 1). Local classification,i.e.,
classification which does not take neighborhood information
into account is performed with the confusion matrix presented
in Table II. This confusion matrix displays a strong diagonal
which corresponds to an accuracy of 90.4%. A compact
characterization of the confusion matrix is given by precision
and recall values. These are presented in Table III. Averaged
over the seven classes, the classifier achieves a precision of
89.0% and a recall of 98.1%.

Truth \ Inferred Car Trunk Foliage People Wall Grass Other
Car 1967 1 7 10 3 0 48

Trunk 4 165 18 0 4 0 11
Foliage 25 18 1451 0 24 0 71
People 6 2 2 145 0 0 6
Wall 6 6 21 0 513 1 39
Grass 0 0 1 1 1 146 4
Other 54 5 123 3 24 0 811

TABLE II

LOCAL CLASSIFICATION: CONFUSIONMATRIX

In % Car Trunk Foliage People Wall Grass Other
Precision 96.6 81.7 91.3 90.1 87.5 95.4 79.5

Recall 97.9 99.3 96.4 99.7 98.5 99.9 95.4

TABLE III

LOCAL CLASSIFICATION: PRECISION AND RECALL

2) Delaunay CRF classification:
a) CRF without built-in link selection:the accuracy

achieved by this first type of network is 90.3% providing
no improvements on local classification. As developed in
Sec. III-B.2, the modelling of the spatial correlation is too
coarse since it contains only one type of link which cannot
accurately model the relationships between neighbor nodes. As
a consequence, the links end up representing the predominant
relationship in the data. In our application the predominant
neighborhood relationships are of the type “neighbor nodes
possessing the same label”. The resulting learned links enforce
this “same-to-same” relationship across the network leading
to over smooth estimates and explaining why this class of
networks fails to improve on local classification. To verifythat



a better modelling of the CRF links improves the classification
performance, we now presents results generated by the second
proposed type of CRF, characterized by a built-in link selection
process.

b) CRF with built-in link selection: the accuracy
achieved by this second type of network is 91.4% which
corresponds to 1.0% improvement in accuracy. Since the
local accuracy is already high, the improvement brought by
the network may be better appreciated when expressed as a
reduction of the error rate of 10.4%. This result validates the
claim that a set of link types encoding a variety of node-to-
node relationships is required to exploit the spatial correlations
in the laser map.

3) Tree based CRF classification:The two types of net-
works evaluated in the previous section contain cycles and
require the use of approximate learning and inference tech-
niques. The tree based CRFs presented in Sec. III-B.3 avoid
these issues by allowing the use of exact learning and inference
procedures.

This third type of network achieves an accuracy of 91.1%
which is slightly below the accuracy given by a CRF with
link selection while still improving on the CRF without link
selection. However, the major improvement brought by this
third type of network is in terms of computational time.
Since the network has the complexity of a tree of depth
one, learning and inference, in addition to being exact, can
be implemented very efficiently. As displayed in Table IV,
a tree based CRF is 80% faster at training and 90% faster
at testing than a Delaunay CRF. Since both network types
use as their association potential the seven classes logitboost
classifier, they require the same features extracted from a scan
and its associated image in 1.2 secs on average. As shown in
Table I, the test set contains 7511 nodes on average which
suggests that the tree based CRF approach is in its current
state is very close to real time, feature extraction being the
main bottleneck.

Feature Extraction Learning Inference
(per scan) (training set) (test set)

Delaunay CRF 1.2 secs 6.7 mins 1.5 mins
(with link selection)

Tree based CRF 1.2 secs 1.5 mins 10.0 secs

TABLE IV

COMPUTATION TIMES

4) Using on-line data sets for training:Based on the
LabelMe set, 10 binary object detectors are trained using the
logitboost algorithm. The 10 classes considered are: car, tree
trunk, foliage, pedestrian, building, grass, road, pole, fence
and road. Since the LabelMe dataset contains vision data only,
these binary classifiers are vision based detectors and, in order
to use their output as additional features, we run them on the
ROIs selected in each image of our urban dataset (the selection
of these ROIs is performed as described in Sec. IV-B).

Within our urban dataset as well as within the LabelMe
dataset, the size of the selected ROIs are not constant which
requires designing the various vision features in such a way
that the dimensionality of the vectorfvisu is independent of

the ROI size. Our approach consist in using features which
are distributions (e.g. an histogram with a fixed number of
bins) and whose dimensionality is constant (e.g. equal to the
number of bins in the histogram). A larger ROI leads to a
better sampled distribution (e.g. a larger number of samples
in the histogram) and the actual feature dimensionality remains
invariant.

The use of these additionalfwww features slightly improves
the local classification accuracy from 90.4% to 90.6%. We
believe that there is no further increase in accuracy due to
the fact that the lighting conditions in the two datasets differ
significantly (our urban dataset contains images which are on
average much darker than the ones in the LabelMe dataset).
In the context of preliminary investigations, these results are
encouraging and future tests will involve datasets with more
similar lighting conditions.

C. Map of Objects

This section presents a visualization of the mapping results.
It follows the lay out of Figure 3 in which the vehicle was
travelling from right to left.

At the location of the first inset, the vehicle was going up a
straight road with a fence on its left and right, and, from the
foreground to the background, another fence, a car, a parking
meter and bush. All these objects were correctly classified with
the fences and the parking meter identified as other.

In the second inset, the vehicle was coming into a curve
facing a parking lot and bush on the side of the road. Four
returns misclassified as other can be seen in the background of
the image. The class other regularly generated false positives
which is possibly caused by the dominating number of training
samples in this class. Various ways of re-weighting the training
samples or balancing the training set were tried without
significant improvements.

While reaching the third inset, a car driving in the opposite
direction came into the field of view of our vehicle’s sensors.
The trace let by this car in the map appears in the magnified
inset as a set of blue dots along side our vehicle’s trajectory.
Dynamic objects are not explicitly considered within this
work. They are assumed to move at a speed which does
not prevent ICP from performing accurate registration. In the
campus areas where the data was obtained, this assumption
has proven to be valid. In spite of a few miss-classifications
in the bush on the left side of the road, the pedestrians on the
side walk are correctly identified and the wall of the building
is recognised.

Entering the fourth inset, our vehicle was facing a second
car, scene which appears in the map as a blue trace intersecting
our vehicle’s trajectory. Apart from one miss-classified return
on one of the pedestrians, and one miss-classified return on the
tree in the right of the image, the inferred labels are accurate.
Note that the first right return is correctly classified illustrating
the accuracy of the model at the border between objects.

VI. CONCLUSIONS

This paper introduces a novel approach for object mapping
in outdoor environments. Our technique applies conditional
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Fig. 3. Visualization of 750 meters long portion of the estimated map of objects with total length of 3km. The map was generated using the tree based CRF
model. The legend is indicated in the bottom left part of the 2Dplane. The color of the vehicle’s trajectory is specified in the bottom right part of the same
plane. The coordinate in the plane of the map are in meters. Eachinset is magnified and associated to an image displayed with theinferred labels projected
back onto the original returns. The location of the vehicle is shown in each magnified patch with a square and its orientation indicated by the arrow attached
to it. The laser scanner mounted on the vehicle can be seen in the bottom part of each image.



random fields to label individual points in a 2D laser map
annotated with camera data. We take advantage of CRFs’
ability to handle dependent features by incorporating large
sets of shape and appearance information extracted from laser
scans and cameras. Spatial dependencies are modeled by con-
necting nodes in the CRF based on a Delaunay triangulation
of the laser data. Label smoothing on the object level is
achieved by three different graph structures based on a spatial
segmentation of the laser data. Our approach learns both
feature functions and model parameters using a combination
of maximum likelihood and logitboost training on partially
labeled data.

Experiments conducted on data collected along a 3km
trajectory through an urban area indicate that our system
achieves very good classification rates for object types such
as car, trunk, foliage, people, wall, grass, and other. The
approach achieves a reduction of the classification error of
10.4% with respect to a local approach solely integrating
standard shape and appearance features. We also show how
on-line datasets can be integrated by incorporating object
detectors as additional features.

These results are extremely encouraging and the following
aspects are promising directions for future work. The accuracy
of our current system suffers from lack of training data,
especially for more sparsely observed objects such as tree
trunks and people. While this can be overcome by collecting
and labeling more data, our experiments indicate that lever-
aging the large number of labeled (and unlabeled) vision data
resources on the web is a more scalable technique. The CRFs
underlying our system are able to incorporate many externally
learned classifiers, and an interesting question is how to best
combine these classifiers with the shape information provided
by the laser data.

While the current mapping system is designed to run off-
line, the efficiency of feature extraction and inference makes
it possible to generate object maps on the fly, additionally
labeling objects as moving or not.

Finally, the most important limitation of our current system
is the reliance on 2D laser range data. However, we believe
that our approach can also be applied to 3D laser data,
which should greatly improve the accuracy and richness of
the generated maps.
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