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Abstract—We present an algorithm for curve skeleton
extraction via Laplacian-based contraction. Our algorithm
can be applied to surfaces with boundaries, polygon soups,
and point clouds. We develop a contraction operation that
is designed to work on generalized discrete geometry data,
particularly point clouds, via local Delaunay triangulation
and topological thinning. Our approach is robust to noise
and can handle moderate amounts of missing data, allowing
skeleton-based manipulation of point clouds without explicit
surface reconstruction. By avoiding explicit reconstruction,
we are able to perform skeleton-driven topology repair of
acquired point clouds in the presence of large amounts of
missing data. In such cases, automatic surface reconstruction
schemes tend to produce incorrect surface topology. We show
that the curve skeletons we extract provide an intuitive and
easy-to-manipulate structure for effective topology modifica-
tion, leading to more faithful surface reconstruction.

Keywords-curve skeleton; point cloud; Laplacian; contrac-
tion; topology repair; surface reconstruction

I. INTRODUCTION

The curve skeleton of a 3D model is a 1D representation
that intuitively captures the model’s topological character-
istics. Applications which utilize curve skeletons for shape
analysis and processing include segmentation ([1], [2], [3],
[4]), object matching and retrieval ([5], [6], [7]), surface
reconstruction ([8], [9]), and animation ([4], [10], [11],
[12], [13], [14]), among others. Curve skeletons are not the
only means for obtaining a topological representation of
a shape; another notable example is the medial axis [15],
which provides a powerful dual representation of the shape
surface. However, the medial axis of a nontrivial 3D shape
is typically composed of a set of interconnected sheets
which are difficult to model and manipulate.

Existing works on curve skeleton extraction almost
exclusively operate on complete surface models ([3],
[4], [12], [16], [17]) and they can produce excellent
results. However, geometry representations we frequently
encounter may not always be watertight. In particular,
most interesting models are first acquired in the form
of point cloud data. As well, models with boundaries
and even triangle soups can often be found in shape
databases [18]. While one can define the curve skeleton of
a watertight mesh as a subset of the medial axis [3], the
medial axis of a point set is not well defined. This poses a
significant obstacle to implementing applications such as
shape matching, retrieval, segmentation, or animation on
point cloud data without a costly reconstruction phase.

Indeed, one may compute the curve skeleton of a
point set by first performing a surface reconstruction and

Figure 1. Point cloud skeleton and skeleton-assisted topology repair and
surface reconstruction. (a) Original model. (b) Input point cloud with a
great deal of missing data. (c) Curve skeleton extracted via Laplacian-
based contraction, while descriptive, contains topological errors. After
simple user operations to repair the skeleton (d), topologically correct
surface reconstruction is obtained (e), compared to the result of Poisson
reconstruction (f) from the input point cloud (b).

then apply mesh skeletonization. State-of-the-art surface
reconstruction techniques ([19], [20], [21], [22]) can pro-
vide high quality results when the underlying surface
is sufficiently well-sampled. However, self-occlusion and
other acquisition hindrances often generate under-sampled
regions; this is an especially persistent issue during dy-
namic or time-varying shape acquisition ([23], [24], [25],
[26]). Under these circumstances, results from even the
best surface reconstruction algorithm can be error-prone,
leading to incorrect surface topology which in turn cause
the extracted skeletons to be erroneous, as in Fig. 1.

In these cases, the user may be able to manually correct
the topology imposed by the interpolation [27]. However,
reconstruction algorithms often produce high-resolution
surface models — editing an improperly reconstructed
surface thus requires the user to interact with a large
number of polygons. An interesting thought here would
be to rely on curve skeletons, which provide simple and
intuitive characterizations of shape topology and are much
easier to interact with, to assist in surface reconstruction.
Indeed, fixing the topology of a shape by editing its
skeleton seems to be a more viable option ([28], [29]).
This, however, requires one to extract a curve skeleton
directly from a point cloud.

In this paper, we propose an algorithm to construct the
curve skeleton directly on point cloud data, without com-
puting the surface of the object. In order to achieve this,
we perform a contraction procedure inspired by the recent
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Figure 2. Overview of our algorithm. (a) Input point cloud (orange) and the contracted points (red) after 1 iteration. (b) Contracted points after 2-5
iterations. (c) Skeleton graph constructed by farthest-point sampling (light red points) with a fixed radius ball and connectivity (red lines) inherited
from the local neighborhood relationship of the input points. (d) The final 1D curve skeleton after topology thinning.

work of Au et al. [4], but on point cloud data; see Fig. 2(a)
and (b). This is followed by topological thinning to reduce
the skeleton structure to a line; see Fig. 2(c) and (d). We
show that our contraction is robust to noise and can deal
with moderate amounts of missing data. However, as the
contraction relies on a local analysis, the extracted skeleton
can be imprecise or even incorrect in the presence of large
amount of missing data. In this scenario, the scanned data
carries insufficient geometric information to determine the
correct topology without first imposing a prior on the
shape. Fortunately, the extracted skeleton provides a com-
pact editing structure which can be employed to correct
the model’s topology. We thus develop a skeleton-assisted
topology-preserving reconstruction procedure based on the
finite element method of Sharf et al. [27].

Note that while our method is broadly similar to that of
Au et al. [4], we extend their work in several important
ways. Foremost among these is our ability to handle
point cloud models, meshes with boundaries, triangle soup
inputs without global connectivity, and even missing data
from incomplete range scans. We also improve upon
the determination of parameters and iteration termination
conditions in the contraction process. Beside adapting
the method to point cloud models, we lower the number
of iterations necessary to produce an intermediate point
set suitable for topological thinning. In addition, their
connectivity-surgery method is not suitable for our case.
Instead, we develop a robust topological thinning method
to convert the contracted point cloud into a curve skeleton.

In summary, we present a robust curve skeleton ex-
traction algorithm for point clouds and apply it to an
interactive topology-driven reconstruction scheme. We
demonstrate experimentally that the extracted skeletons
have high quality despite having moderate amounts of
missing data in the input. In particular, we show that our
method produces better results on point scans with missing
data than a state-of-the-art mesh skeletonization algorithm
applied to a reconstructed mesh.

II. RELATED WORK

Skeleton extraction has been the focus of extensive
research dating back to the the 1960s. While existing
algorithms target a variety of model characteristics and

applications, extraction procedures can be roughly divided
into volumetric methods and geometric methods [30].

Volumetric methods require a voxelization of the input
model [31]. Some iteratively remove a model’s simple
points [32], thinning the structure until a curve skeleton
is obtained [33], while others trace and prune ridges of
the distance field. Spatial discretization may lead to loss
of detail and numerical instability at low resolutions, and
in general it requires the inside of the shape to be well
defined. This is clearly difficult for point clouds. An
exception is the algorithm of Sharf et al. [34], where,
following the Euclidean distance field, a dynamic mesh is
expanded inside the point cloud tracing the shape skeleton.
In this solution, complete water-tightness is not required
and extraction is successful even with moderate amount of
missing data. However, this requires a careful setting of
the tension parameter to prevent the dynamic mesh from
leaking outside the shape.

Rather than voxelize the input, geometric methods work
directly on triangle meshes or point clouds. A noteworthy
solution is to employ Voronoi diagrams ([3], [35]) and
extract a curve skeleton by pruning the extracted ap-
proximation of the medial axis. However, such constructs
are sensitive to sampling conditions and noise which
are often not met in real scanned data. On the other
hand, if only a topological representation of the shape is
desired, Reeb graph-based methods [36] provide a viable
solution that produces curve skeleton directly. Given a
real-valued function defined on the model’s surface, Reeb
graphs cluster approximate iso-value regions and connect
them to each other constructing a graph which can be
embedded in the 3D space. The choice of this function
distinguishes the various methods. The height function
in [37] is sensitive to the model’s orientation, while both
the geodesic function [36] and the harmonic function [38]
require the user to specify proper boundary conditions.
Verroust and Lazarus [39] generalize the Reeb graph-based
method to unorganized points, but the skeleton extracted
does not contain all topological features and requires
further processing. Recently a novel geometric method [9]
is proposed, based on a generalized rotationally symmetric
analysis. This is often suitable for curve skeleton extrac-
tion but is not generalizable to all shapes.



The technique which is most related to ours is the mesh
contraction solution of Au et al. [4], where the volume-
reducing characteristics of Laplacian smoothing ([40],
[41]) are exploited to perform robust curve skeleton ex-
traction for closed triangular meshes. However, to apply
this method to a point set we would need to apply surface
reconstruction. We consider this to be computationally un-
necessary, as reconstruction aims to recover details while
curve skeleton extraction focuses on global properties of
the shape. Furthermore, as shown in Fig. 6(e), incorrect
reconstruction may lead to incorrect skeleton extraction.

Classical reconstruction ([21], [42], [43]) can solve, by
interpolation, many of the problems caused by smaller
amounts of missing data. However, even mostly well-
sampled surfaces may contain critical regions which are
incorrectly reconstructed, typically resulting in topological
tunnels. Techniques for topology correction have been
developed to compensate, either based on skeletons [28],
local scribbles [27] or sketching [29]. While both [28]
and [29] require a watertight mesh as input, Sharf et
al. [27] integrates topology correction directly into the
reconstruction procedure. Our skeleton-driven reconstruc-
tion method can be seen as a combination of the three
solutions above: it uses a curve skeleton to specify topol-
ogy, which provides scribble-like information to guide the
reconstruction technique. In addition, our skeletons present
some similarity to the sketches used in [29]; however, they
are computed automatically, without requiring the user to
specify the full shape topology from scratch.

III. CURVE SKELETON EXTRACTION VIA
LAPLACIAN-BASED CONTRACTION

Our algorithm proceeds as follows: Given a point cloud
P = {pi}, we first contract P to a zero-volume point
set C as described in Section III-A. Next, we build
a skeleton graph G using sub-samples of C. We then
contract edges of G iteratively to build a skeleton T , which
is a curve skeleton with cycles. This process is illustrated
in Section III-B. Finally, to restrict T to the interior of P
as much as possible, we move every vertex of T to the
center of its local neighborhood in P as described in [4].

A. Geometric Contraction

The geometric contraction operation first presented in
[4] produces excellent results on triangle meshes. We
extend the algorithm to support point cloud models. The
contraction maintains the global shape of the input model
by anchoring points chosen by an implicit Laplacian
smoothing process. Thus, the contracted point cloud C
captures the geometric characteristics of the input with
minimal volume, offering an initial estimation of the po-
sition of the final curve skeleton. Here we briefly describe
the process and indicate our adaptations.

As stated in [4], the contraction is computed by itera-
tively solving the linear system:[

WLL
WH

]
P ′ =

[
0

WHP

]
, (1)

where L is a n × n Laplacian matrix with cotangent
weights, P ′ is a contracted point cloud, and WL and WH

are the diagonal weight matrices balancing the contraction
and attraction constraints, the ith diagonal element of WL

(resp. WH ) is denoted WL,i (resp. WH,i). The solution to
this problem minimizes the quadratic energy [44]:

‖WLLP
′‖2 +

∑
i

W 2
H,i‖p′i − pi‖2, (2)

where the first term removes geometry details along the
normal directions using implicit Laplacian smoothing and
the second preserves shape geometry during contractions.

Laplacian operator construction for point cloud data:
The recent introduction of the Voronoi-Laplacian [45]
and PCD-Laplacian [46] addressed the definition of a
suitable operator for point cloud data. These two solutions
are similar, as both need to compute a planar Delaunay
triangulation of the set of points within distance R and
then use the triangulation to define a weighting scheme.
Since no automatic scheme for the choice of the scale
parameter R is available, applying such techniques directly
would be difficult, especially as we need to re-compute the
Laplacian at every iteration. In addition, large values of R
might affect the sparseness of the matrix L and slow down
the contraction process.

To mitigate these problems, we first extract an approx-
imate neighborhood of Pi by computing its k nearest
neighbors Nk(Pi) and projecting them on the tangent
plane defined by their principal components. We then
construct a planar Delaunay triangulation and define the
one-ring neighbors of Pi as those participating in the def-
inition of the Laplace operator. As the contraction process
progresses, the computation of a correct tangent plane
becomes difficult; to tackle this problem, we compute
neighborhood information only at the first iteration. Con-
sequently, subsequent iterations will only need to update
the Laplacian weights, rather than the whole operator.

Many alternatives are available for the choice of the
weighting scheme, such as combinatorial weights [44],
mean value weights [47] or cotangent weights [48]. Fig. 3
clearly illustrates how even for point clouds, the cotangent
weighting scheme achieves superior contraction quality,
similarly to the mesh scenario, where zeroing the Lapla-
cian would cause a contraction in the direction of the mean
curvature normal [48].

Point cloud Laplacian parameters: The only param-
eter required for our discrete point cloud Laplacian is
the number of nearest neighbours k, used to construct
the domain over which we estimate the tangential plane.
Throughout our experiments, we set k = .012#samples,
restricting the values to the range [8..30]. This narrow
range is justified by the fact that we only need a 1-ring
set of samples for the construction of the Laplacian.

Iteration and contraction parameters: To collapse P
into a curve skeleton, we solve equation (1) iteratively
while updating WL and WH . P ′ is contracted noticeably
even after the first iteration. To contract P ′ further, we



Figure 3. Comparison of the contraction techniques built using various
types of point cloud Laplacian. Using cotangent weights requires fewer
iterations and better preserves the geometry of the input shape. (a) Lapla-
cian with combinatorial weights. (b) Laplacian with tangent weights. (c)
Our solution using tangent Delaunay Laplacian with cotangent weights.
The first column is the iteration number.

increase the contraction weights WL after each iteration.
To avoid over-contraction, we must also update the at-
traction weights WH,i according to pi’s collapsed degree.
This is determined by the extent of of its neighbors, which
we approximate by minq∈Nk(pi) ‖pi−q‖. Specifically, we
want points with smaller neighborhoods to be attracted
more strongly to their current positions.

We evaluate iteration t as follows:

1) Solve
[
W t

LL
t

W t
H

]
P t+1 =

[
0

W t
HP

t

]
for P t+1,

2) Update W t+1
L = sLW

t
L and W t+1

H,i = W 0
H,iS

0
i /S

t
i ,

where St
i and S0

i are the current and original neigh-
borhood extent of point i, respectively,

3) Compute the new Laplacian operator Lt+1 with the
current point cloud P t+1.

This process stops when the average value of (St+1
i −

St
i )/S

0
i < t, where t is a user-specified threshold. (We

set t = 0.01 for all models in this paper.) This indicates
convergence to a steady state.

We find that setting sL = 3.0 allows us to converge in
fewer than 5 iterations on most models. Since the scale
of the Laplacian coordinate is proportional to a point’s
neighborhood extent (under the same local neighborhood
shape), the contraction forces from the Laplacian equa-
tions are smaller for denser models. Thus to handle models
of different sizes and resolutions, we set W 0

L = 1/(5S0)
and W 0

H = 1.0 for all results in this paper, where S0 is
the mean neighborhood extent of the point cloud.

Figure 5. Methods to convert a point cloud to a curve skeleton
should be robust against the two challenging cases constructed using
less iterations or poor contraction parameters. (Left) The horse model
after three contractions. (Right) The final contracted Pegaso model with
the initial attraction weight W 0

H = 10; the skeleton is shown in Fig. 4(h).

Parameters: The key to contraction is breaking the
balance of the forces in WH and WL. The initial ratio
between the two is important. If the initial contraction
weights are too small, skeleton nodes near the tips of the
model are prone to extend out of the model, as near the
tip of the Pegaso’s wing in Fig. 4(a). If the contraction
weights are too large, the strong contraction force of the
thicker region may attract the contracted points of the
nearby thinner part towards the thicker part, forcing those
points out of the model as with the tail of the Pegaso
in Fig. 4(d). High contraction forces can also collapse
branches around a small tunnel, such as that near the left
front leg of the Pegaso in Fig. 4(d). Note also that the
iteration times decrease with the initial contraction weight.
The initial attraction weight has an opposite effect to the
initial contraction weight, shown in Fig. 4(e-h). Increasing
W 0

L or decreasing W 0
H both result in nearly the same

skeleton with only small differences as shown in Fig. 4(a)
and (h). This stems from the fact that the updated weights
in each iteration will change the initial ratio. Fig. 4 also
shows that small changes to the initial contraction and
attraction weights slightly affect the resulting structure.

Stability of the iterative contraction: The iterative
increase of the attraction weights WH makes the sys-
tem matrix more diagonally dominant as the iteration
progresses; this ensures stability. During the process, we
also avoid any possible numerical errors, including infinity
values and divide-by-zero error as in [4]. The result of this
algorithm is a thin shape C which approximates the curve
skeleton; see Fig. 2(c).

B. Topological thinning

The result C of the previous step is a point cloud,
not a 1D curve skeleton. Previous methods to convert a
point cloud to a curve skeleton, such as [49] and [9],
require joint identification and delicate parameter tuning
to handle a contracted shape with different local shape
characteristics, as in Fig. 5(b). They are also not as robust
as the method we present here, particularly when the input
shape C contains thick regions such as Fig. 5(a). Our basic
idea is similar to methods first presented in [1].

Building connectivity: We build a skeletal structure
from C first by imposing an initial connectivity, then by



(a) (W 0
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0
L, n) = (1, 1, 8). (b) (1, 10.2, 5). (c) (1, 20, 5). (d) (1, 100, 3).

(e) (W 0
H ,W

0
L, n) = (0.1, 10.2, 3). (f) (0.5, 10.2, 5). (g) (1, 10.2, 5). (h) (10, 10.2, 8).

Figure 4. Our algorithm is robust to small changes in the default ratio of contraction and attraction forces. In the first row we fix W 0
H to the default

value of 1 and vary W 0
L. In the second row, we fix W 0

L to the default value of 10.2 and vary W 0
H . For each image we list W 0

H , W 0
L and the iteration

count n required to produce the curve skeleton.

applying an edge-contraction operation. We first sample
C using farthest-point sampling and a ball of radius r.
Each sample gi ∈ G represents the set of associated points
Ci in C which are closest to it, such that C =

⋃
i Ci

and Ci

⋂
Cj = ∅,∀i 6= j. Connecting gi and gj if their

associated points share common local 1-ring neighbors,
we obtain a graph G with uniformly distributed nodes as
shown in Fig. 2(c).

Edge contraction: Given this connectivity, we col-
lapse unnecessary edges until no triangles exist to build
a curve skeleton. To distribute the final skeleton vertices
uniformly and capture the shape of G, at each step we
collapse the edge with minimum Euclidean length to its
midpoint, and triangles incident to the edge are removed.
The points associated with the two endpoints are assigned
to the newly created vertex. We iterate this procedure until
all triangles have been removed and a 1D curve skeleton
T computed as shown in Fig. 2(d).

Limitations: Our topological contraction algorithm is
able to retain the topology except in the following two
cases. As we are considering unorganized point clouds,
we cannot rely on connectivity to distinguish nearby struc-
tures. If the distance between two neighboring structures
is smaller than the radius r, then points which belong
to two different branches may be collapsed into one.
Alternatively, if r is larger than the diameter of a hole,
then the hole may be collapsed to a single point while
computing the initial graph for topological thinning. For

our results, we consistently choose the value of r as 0.02
times the length of the longest diagonal of the model’s
bounding box, but an adaptive solution which considers a
sampling proportional to the local feature size [50] might
achieve results across multiple scales of geometric detail.

IV. RESULTS

We show some of our skeleton extraction results in
Fig.s 1, 2, and 4. Here we present a broader cross-section
of results, showing the performance of our curve skeleton
extraction from surfaces with boundaries, polygon soups
and complete and incomplete point clouds. For visualiza-
tion, we render the back-facing points in black and front
facing points using transparent colored splats except for
Fig. 2, 5, and 9, which are rendered in MATLAB directly.
The final skeleton is shown in red.

A. Curve skeleton from incomplete point clouds

If the point cloud is complete, applying Au et
al.’s method after mesh reconstruction produces nearly-
identical results to applying our method directly on the
point cloud model (first row of Fig. 6). However, if the in-
put has missing data, our method is more likely to produce
a correct skeleton, since their method strictly adheres to
the topology defined by the incorrect reconstructed mesh.
This is verified experimentally; see Fig. 6(b) as an example
of the general trend.

Fig. 7 shows some point cloud models and curve skele-
tons extracted by our method. The inputs in the first row
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Figure 6. Au et al.’s method vs. our method. Column (a) shows the input point cloud: complete point cloud and point cloud with missing data
created by a virtual scanner from four views. Column (b) shows the mesh obtained by Poisson reconstruction and the skeleton extracted using Au et
al.’s method. Column (c) shows the skeleton extracted by our method.

are all triangular mesh models with connectivity discarded.
We can properly identify the curve skeleton in sphere-
like regions, as in Fig. 7(a), and sheet-like regions, as in
Fig. 7(b). Note that even without any connectivity input,
we can distinguish some close-by structures, for example
the claws in Fig. 7(b), (c), and (d). This mainly depends
upon the tangent-plane Delaunay triangulation.

The incomplete point clouds in Fig. 7(e) and (f) are
composed of points captured from one (resp. four) views
of a complete surface model using a virtual scanner. We
generate an unnecessary cycle near the missing arm of
Fig. 7(e) due to the local point distribution, but find a
correct skeleton with moderate portions of missing data
in Fig. 7(f). Models (g) and (h) are raw-scanned data
with large missing parts. We produce a correct skeleton
for Fig. 7(g) even though the model contains noise and
outliers. The skeleton in Fig. 7(h) is also largely correct
despite an additional cycle around the belly area.

Our method also works well for surfaces with bound-
aries as shown in Fig. 7(i) and (j). The two models are
raw scan data for a leaf and corn, respectively, with
non-uniform point distribution. Au et al.’s mesh-based
implementation [4] failed to complete the contraction
process for reconstructed meshes from the two inputs.
Although we do not require connectivity or normals in the
input, our method can preserve genus if the corresponding
holes are sufficiently large. In addition to Fig. 4, we show
three of such examples in Fig. 7(f), (k), and (l).

Our method is robust against changes in sampling
resolution, as shown for example in Fig. 8, since the initial

Figure 8. Our method is largely insensitive to nonuniform sampling.
The left model contains 9K points, with 50% concentrated in the marked
region. The right model contains 25K points with a nearly uniform
distribution. The extracted curve skeletons for different resolutions and
distributions are similar.

contraction weights are sampling aware. In addition to this,
we can handle non-uniform distribution of samples (left
example in Fig. 8). There is no obvious difference between
the two extracted skeletons.

Our method is also robust against real scanner noise
and outliers, as shown in Fig. 7(g). Note that Fig. 7(e)
also shows that the outlier near the thigh does not af-
fect the shape of skeleton branches around it. Another
form of noise found in raw scanned data is caused by
mis-alignment of several scans from different views. To
simulate this case, we conduct five virtual scans from
different directions along the coordinate axes, register
them perfectly (as we are using a virtual scan), and then
apply small (δ) random rotations and translations to each
scan. As we can see in Fig. 9, the skeletons extracted
from the model with δ = 0.5% or 1% mis-alignments are
almost identical to the skeleton from the original model
in Fig. 6(c), except for some additional little branches
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Figure 7. A gallery of our curve skeleton results. Our method extracts high quality curve skeletons for models with boundaries, flat regions,
high-genus, and even with moderate amount of missing data.

Figure 9. Our method is robust against misalignment noise. The input point cloud models are composed by mis-aligning five virtual scans by 0.5%
(left), 1% (center) and 1.5% (right), respectively. See text for details of these percentages.

caused by the noise. If we increase the mis-alignment to
δ = 1.5%, the shape of the skeleton changes but the result
is still topologically correct.

Implementation details: The curve skeleton method
is implemented in MATLAB; therefore, it is not yet

optimized for speed. The most time-consuming steps are
the construction of a local one-ring for each point and the
iterative contraction. Our method typically takes less than
2 minutes on a point cloud with 10K points.



Each raw input cloud used in our experiments contains
noise and outliers. We subsample large point cloud models
to about 10K points. Hence noise and some outliers
still can be found in our input; however, their presence
contributes little to the final skeleton, since we solve a
global system to contract the model.

B. Limitations

Close-by structures present difficulties for most point-
cloud processing algorithms [51]. Since we rebuild a local
approximation of connectivity from a k-nearest neighbor
graph, our method is occasionally subject to topological
errors when it cannot distinguish between two nearby
surfaces. Our ability to extract a proper skeleton depends
on the distance between samples on the manifold being
smaller than the distance between the two structures. Al-
though we are often able to extract a correct curve skeleton
from those structures, like the claws in Fig. 7(b) and (c),
our algorithm occasionally finds incorrect topology near
those close-by structures as shown in Fig. 10(a).

Another limitation of our method is the tuning of
parameters it requires. We use sL = 3 for our default
contraction weights update factor, which leads to con-
vergence in few iterations for all models shown in this
paper except the dancing children model in Fig. 10(b).
This model has many complex interactions between thin
regions and thicker parts. A lower contraction force may
fail to shrink the thicker regions sufficiently, while a
stronger contraction force may pull skeleton components
in the thinner regions towards thicker regions. Our results
in this instance are sensitive to parameter tuning. sL = 3
(default) makes the contraction force increase too quickly,
but sL = 2 works well for the model, as in Fig. 10(c), at
the cost of an extra iteration before convergence.

V. SKELETON-DRIVEN POINT CLOUD
RECONSTRUCTION

Given the medial axis of a surface, it is possible to
precisely reconstruct the surface itself. We prefer not to
work with the medial complex, which is often difficult to
model and interact with, but we take advantage of the
fact that a shape’s curve skeleton is closely related to
this complex [3]. Briefly, our technique attempts to use
the curve skeleton as a sampling of the medial axis and
recovers the full medial axis by interpolation.

In order to avoid dealing directly with the complex
sheets forming the medial axis, we follow the solution
presented in [27], where the connection between the
signed distance field of the surface and the medial axis
is exploited. In this setting, we strive to compute the
signed distance field of the shape, so that its surface can
be extracted by zero-level-set iso-surfacing.

Unfortunately, in many situations, the skeleton extracted
automatically from the cloud is unsatisfactory both in
terms of geometry and topology. Nevertheless, thanks
to their compactness, curve skeletons are an efficient
structure for topology and geometry editing. Thus, we
allow the user to refine the location of skeletal nodes and

Figure 11. A 2D example of the reconstruction process on a skeleton
cross-section. (a) The input data set of the cross-section; surface samples
are displayed in red, the magenta dot represents the skeleton and
the green circle shows the (weak) outside conditions imposed by the
skeleton. (b) The iso-surface (red line) of the FEM scalar field is able
to capture geometry with concavities not captured by the ω4 term.

modify the topology of the graph. An example of this
editing process is shown in Fig. 14(a) where the skeleton
topology and geometry is easily edited by the user to
obtain the refined skeleton of Fig. 14(b).

Given a point cloud and a refined curve skeleton, we
can express the signed distance field interpolation problem
using the following FEM quadratic minimization problem:

u =argmin{ ω1Esmooth(u)+
ω2Ec(u, Psurf )+
ω3Ec(u, Pskel)+
ω4Ec(u, Pout) }

(3)

where Esmooth forces the field to be smooth:

Esmooth(u) =
∫ ∫ ∫

Ω

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
dω (4)

and the remaining three terms are expressed as quadratic
point constraints:

Ec(u, P ) =
∑
p∈P

(u(p)− k(p))2 (5)

Equation 3 contains three different types of point con-
straints. First of all, we would like the distance field to
vanish close to surface samples. Thus, for cells close
to the surface we set k(p) = 0. The second set of
constraints is created for points on the skeleton, whose
samples are located inside the shape; their signed distance
field value is set to be the distance d from the skeleton
sample to the surface: k(p) = −d(p). Unfortunately, in
the presence of missing data, the closest point estimate
might be unreliable; see Fig. 14(c). Thus, we allow the
user to visualize a cylindrical approximation and easily
tune these estimates, as illustrated in Fig. 14(d). The last
set of constraints is added as a regularizer, to ensure that
the field will vary from a negative value inside the shape to
a positive value outside the shape. We consider a position
p to be outside the shape if it is far enough from any
point on the skeleton (a distance of at least K times the
skeleton radius, K = 4 in our experiments). We show
fields satisfying these constraints in Fig. 11 and Fig. 12.



(a) (b) (c)

Figure 10. Two limitations of our method. (a) Incorrect topology may be produced near close-by structures, shown in the blue frame. (b) The default
update factor sL = 3 for contraction weights may lead to excessive contraction if there are many thin structures between thicker regions. (c) sL = 2
produces better results for such case.

Figure 12. A 2D example of the reconstruction process along a skeleton
branch. (a) The input data set. The central portion of the data is missing;
surface samples are displayed in red, while the magenta curve represents
the skeleton. (b) The iso-surface (red line) of the FEM scalar field is
able to compensate for missing data exploiting the skeletal information.

(a) (b) (c)

(d) (e) (f)

Figure 13. Reconstruction from sparse data. Left: The input point
clouds. Middle: Reconstruction achieved by straightforward poisson
reconstruction is under-constrained in under-sampled regions. Right:
The skeleton provides topological and geometrical hints that guides
reconstruction toward a more suitable solution.

We set the weights ω = [1, 5, .5, .005] in Equation (3)
so that the field will be smooth. These weights encour-
age the algorithm to strongly respect both the vanishing
constraints and the skeleton guesses while only loosely
respecting the outside constraints.

In order to illustrate the power of this method we
consider two examples. First, we consider the mesh re-
constructed by Poisson on the mannequin data-set in
Fig. 13(a,b); note that the surface in under-sampled regions
is badly conditioned and does not accurately approximate
the original surface. Here, the edited skeleton of Fig. 14(d)

provides a weak prior which the FEM scheme exploits
in order to create a more plausible surface in Fig. 13(c).
Similarly, under-sampled regions can cause topological
inconsistencies in the reconstruction of Fig. 13(d). Instead
of correcting the surface, the user can easily correct
the topology of the skeleton, resulting in a successful
reconstruction; see Fig. 1(d,e) and Fig. 13(e,f).

Our current implementation solves the quadratic prob-
lem on a regular spatial grid; thus, for computational
reasons, the resolution of our results is limited (6 splits on
the largest bounding box side). However, our preliminary
results are encouraging and suggest that higher quality
reconstruction could be achieved by constructing an octree
adaptive domain in the spirit of [27].

VI. CONCLUSIONS AND FUTURE WORK

Curve skeletons are important 1D representations of 3D
models, and permit powerful and intuitive manipulations
of the underlying surfaces. Although there is a great deal
of work on curve skeleton extraction from volumetric
and mesh representations, little attention has been paid
to direct extraction from point clouds, and almost none
from incomplete data.

In this paper, we present an algorithm based on Lapla-
cian contraction. Our method is robust to noise and sample
distribution, and can handle moderate amount of missing
data. Our algorithm is also able to handle surfaces with
boundaries and polygon soups. We show experimental
results that demonstrate the effectiveness of our algorithm
under a wide range of data sets. As an easy-to-maintain
representation for topology repair, we also show that the
extracted skeletons can assist in mesh reconstruction from
incomplete point cloud on which direct application of
typical reconstruction methods often fail.

In the future, we would like to improve our neigh-
borhood construction to handle close-by structures, such
as the trident in Fig. 10(a). Constructing a Mahalanobis
neighborhood using the normal vector at each point is a
potential solution. We will continue to explore how to use
the curve skeleton to repair the point clouds directly.



(a) (b) (c) (d)

Figure 14. Work-flow of our editing process. (a) The skeleton extracted by our contraction algorithm. (b) The skeleton edited by location correction
and simple topological operations. (c) The radius field defined on the skeleton depicted as a conical shape approximation. (d) The radius field is
interactively modified to better represent the shape.
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