
A Benchmark for 3D Mesh Segmentation

Xiaobai Chen, Aleksey Golovinskiy, Thomas Funkhouser

Princeton University

Figure 1: Composite images of segment boundaries selected by different people (the darker the seam the more people have chosen a cut
along that edge). One example is shown for each of the 19 object categories considered in this study.

Abstract

This paper describes a benchmark for evaluation of 3D mesh seg-
mentation algorithms. The benchmark comprises a data set with
4,300 manually generated segmentations for 380 surface meshes
of 19 different object categories, and it includes software for ana-
lyzing 11 geometric properties of segmentations and producing 4
quantitative metrics for comparison of segmentations. The paper
investigates the design decisions made in building the benchmark,
analyzes properties of human-generated and computer-generated
segmentations, and provides quantitative comparisons of 7 recently
published mesh segmentation algorithms. Our results suggest that
people are remarkably consistent in the way that they segment most
3D surface meshes, that no one automatic segmentation algorithm
is better than the others for all types of objects, and that algorithms
based on non-local shape features seem to produce segmentations
that most closely resemble ones made by humans.

Keywords: 3D mesh segmentation, 3D mesh analysis

1 Introduction

Automatic segmentation of 3D surface meshes into functional parts
is a fundamental problem in computer graphics. A part decom-
position not only provides semantic information about the under-
lying object, but also can be used to guide several types of mesh

processing algorithms, including skeleton extraction [Biasotti et al.
2003; Katz and Tal 2003], modeling [Funkhouser et al. 2004],
morphing [Zöckler et al. 2000; Gregory et al. 1999], shape-based
retrieval [Zuckerberger 2002], and texture mapping [Lévy et al.
2002]. All of these applications benefit from mesh segmentations
that match human intuition.

While many automatic mesh segmentation algorithms have been
developed over the last several years, there has been little work on
quantitative evaluation of how well they perform. The main prob-
lem has been the lack of a “gold standard.” There has been no
benchmark set of 3D models and no agreed-upon metrics of suc-
cess. Rather, most new algorithms are tested on their own set of
3D meshes, and results are presented only as images with different
segments shown in different colors. In a few cases, more than one
algorithm have been compared on the same set of meshes (e.g., [At-
tene et al. 2006a]), but the evaluation is qualitative (images shown
side-by-side).

In this paper, we present a benchmark for quantitative evaluation
of mesh segmentation algorithms. To build this benchmark, we
recruited eighty people to manually segment surface meshes into
functional parts, yielding an average of 11 human-generated seg-
mentations for each of 380 meshes. This data set provides a sam-
pled distribution over “how humans decompose each mesh into
functional parts,” which we treat as a probabilistic “ground truth”
(Figure 1). Given this data set, we analyze properties of the human-
generated segmentations to learn about what they have in common
with each other (and with computer-generated segmentations); and
we compute metrics that measure how well the human-generated
segmentations match computer-generated ones for the same mesh,
which provide a basis for quantitative comparisons of mesh seg-
mentation algorithms.

The contributions of the paper are five-fold. First, we describe a
procedure for collecting a distribution of mesh segmentations from
people around the world. Second, we investigate four metrics for
comparing mesh segmentations, adapting ideas from computer vi-
sion to the domain of 3D meshes. Third, we perform quantitative
comparison of seven automatic mesh segmentation algorithms ac-



cording to these metrics. Fourth, we analyze properties of human-
generated and computer-generated mesh segmentations, making
observations about how they are similar and different with respect
to one another. Finally, we provide a publicly available data set and
software suite for future analysis and comparison of mesh segmen-
tations (http://segeval.cs.princeton.edu).

2 Related Work

Segmentation is a classical problem in processing of images, video,
audio, surfaces, and other types of multimedia data. Accordingly,
a large number of methods have been proposed for both computing
and evaluating segmentations. As methods have matured for each
data type, segmentation benchmarks have been proposed for eval-
uation and comparison of methods [Over et al. 2004]. Examples
include The Berkeley Segmentation Benchmark for images [Martin
et al. 2001], The TREC Data Set for video [Smeaton et al. 2004],
The IBNC Corpus for audio [Federico et al. 2000], and so on. How-
ever, to our knowledge, no analogous segmentation benchmarks
have been developed for 3D surface meshes.

Over the last decade, many 3D mesh segmentation algorithms have
been proposed, including ones based on K-means [Shlafman et al.
2002], graph cuts [Golovinskiy and Funkhouser 2008; Katz and
Tal 2003], hierarchical clustering [Garland et al. 2001; Gelfand
and Guibas 2004; Golovinskiy and Funkhouser 2008], primitive
fitting [Attene et al. 2006b], random walks [Lai et al. 2008], core
extraction [Katz et al. 2005], tubular multi-scale analysis [Mortara
et al. 2004a], spectral clustering [Liu and Zhang 2004], critical
point analysis [Lin et al. 2007] and so on (recent surveys can be
found in [Agathos et al. 2007] and [Shamir 2008]). However, most
of these methods have been evaluated only by visual inspection of
results, and rarely are comparisons provided for more than one al-
gorithm in the same study.

Perhaps the state-of-the-art in 3D mesh segmentation evaluation is
the study of Attene et al. [Attene et al. 2006a]. They compared five
segmentation algorithms [Attene et al. 2006b; Katz et al. 2005; Katz
and Tal 2003; Mortara et al. 2004a; Mortara et al. 2004b] on eleven
3D surface meshes. Evaluation and comparison was performed by
showing side-by-side images of segmented meshes produced by
different algorithms with segments shown in different colors. Since
no “ground truth” was available, readers were asked to evaluate re-
sults visually, and discussion focused on qualitative characteristics
of algorithms (e.g., segmentation type, suitable inputs, boundary
smoothness, whether the method is hierarchical, sensitivity to pose,
computational complexity, and control parameters).

The focus of our work is to provide quantitative metrics for evalu-
ation of mesh segmentation algorithms. We would like to not only
show images of example segmentations, but also provide statisti-
cal measures of “how close they are to what a human would do”
for a large set of 3D models. In this sense, we follow the work of
LabelMe [Russell et al. 2008], The Berkeley Segmentation Bench-
mark [Martin et al. 2001], and other image databases that have
built sets of human-generated segmentations and then used them
for evaluation of automatic algorithms [Correia and Pereira 2000;
Everingham et al. 2002; Huang and Dom 1995; Unnikrishnan et al.
2005; Zhang 1996; Zhang et al. 2008]. We leverage the ideas of this
previous work in computer vision, using related metrics to evaluate
the similarities in overall structure and boundaries of automatically-
generated segmentations with respect to human-generated ones.

Concurrent with our work is a project by [Benhabiles et al. 2009],
which has similar goals and methodology. Our study includes more
human subjects, segmentation algorithms, mesh models, object cat-
egories, evaluation metrics, and analysis of human-generated seg-
mentations.

3 Benchmark Design

The focus of this paper is to investigate the design of a benchmark
for 3D mesh segmentation algorithms. In building such a bench-
mark, several issues have to be addressed, including “which 3D
models to study?,” “how to acquire unbiased segmentations from
humans?,” “how to acquire data from a large variety of people?,”
“how to measure the similarity between two segmentations?,” and
“how to present aggregate statistics when comparing the results of
different algorithms?.” These topics are discussed in the following
five subsections.

3.1 Selecting a 3D Model Data Set

The first issue is to select a set of 3D models to include in the seg-
mentation benchmark. In making our selection, we consider four
main criteria: 1) the data set should cover a broad set of object
categories (e.g., furniture, animals, tools, etc.); 2) models should
exhibit shape variability within each category (e.g., articulated fig-
ures in different poses); 3) models should be neither too simple, nor
too complex, to segment; and, 4) models should be represented in
a form that most segmentation algorithms are able to take as input.
This last criterion suggests that the models should be represented
by manifold triangle meshes with only one (or a small number of)
connected component(s).

While several data sets fit these criteria, and any of them could have
been selected for our study, we chose to work with the 3D meshes
from the Watertight Track of the 2007 SHREC Shape-based Re-
trieval Contest provided generously by Daniela Giorgi [Giorgi et al.
2007]. This data set contains 400 models spread evenly amongst
20 object categories, including human bodies, chairs, mechanical
CAD parts, hands, fish, pliers, etc. (one example from most cat-
egories is shown in Figure 1). It contains two categories where
the same object appears in different poses (armadillo and pliers),
another seven categories where different articulated objects of the
same type appear in different poses (human, ant, octopus, teddy
bear, hand, bird, four leg), and three categories where objects have
non-zero genus (cup, vase, chair). Several object categories are
fairly easy to segment (teddy, bearing), while others are very chal-
lenging (e.g., buste). Most importantly, every object is represented
by a watertight triangle mesh with a single connected component,
the representation supported most commonly by currently available
segmentation algorithms.

While this data set provides a good starting point for a benchmark,
it also has some drawbacks. First, every model was remeshed dur-
ing the process of making it watertight (e.g., the original polygonal
model was voxelized, and then an isosurface was extracted). As a
result, the sampling of vertices in the mesh is more uniform and
noisier than is typical in computer graphics models. Second, it con-
tains a category called Spring, for which segmentation does not re-
ally make sense (each object is a single coil of wire), and thus we
excluded it from our study. Over time, we expect the benchmark to
include other data sets with different advantages and drawbacks that
can be used to test different aspects of algorithms. For example, we
have produced a segmented version of the Princeton Shape Bench-
mark [Shilane et al. 2004]. However, many of its models contain
mesh degeneracies, and thus it is not suitable for this study.

3.2 Designing an Interactive Segmentation Tool

The second issue is to design a system for collecting example seg-
mentations from humans. Since the choice of segments/boundaries
is subjective, and there are always variances among people’s opin-
ions, we needed a mechanism with which we can acquire segmen-
tations from many different people for each polygonal model in the



(a) After one click (b) After two clicks

(c) After three clicks (d) After making the cut

Figure 2: Using the Interactive Segmentation Tool.

data set. The tool used to acquire segmentations should be easy to
learn, to enable collection of data from untrained subjects; it should
be quick to use (a couple of minutes per model), since thousands
of examples are needed to cover the 380 models each with mul-
tiple examples; and, most importantly, it should not bias people
towards particular types of segmentations – i.e., the results should
reflect “what segmentation a person wants,” not “what segmenta-
tion is possible with the tool.”

There are many possible approaches to interactive mesh segmen-
tation. For example, Shape Annotator [Robbiano et al. 2007] sup-
ports an interactive interface for combining segments generated by
different automatic segmentation algorithms, and thus provides a
solution that is easy to learn and quick to use. However, since the
results are limited to contain only segments generated by automatic
algorithms, they are highly constrained and biased towards those
algorithms. Alternatively, several system are available that support
intelligent scissoring of 3D meshes, using interfaces based on ei-
ther strokes along cuts [Funkhouser et al. 2004; Lee et al. 2004]
or sketches within segments [Wu et al. 2007]. However, then the
results would be biased towards the cuts favored by the system’s
“intelligent” scissoring error function.

Our approach is to develop a simple interactive tool with which peo-
ple can select points along segment boundaries (cuts) with a sim-
ple point and click interface, while the system connects them with
shortest paths [Gregory et al. 1999] (Figure 2). The user builds and
adjusts the current cut incrementally by clicking on vertices through
which the cut should traverse. For each click, the system updates
the (approximately) shortest closed path through the selected ver-
tices along edges of the mesh (shown in yellow in Figure 2). Ver-
tices can be inserted into the middle of the cut or removed from it,
and cuts can be defined with multiple contours (e.g., to cut off the
handle of a cup). Whenever the user is satisfied with the current cut,
he/she hits a key to partition the mesh, after which the faces on ei-
ther side of the cut are shown in different colors. The segmentation
process proceeds hierarchically as each cut makes a binary split.

This approach strikes a balance between user-control and ease-of-
use. While the system provides some assistance to the user when
defining cuts (it connects selected vertices with shortest paths along
edges), it is significantly less than the assistance provided by in-
telligent scissoring programs (which also encourage cuts to follow
concave seams as defined by an error function) and significantly
more than a brute-force interface where the user selects every ver-
tex along every cut. In the former case, the system is very easy-to-
use, but the results are biased. In the latter case, the system is im-
practically tedious to use, but gives the user absolute control over
the placement of cuts. Our approach is somewhere in the middle.
Specifying a desired cut often takes as few as three clicks, but can

take more than ten for complicated cuts. Yet, we expect that con-
necting the user’s input with shortest paths does not unfairly bias
the results towards any particular segmentation algorithm.

3.3 Collecting Segmentations from Many People

The third issue is to design a procedure to acquire segmentations
from multiple people for each 3D model in the data set.

The most obvious way to address this issue is to pay a group of peo-
ple to come to our lab and run our interactive segmentation program
under close supervision. However, this procedure is very costly, in
both time and money. So, instead we recruited people to segment
models through Amazon’s Mechanical Turk [Amazon 2008]. The
Mechanical Turk is an on-line platform that matches workers from
around the world with paid tasks. Requesters (us) can post tasks
(hits) to a web site (www.mturk.com), where workers can select
them from a list, follow the instructions, and submit the results on-
line. The big advantage of this approach is that it taps the inexpen-
sive and under-utilized resource of people with idle time around the
world. The challenge is that we must provide instructions and qual-
ity assurance procedures that minimize the risk that acquired data
is biased or poor quality.

To minimize bias, we distribute meshes to workers in random or-
der, and we log the IP of people who access our task and combine it
with the worker information from the Mechanical Turk to guarantee
that each worker segments each model at most once. We also pro-
vide very little information about howmodels should be segmented.
Quoting from the web page, we tell the workers: “OurMotivation is
to create a 3D mesh segmentation benchmark that helps researchers
to better understand mesh segmentation algorithms. Our task is to
use an interactive program to manually segment the 3D polygo-
nal model into functional parts. We evaluate manually segmented
3D polygonal models by comparison to segmentations provided by
experts. They should cut the surface along natural seams into func-
tional parts with as much as detail as possible.”

We also have a simple set of instructions to describe how to use
the interactive segmentation tool: “An interactive tool for segment-
ing 3D meshes will start as soon as you accept our task. The pro-
gram provides several commands (e.g., ’a’) for creating and editing
a path through vertices of the mesh and a command (’c’) for cutting
the mesh into two segments by separating along the current path.
Each ‘cutting path’ partitions a single segment into two, and thus
these simple commands can be applied in sequence to decompose a
mesh into multiple segments. The segmentation result will be saved
when the program exits (hit the ESCAPE key to quit the program).
Full list of commands are listed in the tab called ‘Tool Command
Handbook.”’

Using this procedure, we received 4,365 submissions during a one
month time period, of which 4,300 were accepted and 65 were re-
jected (for having no cuts at all). In looking at the results, we find
that 25 are over-segmented in comparison to the others, and 353
have at least one cut that seems to be an outlier. However, we do
not exclude this data from our analysis so as to avoid bias in the
results. As shown in Figure 3, we accepted an average of 11 seg-
mentations for each model. According to Amazon’s Mechanical
Turk statistics, the accepted submissions came from more than 80
participants, and each took an average of 3 minutes of worker time.

3.4 Computing Evaluation Metrics

The next design decision is to develop a set of metrics that can
be used to evaluate how well computer-generated segmentations
match the human-generated ones. Here, we follow prior work in
computer vision, adapting four metrics that have previously been



4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

Number of Segmentations

N
u

m
b

e
r 

o
f 

M
o

d
e

ls

Figure 3: Histogram of the number of segmentations per model.

used to evaluate image segmentations. Generally speaking, the first
one is boundary-based (i.e., measures how close segment bound-
aries are to one another), and the last three are region-based (i.e.,
measure the consistency of segment interiors). Among those, one
explicitly considers segment correspondences in its error calcula-
tions, and another accounts for hierarchical nesting. Rather than
selecting one of these metrics, we present results for all four, as
each may provide different information that could be valuable in
our study.

3.4.1 Cut Discrepancy

The first metric, Cut Discrepancy, sums the distances from points
along the cuts in the computed segmentation to the closest cuts
in the ground truth segmentation, and vice-versa. Intuitively, it
is a boundary-based method that measures the distances between
cuts [Huang and Dom 1995].

Assuming C1 and C2 are sets of all points on the segment bound-
aries of segmentations S1 and S2, respectively, and dG(p1, p2)
measures the geodesic distance between two points on a mesh, then
the geodesic distance from a point p1 ∈ C1 to a set of cuts C2 is
defined as:

dG(p1, C2) = min{dG(p1, p2), ∀p2 ∈ C2}

and the Directional Cut Discrepancy, DCD(S1 ⇒ S2), of S1

with respect to S2 is defined as the mean of the distribution of
dG(p1, C2) for all points p1 ∈ C1:

DCD(S1 ⇒ S2) = mean{dG(p1, C2), ∀p1 ∈ C1}

We define the Cut Discrepancy, CD(S1, S2), to be the mean of
the directional functions in both directions, divided by the average
Euclidean distance from a point on the surface to centroid of the
mesh (avgRadius) in order to ensure symmetry of the metric and to
avoid effects due to scale:

CD(S1, S2) =
DCD(S1 ⇒ S2) + DCD(S2 ⇒ S1)

avgRadius

The advantage of the Cut Discrepancy metric is that it provides a
simple, intuitive measure of how well boundaries align. The disad-
vantage is that it is sensitive to segmentation granularity. In particu-
lar, it is undefined when either model has zero cuts, and it decreases
to zero as more cuts are added to the ground truth segmentation.

3.4.2 Hamming Distance

A second metric uses Hamming Distance to measure the overall
region-based difference between two segmentation results [Huang
and Dom 1995]. Given two mesh segmentation S1 =
{S1

1 , S2

1 , . . . , Sm
1 } and S2 = {S1

2 , S2

2 , . . . , Sn
2 } withm and n seg-

ments, respectively, the Directional Hamming Distance is defined
as

DH(S1 ⇒ S2) =
X

i

‖Si
2\S

it

1
‖

where “\” is the set difference operator, ‖x‖ is a measure for set x
(e.g., the size of set x, or the total area of all faces in a face set),
and it = maxk‖S

i
2 ∩ Sk

1 ‖. The general idea is to find a best corre-
sponding segment in S1 for each segment in S2, and sum up the set
difference. Since there are usually few segments per model, we use
a brute force O(N + mn) algorithm to find the correspondences.

If S2 is regarded as the ground truth, then Directional Hamming
Distance can be used to define the missing rate Rm and false alarm
rate Rf as follows:

Rm(S1, S2) =
DH(S1 ⇒ S2)

‖S‖

Rf (S1, S2) =
DH(S2 ⇒ S1)

‖S‖

where ‖S‖ is the total surface area of the polygonal model. The
Hamming Distance is simply defined as the average of missing rate
and false alarm rate:

HD(S1, S2) =
1

2
(Rm(S1, S2) + Rf (S1, S2))

Since Rm(S1, S2) = Rf (S2, S1), the Hamming Distance is sym-
metric. Its main advantage and disadvantage is that it relies upon
finding correspondences between segments. This process provides
a more meaningful evaluation metric when correspondences are
“correct,” but adds noise to the metric when they are not. It is also
somewhat sensitive to differences in segmentation granularity.

3.4.3 Rand Index

A third metric measures the likelihood that a pair of faces are either
in the same segment in two segmentations, or in different segments
in both segmentations [Rand 1971].

If we denote S1 and S2 as two segmentations, s
1

i and s2

i as the
segment IDs of face i in S1 and S2, and N as the number of faces
in the polygonal mesh, Cij = 1 iff s1

i = s1

j , and Pij = 1 iff

s2

i = s2

j , then we can define Rand Index as:

RI(S1, S2) =

 

2

N

!

−1
X

i,j,i<j

[CijPij + (1 − Cij)(1 − Pij)]

CijPij = 1 indicates that face i and j have the same id in both S1

and S2. (1 − Cij)(1 − Pij) = 1 indicates that face i and j have
different IDs in both S1 and S2. Thus RI(S1, S2) tells the pro-
portion of face pairs that agree or disagree jointly on their segment
group identities in segmentation S1 and S2. As a slight departure
from standard practice, we report 1−RI(S1, S2) in our benchmark
to be consistent with the our other metrics that report dissimilar-
ities rather than similarities (the lower the number, the better the
segmentation result).

The main advantage of this metric is that it models area overlaps of
segments without having to find segment correspondences.



3.4.4 Consistency Error

The fourth metric, Consistency Error, tries to account for nested,
hierarchical similarities and differences in segmentations [Martin
et al. 2001]. Based on the theory that human’s perceptual organi-
zation imposes a hierarchical tree structure on objects, Martin et
al. proposed a region-based consistency error metric that does not
penalize differences in hierarchical granularity [Martin et al. 2001].

Denoting S1 and S2 as two segmentation results for a model, ti as a
mesh face, “\” as the set difference operator, and ‖x‖ as a measure
for set x (as in Section 3.4.2), R(S, fi) as the segment (a set of
connected faces) in segmentation S that contains face fi, and n as
the number of faces in the polygonal model, the local refinement
error is defined as:

E(S1, S2, fi) =
‖R(S1, fi)\R(S2, fi)‖

‖R(S1, fi)‖

Given the refinement error for each face, two metrics are defined
for the entire 3D mesh, Global Consistency Error (GCE) and Local
Consistency Error (LCE), as follows:

GCE(S1, S2) =
1

n
min{

X

i

E(S1, S2, fi),
X

i

E(S2, S1, fi)}

LCE(S1, S2) =
1

n

X

i

min{E(S1, S2, fi), E(S2, S1, fi)}

Both GCE and LCE are symmetric. The difference between them
is that GCE forces all local refinements to be in the same direc-
tion, while LCE allows refinement in different directions in dif-
ferent parts of the 3D model. As a result, GCE(S1, S2) ≥
LCE(S1, S2). The advantage of these metrics are that they account
for nested, hierarchical differences in segmentations. The disad-
vantage is that they tend to provide better scores when two models
have different numbers of segmentations, and they can actually be
misleading when either model is grossly under- or over-segmented
with respect to the other. For example, the errors will always be
zero if one of the meshes is not segmented at all (all faces in one
segment) or if every face is in a different segment, since then one
segmentation will always be a nested refinement of the other.

3.5 Comparing Segmentation Algorithms

The final design decision in defining the benchmark is to describe
a protocol with which segmentation algorithms should be executed
to produce segmentations suitable for fair comparisons.

The first issue is how to set parameters. Almost every algorithm
provides tunable parameters (e.g., weights on error terms, spacing
between seeds, thresholds on segment size, etc.), which sometimes
affect the output segmentations dramatically. However, it would be
unrealistic to search for an optimal set of parameter settings for each
model; and, even if we could do that, the process would be unfair
to the algorithms with fewer parameters. Hence, we utilize a single
set of parameter settings for all runs of each algorithm, limiting our
evaluation to the parameter settings recommended by the authors.

The one exception is for algorithms that require the target number
of segments as an input parameter (numSegments). The problem
is to select a value for this parameter that does not provide an unfair
advantage or disadvantage for these algorithms with respect to algo-
rithms that do not take such a parameter (i.e., ones that predict the
number of segments automatically). One extreme solution would
be to run each algorithm once for each model with the target num-
ber of segments set to some arbitrary value, say 7. Of course, this
would unfairly penalize the algorithms that rely upon this parame-
ter, since typical users would probably have a better way to select

the target number of segments based on visual inspection of the
model or its object category. Another extreme solution would be
to run each algorithm repeatedly, once for each human-generated
segmentation H to which it is being compared, each time setting
numSegments to match the number of segments in H exactly. Of
course, this would unfairly benefit the algorithms that take numSeg-
ments as a parameter – they would be given an oracle to predict the
number of segments created by every individual person. Our solu-
tion is somewhere in the middle. We imagine that a typical user can
look at a model and guess the number of target segments approxi-
mately. So, modeling a scenario where a user looks at a model and
then runs the segmentation algorithm, we choose a separate value
for numSegments for each model, setting it to be the mode of the
number of segments appearing in segmentations created by people
for that model in the benchmark data set (this design decision is
evaluated in Section 4.6).

The second issue is remeshing. Some segmentation algorithms
change the topology of the mesh. Yet, most of our evaluation met-
rics rely upon meshes having the same topology. To overcome this
problem, we provide a step where the segment labels of the mod-
ified mesh are mapped back to the input mesh (this mapping em-
ploys an area-weighted voting scheme to assign a face to a segment
if it is split into two in the output, and it eliminates segments with
fewer than 3 faces or less than 0.01% of the total surface area). This
process avoids penalizing algorithms for changing the topology of
the mesh.

The final issue we must address is how to aggregate evaluation met-
rics over multiple segmentations for the same model and multiple
models for the same object category. For now, we simply report
averages, both per category and over the entire data set for each al-
gorithm (averages are computed first within each model, then those
results are averaged within each object category, and then those re-
sults are averaged across the entire database to avoid biasing the
results towards models and/or categories with more segmentations
in the benchmark data set). However, more sophisticated aggregate
statistics could be computed in the future.

4 Results

In order to investigate the utility of the proposed benchmark for
evaluating segmentations, we performed six experiments. The first
asks “How consistently do different people segment the same ob-
ject?” The second two study how effectively the benchmark can be
used to compare the performance of different segmentation algo-
rithms, asking questions like: “Which algorithms produce outputs
that most closely mimic human segmentations?,” and “Does any
algorithm provide the best results for every type of object?” The
next two investigate properties of human- and computer-generated
segmentations, asking “which geometric properties are consistent
in all segmentations by people” and “how do the properties of au-
tomatic segmentations compare to humans’?.” The final study eval-
uates how our method for selecting the number of target segments
for each model affects the comparison of algorithms.

While the results of these studies may be interesting in their own
right, our main goal is to investigate whether the data set and eval-
uation procedures described in the preceding sections are useful for
understanding similarities and differences between segmentations.
It is our intention that other analyses and comparisons will be per-
formed in the future as the benchmark grows as a public-domain
resource for the research community.



4.1 Consistency of Human-Generated Segmentations

The benchmark provides segmentations made manually by multi-
ple people for each of 380 models from a variety of different object
categories, and thus it provides an opportunity to study how consis-
tently different people segment the same objects. This question is
not only important for its obvious implications in perceptual psy-
chology, but also for its implications on our benchmark. Implicit in
our choice to use human-generated segmentations as “ground truth”
for our benchmark are the assumptions that people tend to segment
objects in the same ways and that automatic algorithms ought to
mimic them. We can validate the first of these assumptions with
visual and statistical analysis of the benchmark data set.

Figures 1 and 4 show visualizations of the segmentations collected
for a sampling of objects in the benchmark data set. These images
show composites of cuts made by different people, and so darker
lines represent edges where people placed segmentation boundaries
more consistently. For example, in the image of the human body on
the left of Figure 4, it can be seen that people cut very consistently
on edges that separate the arms from the body, but less consistently
on edges that separate the chest from the stomach. In general, by
visual inspection, it seems that people select the same types of func-
tional parts, possibly cutting on edges that are parallel and slightly
offset from one another (e.g., at the junctions of the fingers and the
palm of the hands), and possibly decomposing objects with differ-
ent levels of granularity (e.g., only some people cut at the knuckles
in the two images of hands in Figure 4). Although a few exceptions
exist (e.g., in the eyeglasses shown in the top-left image of Figure 4,
people agree that the two lenses should be separated, but they dis-
agree whether the bridge between two lenses should be segmented
as an independent part), we conclude that people are remarkably
consistent in their decompositions into parts.

This conclusion can be validated quantitatively using the evalua-
tion metrics described in Section 3.4. For each segmentation in the
benchmark, we can “hold it out” and then ask how well it matches
the segmentations made by other people for the same model accord-
ing to the four evaluation metrics. The results of this analysis are
shown in Figure 5 – the bar labeled “Human” on the left side of each
of the four plots shows the averages of the human segmentations
evaluated with respect to all the other human segmentations. While
it is difficult to make conclusions from the absolute heights of the
bars in these plots, the bars labeled “Human” are clearly lower (bet-
ter) than the corresponding bars for computer-generated segmenta-
tions, suggesting that people are more consistent with each other
than algorithms are with people.

Figure 4: Composited images of segmentation boundaries selected
by multiple people for four example models (darker lines appear
where a larger fraction of people placed a segmentation boundary).

4.2 Comparison of Segmentation Algorithms

The main purpose of the benchmark is to evaluate and compare
the results of automatic segmentation algorithms. To test its utility
for this task, we followed the procedure described in Section 3.5
to compare seven algorithms recently published in the literature
(listed below). In every case, except one (K-Means), the source
code and/or executable was provided directly by the original inven-
tors, and so each algorithm was tested with its original implemen-
tation and with its default parameters. The following paragraphs
provide a brief description of each algorithm, but please refer to the
cited papers for details:

• K-Means: Shlafman et al. [Shlafman et al. 2002] describe
an algorithm based on K-means clustering of faces. Given a
user-specified number of segments, k, the algorithm first se-
lects a set of k seed faces to represent clusters by continually
selecting the further face from any previously selected. Then,
it iterates between: 1) assigning all faces to the cluster with
the closest representative seed, and 2) adjusting the seed of
each cluster to lie at the center of the faces assigned to it.
This iteration continues until the assignment of faces to clus-
ters converges. In our implementation, which differs from the
original by Shlafman et al., we compute distances on the dual
graph of the mesh with a penalty related to the dihedral angle
of each traversed edge using the method in [Funkhouser et al.
2004].

• Random walks: Lai et al. [Lai et al. 2008] describe a proce-
dure that proceeds in two phases. During the first phase, an
over-segmentation is computed by assigning each face F to
the segmented associated with the seed face that has highest
probability of reaching F by a random walk on the dual graph
of the mesh. During the second phase, segments are merged
hierarchically in an order based on the relative lengths of the
intersections and total perimeters of adjacent segments. The
hierarchical clustering terminates when a user-specified num-
ber of segments has been reached.

• Fitting Primitives: Attene et al. [Attene et al. 2006b] propose
a hierarchical clustering algorithm based on fitting primitives.
The algorithm starts with every face in a separate segment.
At each iteration, the best fitting geometric primitive (plane,
cylinder, or sphere) is computed to approximate the faces in
every pair of adjacent segments, and the best fitting pair is
chosen for merger. The algorithm proceeds bottom-up, merg-
ing segments until a user-specified number of segments has
been reached.

• Normalized cuts: Golovinskiy et al. [Golovinskiy and
Funkhouser 2008] describe a hierarchical clustering algorithm
in which every face of the mesh starts in its own segment, and
segments are hierarchically merged in an order determined
by the area-normalized cut cost: the sum of each segment’s
perimeter (weighed by concavity) divided by its area. The
clustering terminates when a user-specified number of seg-
ments has been reached. This algorithm encourages segments
to have small boundaries along concave seams while main-
taining segments with roughly similar areas.

• Randomized cuts: Golovinskiy et al. [Golovinskiy and
Funkhouser 2008] also propose a hierarchical decomposition
procedure that uses a set of randomized minimum cuts to
guide placement of segmentation boundaries. They first deci-
mate the mesh (to 2,000 triangles in this study), and then pro-
ceed top-down hierarchically, starting with all faces in a single
segment and iteratively making binary splits. For each split,
they compute a set of randomized cuts for each segment, and



0

0.1

0.2

0.3

0.4

0.5

0.6

Human Rand
Cuts

Shape
Diam

Norm
Cuts

Core
Extra

Rand
Walks

Fit
Prim

K
Means

Every None

E
rr

o
r

 

 

CD

(a) Cut Discrepancy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Human Rand
Cuts

Shape
Diam

Norm
Cuts

Core
Extra

Rand
Walks

Fit
Prim

K
Means

Every None

E
rr

o
r

 

 

Hamming

Hamming−Rm

Hamming−Rf

(b) Hamming Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Human Rand
Cuts

Shape
Diam

Norm
Cuts

Core
Extra

Rand
Walks

Fit
Prim

K
Means

Every None

E
rr

o
r

 

 

RandIndex

(c) RandIndex

0

0.05

0.1

0.15

0.2

0.25

Human Rand
Cuts

Shape
Diam

Norm
Cuts

Core
Extra

Rand
Walks

Fit
Prim

K
Means

Every None

E
rr

o
r

 

 

GCE

LCE

(d) Consistency Error

Figure 5: Comparison of segmentation algorithms with four evaluation metrics.

then they identify for each segment which cut is most consis-
tent with others in the randomized set. Amongst this set of
candidate cuts, they choose the one that results in the min-
imal normalized cut cost. The algorithm terminates when a
user-specified number of segments has been reached.

• Core extraction: Katz et al. [Katz et al. 2005] propose
a hierarchical decomposition algorithm that performs four
main steps at each stage: transformation of the mesh vertices
into a pose insensitive representation using multidimensional
scaling, extraction of prominent feature points, extraction of
core components using spherical mirroring, and refinement of
boundaries to follow the natural seams of the mesh. The al-
gorithm partitions segments hierarchically, stopping automat-
ically when the current segment Si has no feature points or
when the fraction of vertices contained in the convex hull is
above a threshold.

• Shape Diameter Function: Shapira et al. [Shapira et al.
2008] describe an algorithm based on the “Shape Diameter
Function” (SDF), a measure of the diameter of an object’s vol-
ume in the neighborhood of a point on the surface. The SDF is
computed for the centroid of every face, and then the segmen-
tation proceeds in two steps. First, a Gaussian Mixture Model
is used to fit k Gaussians to the histogram of all SDF values
in order to produce a vector of length k for each face indicat-

ing its probability to be assigned to each of the SDF clusters.
Second, the alpha expansion graph-cut algorithm is used to
refine the segmentation to minimize an energy function that
combines the probabilistic vectors from step one along with
boundary smoothness and concaveness. The algorithm pro-
ceeds hierarchically for a given number of “partitioning can-
didates,” which determines the output number of segments.
We follow the authors’ advice, setting the number of parti-
tioning candidates to 5, and let the algorithm determine the
number of segments automatically.

Figure 5 shows evaluations of these seven algorithms according to
the proposed benchmark. Each of the four bar charts shows a differ-
ent evaluation metric computed for all seven algorithms and aver-
aged across the entire data set as described in Section 3.5. Added to
each chart is a bar representing the human-generated segmentations
evaluated with respect to one other (labeled “Human,” on the left)
and two bars representing trivial segmentation algorithms (“None”
= all faces in one segment, and “Every”= every face in a separate
segment). These three bars are added to the plots to provide san-
ity checks and to establish a working range for the values of each
evaluation metric. In all cases, lower bars represent better results.



Segmentation Avg Compute

Algorithm Time (s) Rand Index

Human - 0.103

Randomized Cuts 83.8 0.152

Shape Diameter 8.9 0.175

Normalized Cuts 49.4 0.172

Core Extraction 19.5 0.210

Random Walks 1.4 0.214

Fitting Primitives 4.6 0.210

K-Means 2.5 0.251

None 0 0.345

Every 0 0.654

Table 1: Analysis of trade-off between compute time and segmenta-
tion quality (compute time is in seconds measured on a 2Ghz PC).

From this data, we see that all four evaluation metrics are remark-
ably consistent with one another. Although one of the metrics fo-
cuses on boundary errors (Cut Discrepancy), and the other three fo-
cus on region dissimilarities (Hamming Distance, Rand Index, and
Consistency Error), all variants of all four metrics suggest almost
the same relative performance of the seven algorithms.

Examining the average timing and performance results in Table 1,
we see that the set of algorithms that perform best overall according
to the Rand Index metric (Randomized cuts, Shape Diameter Func-
tion, Normalized cuts, and Core Extraction) are the ones that take
the most time to compute.1 This result is not surprising. They are
the algorithms that consider both boundary and region properties
of segments and utilize non-local shape properties to guide seg-
mentation. For example, the algorithms based on Core Extraction
and the Shape Diameter Function both consider volumetric prop-
erties of the object in the vicinity of a point, and the Randomized
Cut and Normalized Cut algorithms both evaluate expensive objec-
tive functions that take into account large-scale properties of seg-
ment boundaries and areas. These four algorithms should probably
be used for off-line computations, while the others are nearly fast
enough for interactive applications.

4.3 Comparisons Within Object Categories

The results shown in the previous subsection provide only averages
over all models in the benchmark, and thus paint broad strokes. Per-
haps more important than ranking algorithmic performance overall
is to understand for which types of objects each algorithm performs
best. Then, users can leverage the results of the benchmark to select
the algorithm most appropriate for specific types of objects.

Table 2 shows a comparison of the performance of the seven algo-
rithms for each object category. The entries of this table contain the
rank of the algorithm according the Rand Index evaluation metric
averaged over models of each object category: 1 is the best (shown
in red) and 7 is the worst. From these results, we see that no one
segmentation algorithm is best for every category. Interestingly, it
seems that some algorithms do not necessarily work best (relative
to others) on the types of objects for which they were designed. For
example, the method designed to fit geometric primitives is among
the best for Humans, but not for the Mech and Bearing classes,
which are CAD Models comprised of geometric primitives. These
results suggest that either people do not segment objects in the ex-

1It is important to note that the Shape Diameter Function and Core Ex-

traction algorithms automatically predict the number of segments to output,

while the other algorithms require numSegments as an input parameter. So,

these two algorithms are solving a more difficult problem than the others.

The reader should keep this in mind when comparing results. This issue is

investigated further in Section 4.6

Object Rand Shape Norm Core Rand Fit K-

Category Cuts Diam Cuts Extra Walks Prim Median

Human 1 5 2 7 6 3 4

Cup 1 5 2 3 4 6 7

Glasses 1 4 2 6 7 5 3

Airplane 2 1 4 7 6 3 5

Ant 2 1 3 4 5 6 7

Chair 4 2 1 5 3 6 7

Octopus 4 1 3 2 5 7 6

Table 7 4 1 5 2 3 6

Teddy 1 2 4 3 5 6 7

Hand 1 7 3 4 5 6 2

Plier 2 7 4 1 5 3 6

Fish 3 1 5 2 4 7 6

Bird 1 2 4 3 7 6 5

Armadillo 3 1 5 7 4 2 6

Bust 1 3 6 5 2 4 7

Mech 4 3 1 6 2 5 7

Bearing 2 1 3 7 5 4 6

Vase 1 4 3 2 5 6 7

FourLeg 2 1 6 4 7 3 5

Overall 1 3 2 5 6 4 7

Table 2: Comparison of segmentation algorithms for each object
category. Entries represent the rank of the algorithm according to
the Rand Index evaluation metric (1 is the best, and 7 is the worst).

pected way, or that there are other cues that reveal the part structures
of these objects (e.g., concave seams).

4.4 Properties of Human-Generated Segmentations

The human-generated segmentations acquired for the benchmark
are useful not only for comparisons, but also for studying how peo-
ple decompose objects into parts. Several psychologists have put
forth theories to explain how people perceive objects as collections
of parts (e.g., the Recognition by Components theory of Bieder-
man [Biederman 1987], the Minima Rule hypothesis of Hoffman
and Richards [Hoffman et al. 1984; Hoffman and Singh 1997], etc.),
and several algorithms incorporate assumptions about what type of
segmentations people prefer (e.g., cuts along concave seams [Katz
and Tal 2003], segments of nearly equal area [Shlafman et al. 2002],
convex parts [Chazelle et al. 1997], etc.). We conjecture that our
benchmark data set could be used to test these theories and assump-
tions.

As an example, the left column of Figure 6 shows five histograms
of properties collected from the 4,300 human-generated segmenta-
tions of the benchmark set: a) minimum curvature at vertices on
(blue) and off (green) segmentation boundaries; b) convexity, as
measured by the average distance from a segment’s surface to its
convex hull [Kraevoy et al. 2007] normalized by the average radius
of the model; c) the length of a cut between segments normalized
by the average of all cuts for its mesh; d) the area of a segment’s
surface normalized by the average segment area for its mesh; and e)
the number of parts in each segmentation. We also have collected
statistics for dihedral angles, maximum curvature, Gaussian curva-
ture, mean curvature, minimum curvature derivative, and compact-
ness [Kraevoy et al. 2007], but do not show them in Figure 6 due to
space limitations.

These statistics seem to support many of the shape segmentation
theories and assumptions that are prevalent in the literature. For
example, segment boundaries are indeed more likely along concav-
ities in our data set – i.e., at vertices with negative minimum cur-
vature (Figure 6a). Also, segment surfaces tend to be convex – i.e.,
having relatively small distances between the surface of a segment
and its convex hull (Figure 6b).



Randomized Shape Normalized Core

Human Cuts Diameter Cuts Extraction K-Means
a)
M
in
im
u
m

C
u
rv
at
u
re

−40 −20 0 20
0

0.05

0.1

0.15

0.2

0.25

Curvature

F
re

q
u
e
n
c
y

 

 

Vertices on Cuts
Others

−40 −20 0 20
Curvature

−40 −20 0 20
Curvature

−40 −20 0 20
Curvature

−40 −20 0 20
Curvature

−40 −20 0 20
Curvature

b
)
C
o
n
v
ex
it
y

0 0.02 0.04 0.06 0.08
0

0.05

0.1

0.15

Convexity

F
re

q
u
e
n
c
y

0 0.02 0.04 0.06 0.08
Convexity

0 0.02 0.04 0.06 0.08
Convexity

0 0.02 0.04 0.06 0.08
Convexity

0 0.02 0.04 0.06 0.08
Convexity

0 0.02 0.04 0.06 0.08
Convexity

c)
N
o
rm
al
iz
ed

C
u
t
L
en
g
th

0 1 2 3
0

0.05

0.1

0.15

Normalized Cut Perimeter

F
re

q
u
e
n
c
y

0 1 2 3
Normalized Cut Perimeter

0 1 2 3
Normalized Cut Perimeter

0 1 2 3
Normalized Cut Perimeter

0 1 2 3
Normalized Cut Perimeter

0 1 2 3
Normalized Cut Perimeter

d
)
N
o
rm
al
iz
ed

S
eg
m
en
t
A
re
a

0 1 2 3 4
0

0.05

0.1

0.15

Normalized Segment Area

F
re

q
u
e
n
c
y

0 1 2 3 4
Normalized Segment Area

0 1 2 3 4
Normalized Segment Area

0 1 2 3 4
Normalized Segment Area

0 1 2 3 4
Normalized Segment Area

0 1 2 3 4
Normalized Segment Area

e)
N
u
m
b
er
o
f

S
eg
m
en
ts

2 8 14 26 >25
0

0.05

0.1

0.15

0.2

Number of Segments

F
re

q
u
e
n
c
y

2 8 14 26 >25
Number of Segments

2 8 14 26 >25
Number of Segments

2 8 14 26 >25
Number of Segments

2 8 14 26 >25
Number of Segments

2 8 14 26 >25
Number of Segments

Figure 6: Properties of human-generated segmentations (left column) compared with computer-generated segmentations (from second col-
umn to sixth) for five algorithms (properties of Fitting Primitives and Random Walks not shown due to space limitations).

However, some of the results are a bit surprising. For example,
it seems that cuts between segments within the same mesh tend
to have approximately the same lengths – i.e., the Normalized Cut
Length (length of a cut divided by the average for the mesh) is often
close to one (Figure 6c). It seems that this property (or related ones,
like symmetry) could be included in a segmentation error function,
but we are not aware of any prior segmentation algorithm that does
so. In contrast, it seems that not all segments have the same area
– i.e., the Normalized Segment Area (area of a segment divided by
the average for the mesh) is usually not equal to one (Figure 6d).
Rather, it seems that each mesh has a small number of large seg-
ments (where the Normalized Segment Area is much greater than
1) and a larger number of small segments (where the Normalized
Segment Area is less than 1), probably corresponding to the “body”
and “appendages” of an object. This observation suggests that algo-
rithms that explicitly aim for equal segment areas (e.g., K-Means)
are less likely to mimic what people do. Of course, these statis-
tics and observations are specific to our data set, but we conjecture
that they are representative because the benchmark includes a wide
variety of object types.

4.5 Properties of Computer-Generated Segmentations

We can also study properties of computer-generated segmentations
to better understand how algorithms decompose meshes and how
they compare to humans’. Towards this end, we show histograms
of the five properties discussed in the previous section for segmen-
tations computed by the Randomized Cuts, Shape Diameter Func-
tion, Normalized Cuts, Core Extraction, and K-Means algorithms
in Figure 6 (from left to right starting in the second column). By
comparing these histograms to the ones in the far left column (la-
beled “Human”), we aim to understand not only which computer-
generated segmentations most closely resemble Humans’, but also
how are they similar and how are they different.

For example, looking at the histograms in the rightmost column of
Figure 6 (“K-Means”) and comparing them to the ones in the left-
most column (“Human”), we see that very few of the histograms
are similar. It seems that the K-Means algorithm does not prefer-
entially cut along vertices with negative minimum curvature (there
is little separation between the blue and green lines in the top right
histogram), but does preferentially decompose each mesh into seg-
ments with nearly equal areas (there is a large peak at ‘1’ in the
rightmost histogram of the bottom row). These properties do not
match the Humans’, which may explain why the evaluation metrics
for K-Means were the poorest in Figure 5.



In contrast, comparing the first and second columns, we see that
the histograms representing Randomized Cuts segmentations (sec-
ond column) very closely resemble those of the Humans’ (first col-
umn) – i.e., they often have the same shapes, maxima, and inflection
points. These results corroborate the evaluation metrics presented
in Section 4.2 – i.e., since many properties of the Randomized Cuts
segmentations match the Humans’, it is not surprising that they also
produce the best evaluation metrics. Generally speaking, the his-
tograms further to the left in Figure 6 resemble the Humans’ better
than those that are further to the right, and similarly are ranked bet-
ter by most evaluation metrics.

4.6 Sensitivity to Number of Segments

As a final experiment, we investigate how sensitive our evaluations
are to the number of segments produced by the algorithms in our
study. As discussed in Section 3.5, several algorithms (Random-
ized Cuts, Normalized Cuts, Fitting Primitives, RandomWalks, and
K-Means) require a parameter that determines the number of target
segments produced by the algorithm (numSegments). We set that
parameter based on the most frequent number of segments found
in human-generated segmentations of the same model in the bench-
mark (the mode for each model). This choice was made to ensure
that the algorithms are being tested on typical input – i.e., it makes
sense to evaluate how well an algorithm segments a coffee mug into
two parts, but probably not seventeen. On the other hand, some al-
gorithms do not take numSegments as a parameter and instead de-
termine the number of segments to output automatically, and thus
are at a disadvantage if the other algorithms are given a good es-
timate for the number of parts (note the differences for those two
algorithms in the number of parts per model in the bottom row of
Figure 6). To investigate the practical implications of this choice,
we tested six alternative ways to set numSegments and study their
effects on the relative performance of all seven segmentation algo-
rithms:

1. By Dataset: numSegments could be set to the same number
for all runs of every algorithm – i.e., to the average number of
segments found amongst all examples in the benchmark data
set (which is 7).

2. By Category: numSegments could be set separately for every
object category – i.e., to the mode of the number of segments
observed for that category in the benchmark data set.

3. By Model: numSegments could be set separately for every
model – i.e., to the mode of the number of segments observed
for that model in the benchmark data set.

4. By Segmentation: numSegments could be set separately for
each human-generated segmentation. That is, every algorithm
could be run once for every unique number of segments found
in the benchmark, and then evaluations could be performed
only between segmentations with exactly the same numbers
of segments. This approach implies that the algorithm has an
oracle that predicts exactly how many segments each person
will produce, even if different people produce different num-
bers of segments – and thus provides a lower-bound on the
evaluation metrics with respect to different selections of num-
Segments.

5. By Shape Diameter Function: numSegments could be set
separately for every model according to the number of seg-
ments predicted by the Shape Diameter Function (SDF) al-
gorithm. This choice allows investigation of how the relative
performance of the SDF algorithm is affected by its choice in
the number of segments – i.e., it puts the other algorithms on
nearly equal footing.

0

0.1

0.2

0.3

0.4

0.5

0.6

Human Rand
Cuts

Shape
Diam

Norm
Cuts

Core
Extra

Rand
Walks

Fit
Prim

K
Means

Every None

E
rr

o
r

 

 

By Segmentation

By Model

By Category

By Shape Diameter

By Core Extraction

By Dataset

Figure 7: Plot of Rand Index for six different methods of setting the
target number of segments for algorithms that take it as input.

6. By Core Extraction: numSegments could be set separately
for every model according to the number of segments pre-
dicted by the Core Extraction algorithm. This choice allows
investigation of how the relative performance of the Core Ex-
traction algorithm is affected by its choice in the number of
segments.

We implemented all six alternatives and ran an experiment to test
how they affect the benchmark results. A plot of Rand Index for
this study is shown in Figure 7. This plot is similar to the one
in the bottom-left of Figure 5 (in fact, the dark blue bars are the
same), except that each algorithm that takes numSegments as an
input parameter is represented by six bars in this plot, one for each
alternative for setting numSegments.

Looking at this plot, we observe that the comparisons of algo-
rithms that take numSegments as input are largely insensitive to the
method chosen to set numSegments. The main difference is that
the algorithms that do not take numSegments appear relatively bet-
ter or worse depending on how intelligently numSegments is set
for the other algorithms. On the one hand, if the number of seg-
ments is chosen “By Dataset” (all models are decomposed into
7 segments), then the Shape Diameter Function algorithm (which
chooses the number of segments adaptively) performs best. On the
other hand, if the number of segments is chosen “By Segmenta-
tion” (green bars), “By Model” (dark blue bars), or “By Category”
(yellow bars), then the Randomized Cuts algorithm performs best.
Otherwise, we observe that the relative performance of algorithms
remains remarkably consistent across different ways of controlling
the number of segments.

Interestingly, when numSegments is chosen to match the number
of segments predicted by the Shape Diameter Function algorithm
(magenta bars), the performance of that algorithm is almost equal
to the Randomized Cuts’. The same applies for the Core Extrac-
tion algorithm when numSegments is chosen to match its prediction
(cyan bars). This result suggests that the performance difference
between those two algorithms and the others may largely be due
to differences in the numbers of segments generated, as opposed to
differences in the placement of segments. However, this conjecture
must be verified with an implementation for those two algorithms
that allows setting numSegments (no such parameter is available
currently).



Even more interesting is that fact that there is a significant differ-
ence between the performance of the best algorithms and the per-
formance of the humans, even when the algorithms are given an
oracle to set numSegments to match each human’s exactly (“By
Segmentation”) – i.e., the green bar for “Human” on the far left
is much smaller than the green bar for any algorithm. This is in
contrast to the relatively small differences in performance between
setting numSegments “By Segmentation” vs. “By Model” vs. “By
Category.” This result suggests that the main differences between
humans and algorithms are not due to differences in the number of
segments produced by the algorithms.

5 Conclusion

This paper describes a benchmark for mesh segmentation algo-
rithms. The benchmark contains 4,300 manual segmentations over
380 polygonal models of 19 object categories. Initial tests have
been performed to study the consistency of human-generated seg-
mentations and to compare seven different automatic segmentation
algorithms recently proposed in the literature. The results suggest
that segmentations generated by different people are indeed quite
similar to one another and that segments boundaries do indeed tend
to lie on concave seams and valleys, as predicted by the minima
rule. We find that the benchmark data set is able to differentiate
algorithms, but we do not find one algorithm that is best for all ob-
ject categories. Generally speaking, it seems that algorithms that
utilize non-local shape properties tend to out-perform the others.
Since the benchmark data set and source code is publicly available
(http://segeval.cs.princeton.edu/), we expect that these results will
be amended and augmented by researchers as more data becomes
available, more tests are performed, and more algorithms are devel-
oped in the future.

Acknowledgments

This project would not have been possible without the help of sev-
eral people and organizations who provided the data, code, and
funding. We especially thank Daniela Giorgi and AIM@SHAPE
for providing the meshes from the Watertight Track of SHREC
2007 that form the basis of the benchmark. We would also like
to thank Sagi Katz, Ayellet Tal, Yukun Lai, Shi-Min Hu, Ralph
Martin, Lior Shapira, Ariel Shamir, Daniel Cohen-Or, Vladislav
Kraevoy, Alla Sheffer, Marco Attene, and Michela Spagnuolo, who
provided source code and/or executables for segmentation algo-
rithms. We are also thankful to Jia Deng and Fei-Fei Li for their
assistance with the Mechanical Turk, to Szymon Rusinkiewicz for
providing the trimesh2 library used for computing surface proper-
ties, and to Tushar Gupta and Jeehyung Lee for their efforts build-
ing prototype versions of the benchmark data set. Finally, we thank
the NSF (CNFS-0406415, IIS-0612231, and CCF-0702672) and
Google for funding.

References

AGATHOS, A., PRATIKAKIS, I., PERANTONIS, S., SAPIDIS, N.,
AND AZARIADIS, P. 2007. 3d mesh segmentation methodolo-
gies for cad applications. 827–841.

AMAZON, 2008. Mechanical turk. www.mturk.com.

ATTENE, M., KATZ, S., MORTARA, M., PATANE, G., SPAGN-
UOLO, M., AND TAL, A. 2006. Mesh segmentation - a com-
parative study. In SMI ’06: Proceedings of the IEEE Interna-
tional Conference on Shape Modeling and Applications 2006,
IEEE Computer Society, Washington, DC, USA, 7.

ATTENE, M., FALCIDIENO, B., AND SPAGNUOLO, M. 2006. Hi-
erarchical mesh segmentation based on fitting primitives. Vis.
Comput. 22, 3, 181–193.

BENHABILES, H., VANDEBORRE, J., LAVOUE, G., AND
DAOUDI, M. 2009. A framework for the objective evaluation
of segmentation algorithms using a ground-truth of human seg-
mented 3d-models. In Shape Modeling International.

BIASOTTI, S., MARINI, S., MORTARA, M., AND PATANÈ, G.
2003. An overview on properties and efficacy of topological
skeletons in shape modelling. In Shape Modeling International,
245–256, 297.

BIEDERMAN, I. 1987. Recognition-by-components: A theory of
human image understanding. Psychological Review 94, 2, 115–
147.

CHAZELLE, B., DOBKIN, D., SHOURHURA, N., AND TAL, A.
1997. Strategies for polyhedral surface decomposition: An ex-
perimental study. Computational Geometry: Theory and Appli-
cations 7, 4-5, 327–342.

CORREIA, P., AND PEREIRA, F. 2000. Objective evaluation of
relative segmentation quality. In ICIP00, Vol I: 308–311.

EVERINGHAM, M., MULLER, H., AND THOMAS, B. T. 2002.
Evaluating image segmentation algorithms using the pareto
front. In ECCV ’02: Proceedings of the 7th European Confer-
ence on Computer Vision-Part IV, Springer-Verlag, London, UK,
34–48.

FEDERICO, M., GIORDANI, D., AND COLETTI, P. 2000. Devel-
opment and evaluation of an Italian broadcast news corpus. In
Second International Conference on Language Resources and
Evaluation (LREC), 921–924.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P.,
KIEFER, W., TAL, A., RUSINKIEWICZ, S., AND DOBKIN, D.
2004. Modeling by example. ACM Trans. Graph. 23, 3, 652–
663.

GARLAND, M., WILLMOTT, A., AND HECKBERT, P. S. 2001.
Hierarchical face clustering on polygonal surfaces. In I3D ’01:
Proceedings of the 2001 symposium on Interactive 3D graphics,
ACM, New York, NY, USA, 49–58.

GELFAND, N., AND GUIBAS, L. J. 2004. Shape segmentation
using local slippage analysis. In SGP ’04: Proceedings of the
2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing, ACM, New York, NY, USA, 214–223.

GIORGI, D., BIASOTTI, S., AND PARABOSCHI, L., 2007.
SHREC:SHape REtrieval Contest: Watertight models track,
http://watertight.ge.imati.cnr.it/.

GOLOVINSKIY, A., AND FUNKHOUSER, T. 2008. Randomized
cuts for 3D mesh analysis. ACM Transactions on Graphics
(Proc. SIGGRAPH ASIA) 27, 5 (Dec.).

GREGORY, A. D., STATE, A., LIN, M. C., MANOCHA, D., AND
LIVINGSTON, M. A. 1999. Interactive surface decomposition
for polyhedral morphing. The Visual Computer 15, 9, 453–470.

HOFFMAN, D. D., AND SINGH, M. 1997. Salience of visual parts.
Cognition 63, 29–78.

HOFFMAN, D. D., RICHARDS, W., PENTL, A., RUBIN, J., AND
SCHEUHAMMER, J. 1984. Parts of recognition. Cognition 18,
65–96.

HUANG, Q., AND DOM, B. 1995. Quantitative methods of evalu-
ating image segmentation. In ICIP ’95: Proceedings of the 1995



International Conference on Image Processing (Vol. 3)-Volume
3, IEEE Computer Society, Washington, DC, USA, 3053.

KATZ, S., AND TAL, A. 2003. Hierarchical mesh decomposition
using fuzzy clustering and cuts. ACM Transactions on Graphics
(Proc. SIGGRAPH) 22, 3 (July), 954–961.

KATZ, S., LEIFMAN, G., AND TAL, A. 2005. Mesh segmentation
using feature point and core extraction. The Visual Computer 21,
8-10, 649–658.

KRAEVOY, V., JULIUS, D., AND SHEFFER, A. 2007. Shuffler:
Modeling with interchangeable parts. In Pacific Graphics.

LAI, Y.-K., HU, S.-M., MARTIN, R. R., AND ROSIN, P. L. 2008.
Fast mesh segmentation using random walks. In Symposium on
Solid and Physical Modeling, 183–191.

LEE, Y., LEE, S., SHAMIR, A., COHEN-OR, D., AND SEIDEL,
H.-P. 2004. Intelligent mesh scissoring using 3D snakes. In
12th Pacific Conference on Computer Graphics and Applications
(PG).

LÉVY, B., PETITJEAN, S., RAY, N., AND MAILLOT, J. 2002.
Least squares conformal maps for automatic texture atlas gener-
ation. ACM Trans. Graph. 21, 3, 362–371.

LIN, H.-Y. S., LIAO, H.-Y. M., AND LIN, J.-C. 2007. Vi-
sual salience-guided mesh decomposition. IEEE Transactions
on Multimedia 9, 1, 46–57.

LIU, R., AND ZHANG, H. 2004. Segmentation of 3d meshes
through spectral clustering. In PG ’04: Proceedings of the Com-
puter Graphics and Applications, 12th Pacific Conference, IEEE
Computer Society, Washington, DC, USA, 298–305.

MARTIN, D., FOWLKES, C., TAL, D., AND MALIK, J. 2001. A
database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological
statistics. In in Proc. 8th Intl Conf. Computer Vision, 416–423.

MORTARA, M., PATANE, G., SPAGNUOLO, M., FALCIDIENO, B.,
AND ROSSIGNAC, J. 2004. Blowing bubbles for the multi-scale
analysis and decomposition of triangle meshes. Algorithmica
(Special Issues on Shape Algorithms) 38, 2, 227–248.

MORTARA, M., PATANÈ, G., SPAGNUOLO, M., FALCIDIENO, B.,
AND ROSSIGNAC, J. 2004. Plumber: a method for a multi-scale
decomposition of 3D shapes into tubular primitives and bodies.
In ACM symposium on Solid modeling and applications, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
339–344.

OVER, P., LEUNG, C., IP, H., AND GRUBINGER, M. 2004. Mul-
timedia retrieval benchmarks. IEEE MultiMedia 11, 2, 80–84.

RAND, W. 1971. Objective criteria for the evaluation of clustering
methods. Journal of the American Statistical Association 66,
846–850.

ROBBIANO, F., ATTENE, M., SPAGNUOLO, M., AND FALCI-
DIENO, B. 2007. Part-based annotation of virtual 3d shapes. In
CW ’07: Proceedings of the 2007 International Conference on
Cyberworlds, IEEE Computer Society, Washington, DC, USA,
427–436.

RUSSELL, B. C., TORRALBA, A., MURPHY, K. P., AND FREE-
MAN, W. T. 2008. Labelme: A database and web-based tool for
image annotation. Int. J. Comput. Vision 77, 1-3, 157–173.

SHAMIR, A. 2008. A survey on mesh segmentation techniques.
Computer Graphics Forum 28, 6, 1539–1556.

SHAPIRA, L., SHAMIR, A., AND COHEN-OR, D. 2008. Consis-
tent mesh partitioning and skeletonisation using the shape diam-
eter function. Vis. Comput. 24, 4, 249–259.

SHILANE, P., MIN, P., KAZHDAN, M., AND FUNKHOUSER, T.
2004. The princeton shape benchmark. In Shape Modeling Inter-
national, IEEE Computer Society, Washington, DC, USA, 167–
178.

SHLAFMAN, S., TAL, A., AND KATZ, S., 2002. Metamorphosis
of polyhedral surfaces using decomposition.

SMEATON, A. F., KRAAIJ, W., AND OVER, P. 2004. TREC video
retrieval evaluation: a case study and status report. In Coupling
Approaches, Coupling Media and Coupling Languages for In-
formation Retrieval (RIAO).

UNNIKRISHNAN, R., PANTOFARU, C., AND HEBERT, M. 2005.
A measure for objective evaluation of image segmentation algo-
rithms. In Proceedings of the 2005 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR ’05), Workshop on
Empirical Evaluation Methods in Computer Vision, vol. 3, 34 –
41.

WU, H.-Y., PAN, C., PAN, J., YANG, Q., AND MA, S. 2007. A
sketch-based interactive framework for real-time mesh segmen-
tation. In Computer Graphics International.

ZHANG, H., FRITTS, J. E., AND GOLDMAN, S. A. 2008. Im-
age segmentation evaluation: A survey of unsupervised methods.
Comput. Vis. Image Underst. 110, 2, 260–280.

ZHANG, Y. 1996. A survey on evaluation methods for image seg-
mentation. PR 29, 8 (August), 1335–1346.

ZÖCKLER, M., STALLING, D., AND HEGE, H.-C. 2000. Fast and
intuitive generation of geometric shape transitions. The Visual
Computer 16(5), 241–253.

ZUCKERBERGER, E. 2002. Polyhedral surface decomposition with
applications. Computers and Graphics 26, 5 (October), 733–
743.


