
EUROGRAPHICS 2009 / P. Dutré and M. Stamminger
(Guest Editors)

Volume 28 (2009), Number 2

Structure-Preserving Reshape for
Textured Architectural Scenes

Marcio Cabral†1 and Sylvain Lefebvre‡1 and Carsten Dachsbacher§2 and George Drettakis¶1

1REVES / INRIA Sophia-Antipolis
2Visualization Research Center / University of Stuttgart

Abstract

Modeling large architectural environments is a difficult task due to the intricate nature of these models and the
complex dependencies between the structures represented. Moreover, textures are an essential part of architectural
models. While the number of geometric primitives is usually relatively low (i.e., many walls are flat surfaces),
textures actually contain many detailed architectural elements.
We present an approach for modeling architectural scenes by reshaping and combining existing textured models,
where the manipulation of the geometry and texture are tightly coupled. For geometry, preserving angles such as
floor orientation or vertical walls is of key importance. We thus allow the user to interactively modify lengths of
edges, while constraining angles. Our texture reshaping solution introduces a measure of directional autosimilar-
ity, to focus stretching in areas of stochastic content and to preserve details in such areas.
We show results on several challenging models, and show two applications: Building complex road structures from
simple initial pieces and creating complex game-levels from an existing game based on pre-existing model pieces.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

The cost of developing modern interactive applications such
as games is often dominated by the creation of a large num-
ber of detailed textured models. For many such scenes, such
as typical “game levels”, these models are often architec-
tural, or more generally man-made, structures: In this paper
we will be focusing our attention to this class of models. Tra-
ditionally, such assets are created by trained artists, who cre-
ate the models and textures for each scene. While the tools
used have improved in the past few years, this remains a te-
dious and painstaking manual process.

A different approach to create such content is procedural
or grammar-based modeling [PL90,MZWG07]. While these

† e-mail:Marcio.Cabral@sophia.inria.fr
‡ e-mail: Sylvain.Lefebvre@sophia.inria.fr
§ e-mail:dachsbacher@visus.uni-stuttgart.de
¶ e-mail:George.Drettakis@sophia.inria.fr

methods hold great promise and can be very powerful, they
require a “programmer-like” approach to modeling, making
them hard to use, with a steep learning curve for typical mod-
elers/artists.

Our solution allows the user to interactively modify or re-
shape textured geometry, since in the interactive applications
we focus on a large part of the detail is usually incorporated
in textures. Conceptually, our solution lies between the two
methods discussed above. Both the geometry and the tex-
ture adapt to these modifications in an intuitive manner. This
opens the way to easily creating large varieties of models
from small sets of pre-existing model “pieces”, as can be
seen in Fig. 1. An additional motivation for our approach is
that appropriate model pieces are becoming widely available
as communities of modelers (or “modders”) create and dis-
tribute them on a massive scale [EA08].

Our main design choice is to provide interactive feed-
back to the user while modifying textured geometry. Our
approach is thus based on the definition of appropriate con-

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

M. Cabral & S. Lefebvre & C. Dachsbacher & G. Drettakis / Structure-Preserving Reshape forTextured Architectural Scenes

Figure 1: Examples of our approach used to build road structures based on a small number of initial blocks. We show the
building blocks (sides) and two example constructions made from these blocks in a few minutes, as shown in the accompanying
video. Notice how pieces deform and adapt, and how texture replicates but also preserves detail in cases of stretching.

straints and a fast least-squares solution. The interactivity of
our approach gives sufficient flexibility to enable repeated
tailoring of the constraints, thus allowing the user to obtain
the desired result. In contrast to grammar-based approaches,
which imply knowledge of model semantics, we do not as-
sume any high-level knowledge of the model, e.g., that one
part of the model is a door and the other a window. However,
since we concentrate on architectural/man-made structures
for interactive applications, the meshes do have an inherent
“expected behavior” which we will seek to preserve. We thus
base our reshaping operator on the key insight that angles are
most important in keeping the aspect of a room or structure.
Obvious examples are the horizontal orientation of the floor
and the vertical orientation of walls. Given this choice, the
main “degree of freedom” for the user will be the ability to
make edges (of walls etc.) longer or shorter, without chang-
ing the angles. At the same time we restrict deformation for
small edges, since they typically correspond to finer details,
which we want to preserve.

We have designed and implemented a complete system to
achieve these goals. Our main contributions are thus:

• A novel approach for deforming and reshaping architec-
tural meshes, based on separating angular and length con-
straints. We propose a linear formulation of the problem,
solved as a least square minimization. Our approach al-
lows interactive geometry reshape with intuitive results.

• A reshaping tool tightly coupling geometry and texture.
While the user manipulates the geometry, texture fea-
tures are updated so as to maintain their visual appearance
while following the deformations; to our knowledge such
coupling has not been done before.

• The use of directional autosimilarity to identify regions
of a texture which can be appropriately deformed, while
keeping structured parts rigid during interactive textured
geometry reshape.

• An interactive method to re-introduce texture detail in
stretched regions, based on detail extraction, tiling and a
realtime rendering solution.

We have implemented the above ideas in an interactive
system. As we will show in our results and applications
(Sec. 5), our new method provides an interactive approach
to complex reshaping of textured models (see Fig. 1).

2. Previous work

Our work involves ideas from several areas: procedural mod-
eling of geometry, example-based geometry modeling, mesh
editing and texture synthesis. We describe next the key ideas
most related to our work.

Procedural modeling Several approaches have been pro-
posed for automatic geometry synthesis. L-Systems build
geometry from a rule set. They have been applied to
plants [PL90], cities [PM01], buildings [MWH∗06] and fa-
cades [MZWG07]. Similarly, geometric languages let the
user write programs generating complex shapes from sim-
ple operations [BFH05]. While such approaches often pro-
vide very impressive results, the main drawback is the level
of expertise they require: The rules have to describe how ev-
ery single geometric primitive is to be placed in the scene.
Despite impressive results with visual interfaces [LWW08],
understanding of rules and grammars is still necessary to cre-
ate/modify initial models to a certain extent.

Modeling by example Merrell [Mer07] proposed an
example-based scene synthesis method producing impres-
sive results. The example is given as a set of building blocks
aligned on a regular 3D grid, which evidently have to be
very carefully modeled. By reproducing the neighboring
relationships of the input blocks in the output, the algo-
rithm automatically generates larger randomized environ-
ments. The method was recently adapted to handle arbitrary
inputs [MM08].

Other approaches have been proposed to model from
examples, in particular by assembling mesh pieces.
Funkhouser et al. [FKS∗04] let the user slice parts from
objects and assemble them in new ways. Kraevoy et
al. [KJS07] follow a similar approach. Both methods are

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Cabral & S. Lefebvre & C. Dachsbacher & G. Drettakis / Structure-Preserving Reshape forTextured Architectural Scenes

targeted at creating objects and would be difficult to adapt
for entire environments. A similar approach is used by
Zhou et al. [ZHW∗06] at a much finer scale to synthe-
size mesoscale structures. Patches of geometrical details are
carefully stitched together to cover a surface.

Mesh editing Mesh editing techniques such as Poisson mesh
editing [YZX∗04] and Laplacian surface editing [SCOL∗04]
provide interactive tools to deform a mesh while retaining
its overall appearance. These approaches work very well as
long as the mesh is smooth and finely tessellated. This does
not hold for architectural pieces, where the tessellation is
often irregular and sharp edges are common. Our approach
is inspired by these works and it provides a new formulation
better suited to our needs.

Constrained editing In earlier work, Gleicher [Gle92] out-
lined the benefit of mixing direct manipulation with con-
straint solvers. Spatial relationships between objects are in-
ferred from user manipulations and later maintained by the
system. Similarly, Xu et al. [XSF02] helped the layout of
many objects in a scene by guiding user manipulation us-
ing constraints. We follow a similar trend: We let the user
manipulate a scene while the system automatically updates
vertex positions and textures through constraints.

Texture and image resizing There has been much re-
cent work on texture and image resizing. The closest ap-
proach has been proposed by [WTSL08]. A grid is used to
deform an image while preserving gradients. The method
could be adapted to our needs, although our emphasis is
more on structure vs. detail rather than salience. Seam
carving [AS07] minimizes energy to find the appropriate
image seams to remove, effecting image resizing. Tai et
al. [TBTS08] use texture synthesis from example [WL00]
to recover details in stretched image areas. This is related to
our detail sliding idea Sec. 4.5, with the key difference that
our approach must allow for interactive feedback. A method
for model resizing has been recently proposed [KSCOS08].
However, memory and computation time implied by the 3D
grid used there would be a big handicap for our application.

In contrast to the above approaches, we consider geome-
try and texture reshape together. In Sec. 3 we explain how to
define the constraints to maintain edge directions and other
desirable properties and how we efficiently solve for geome-
try reshape. In Sec. 4, we introduce directional autosimilar-
ity and show how it is used to reshape texture. Our approach
preserves structured parts of the texture while re-introducing
detail in stretched regions. We present examples and appli-
cations in Sec. 5 and discuss limitations in Sec. 6.

3. Geometry reshape

Our goal is to reshape an architectural model while retaining
its characteristic features. As explained above, we consider
that preserving angles is the most important constraint to im-
pose for the class of models under consideration.

In our formulation, vertices are either variables, in which
case the solution to our system determines their position, or
they are constrained. Constrained vertices can be manipu-
lated by the user - in which case their position is attached to
the mouse (“handles”) - or they remain fixed. In Fig. 2 and
the video constrained vertices are shown in green.

Figure 2: Left: The original model. Right: The final result.
Elongated edges are highlighted in blue and compressed
edges in red. This motion is achieved by moving the handle
up (green point in the center).

Our approach has three major steps:

• The input model is loaded and organised into a simple
constraint graph (Sec. 3.1).

• A set of constraints is defined capturing the relationships
between vertices, walls and edges (Sec. 3.2). In addition
to preserving angles, we maintain short edge length, ver-
tex/face contacts and avoid edge flips.

• A solver recomputes vertex positions from the user con-
trolled handles, while attempting to preserve the con-
straints (Sec. 3.3).

The two first steps are a pre-process. In contrast, the solver
is used at run-time, during user manipulation of the model.
To enable interactivity, we rely on a simple solver and al-
low it to fail or refuse user input if this leads to degeneracies
(ie., collapsing edges or collisions). We argue this behavior
is reasonable since the user has full freedom to assign new
handles and guide the solver in avoiding degeneracies, thus
obtaining the desired result. Nevertheless, we propose sim-
ple mechanisms to help the user in this task (see Sec. 3.4).

3.1. Input and graph construction

We first load the model and create a corresponding con-
straint graph. We assume that the input is a textured mesh,
in the form of an indexed face set. We expect triangles to be
grouped in textured surfaces, which we refer to as surfaces.
Triangles within a same surface share vertices; a shared
edge implies that vertices share 3D and UV coordinates. The
nodes of the constraint graph are the vertices of the model.
Note however that two co-located vertices in different tex-
tured surfaces will share a same graph node.

We distinguish three types of edge within a textured sur-
face. Contour edges are used by a single triangle in the tex-
tured surfaces, while angle edges are shared by two non co-
planar triangles. Both edge types are added to the graph.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Cabral & S. Lefebvre & C. Dachsbacher & G. Drettakis / Structure-Preserving Reshape forTextured Architectural Scenes

Lastly, flat edges, shared by two co-planar triangles, are ig-
nored. In addition, textured surface contours must be well
formed: i.e., a contour is formed by following the ring of
adjacent contour edges. We also support holes.

Finally, we identify connected components of the graph.
In the examples we show here, the number of connected
components is typically low (most often around 3 or 4).

3.2. Constraints

We use the constraint graph to express the properties to
be preserved whenever handles are being moved. We thus
formulate a system of equations expressing constraints that
must be either strictly enforced or minimized. In what fol-
lows, we will present “strict” and “soft” constraints. Table 2
and table 3 provide a summary. We will explain how these
are actually used in Sec. 3.3.

Notations In what follows vi is a vertex and Eki an edge be-
tween vertices vi and vk. Ni is the set of neighboring vertices
of vertex i and |Ni| the size of this set. We designate vari-
ables using a “tilde” symbol. Hence, ṽi is the unknown next
position of vertex i, while vi simply refers to its initial posi-
tion. We note uki = vi−vk

||vi−vk || the normalized direction of edge
Eki, while lki = ||vi− vk|| is its length. Please see Figure 3
for more details.

Note that the edge direction uki and length lki are fixed
with respect to variables since they are computed on the ini-
tial graph; they are thus constants in the system being solved
(Sec. 3.3). Finally vT j

i
is the i-th vertex of triangle j, and nT j

the normal to triangle j. Please refer to Table 1 for a summa-
rized list of notations.

Figure 3: Notations used in the paper.

Edge direction constraints The most important constraint
is to preserve angles between planar faces. Rather than work-
ing directly on faces, we equivalently preserve edge direc-
tions. For each vertex i we derive the following equation:

|Ni|ṽi−
|Ni|−1

∑
k=0

(ṽk +(uki · (ṽi− ṽk))uki) = 0 (1)

Intuitively, this simply states that from any neighboring ver-
tex k we can come back to vertex i by adding the appropriate

Notations
vi initial position of vertex

Eki edge between vertices vi and vk

Ni set of neighboring vertices of vertex i
|Ni| size of the set Ni

ṽi vertices as variables
uki = vi−vk

||vi−vk ||
normalized direction of edge Eki

lki = ||vi− vk|| length of normalized edge uki

v
T j

i
i-th vertex of triangle j

nT j normal to triangle j

Table 1: Notations used in the paper

length in the direction of Eki. Note that uki is constant and
computed on the initial mesh, while ṽi and ṽk are variables.

An important property of this equation is that it does not
restrict the edge length but only the alignment of the vertices.
However, vertices are free to move so the solver might have
to compromise and change the direction of some edges (see
Figure 5(right)).

Figure 4: Edge direction constraints (left) and contact con-
straints (right).

Edge length preservation It is also desirable for the edges
to keep their original lengths: The result of our geometry
reshape will thus be as close as possible to the initial mesh.

We express this with an edge stress term S. We thus seek
to minimize the following term for each edge:

Ski = wki (uki · (ṽi− ṽk)− lki) (2)

The scalar term wki controls how well the edge length must
be preserved, or edge stiffness. We typically give a higher
importance to small edges compared to large edges, and con-
sider edges shorter than a user defined threshold as rigid.

We compute wki as:

wki = wsmall +(wlong − wsmall)
(

lki− lmin

lmax− lmin

)
(3)

where lmax is the largest edge length, lmin the threshold be-
low which edges are considered rigid, and wsmall ,wlong con-
trol the overall edge stiffness. We use wsmall = 10−3 and
wlong = 10−5. Note that wsmall is larger than wlong to make
small edges more rigid. For rigid edges, we set wki = 1

We illustrate direction constraints and edge length preser-
vation in Fig. 2. Our approach preserves angles and the

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Cabral & S. Lefebvre & C. Dachsbacher & G. Drettakis / Structure-Preserving Reshape forTextured Architectural Scenes

length of short edges, while allowing large edges to be ei-
ther shortened or lengthened.

Additionally, all edge lengths must remain positive dur-
ing reshaping, which is expressed with the following strict
constraint per-edge:

uki · (ṽi− ṽk) > 0 (4)

Contacts Often structures lie on other surfaces: Pillars,
doors, windows, etc. Using only edge direction constraints,
we would not be able to capture these relationships.

Within a connected component, coplanarity is already
captured by edge direction constraints. However, two dis-
connected components do not share triangles: Contact re-
lationships are not captured by the previous equations. We
check whether vertices of one component are on a triangle of
another component. When this happens we add one “strict”
constraint for co-planarity, simply using the vertex and the
first vertex of the triangle containing it:

(ṽi− ṽT j
0
) ·nT j = 0 (5)

where nT j is the normal to triangle T j, ṽi and ṽT j
0

belong
to different connected components. We also add three “soft”
constraints to encourage the vertex to stay at the same dis-
tance from the triangle vertices:(

(ṽi− ṽT j
k
)− (vi− vT j

k
)
)

= 0, k = 0..2 (6)

These are mandatory otherwise the system is under-
constrained, since co-planarity does not tells us “where” the
vertex should be on the plane. Please see Figure 4 for more
details.

Edge groups Architectural models contain many implicit
constraints. For instance, the height of doors is typically the
same throughout a building. In general, inferring this type
of constraint from input geometry is a difficult problem and
depends on the semantics of the model.

We do not infer semantic information; instead we use
some easily identifiable properties of the model, notably
groups of similar edges. This provides correct default be-
havior for most cases, and it may be switched off by the user
at any time. Specifically, we define an edge group as a set
of edges having similar direction, similar length, and being
spatially close to each others. This is achieved using a simple
clustering approach.

For each edge group we add constraints stating that edges
must keep similar length. The first edge of the group is used
as reference. For each other edge we write the equation stat-
ing that its length must be equal to the length of the first
edge, using a group error GE :

GE = wg

((
∑

E ji∈G
u ji · (ṽi− ṽ j)

)
−|G| u10 · (ṽ0− ṽ1)

)
(7)

We use v1,v0 to denote the vertices of the first edge of group
G, and u10 for its direction. The edge between v j,vi (E ji)
is within the same group. The group has |G| edges. We use
wg = 0.1. An example of the effect of edge groups is illus-
trated Fig. 5.

Figure 5: Left: A model of stairs. Middle-left: Result ob-
tained if we do not use edge groups and use the handles
shown in green. Unwanted distortion appears. Middle-right:
Using our edge group approach, we achieve uniform reshape
of the stairs. Right: The solver changed edge directions in
order to achieve the motion required by the user.

Edge |Ni|ṽi−∑
|Ni |−1
k=0 (ṽk +(uki · (ṽi− ṽk))uki) = 0

direction
Edge uki · (ṽi− ṽk) > 0
> 0

Co-planarity (ṽi− ṽ
T j

0
) ·nT j = 0

Table 2: Summary of desired strict constraints.

Edge wki (uki · (ṽi− ṽk)− lki)
length

Contact
(

(ṽi− ṽ
T j

k
)− (vi− v

T j
k
)
)

, k = 0..2

positions

Edge wg

((
∑E ji∈G u ji · (ṽi− ṽ j)

)
−|G| u10 · (ṽ0− ṽ1)

)
groups

Table 3: Summary of soft constraints to be minimized.

3.3. Solver

As discussed above, we have three types of constraints: in-
equality, equalities and terms to that should be minimized.
For the first, an accurate solution would require linear pro-
gramming, thus sacrificing interactivity. We discuss our al-
ternative solution in Sec. 3.4. For the remaining constraints
a typical way to solve is to describe the problem as an least
squares minimization and solve with efficient linear system
solvers enabling interactivity. We can write this more for-
mally as:

x′ = argmin x||Ax−b||2 (8)

where x is the vector of positions ṽi of all the vertices in the
model except for the handle(s), whose position is given by

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Cabral & S. Lefebvre & C. Dachsbacher & G. Drettakis / Structure-Preserving Reshape forTextured Architectural Scenes

user input and the fixed vertices which are not affected by the
solution. A is the matrix defined by the constraint equations.

A typical way to enforce equality constraints in a least
square optimization is to include them in the system with a
large weighting term [Loa85]. This can lead to small inaccu-
racies, which are tolerable in our context.

In this system, we weight the minimization constraints
with appropriate values wi. In particular we use weight
wg = 10−2 for Eq. 7, wc = 10−5 for Eq. 6; for Eq. 2
weighting is embedded in wki. In practice, these weights
work across most of our meshes. Only lmin – fixing the edge
length under which wki = 1 (Sec. 3.2) – needs to be adapted
since it strongly impacts the reshaping behavior.

We compute the normal equations, pre-factor the sparse
matrix AT A using the Cholesky factorization of the TAUCS
library [TCR03], and solve very efficiently at run-time. Such
approaches have been used for interactive mesh manipula-
tion [BBK05, BS08].

3.4. Edge flips and User Constraints

To deal with the non negative edge inequality (Eq. 4), we
exploit the interactive aspect of the user manipulations: As
the user drags handles only small motions occur. After every
step we verify that no edge is collapsing. If an edge becomes
too small we artificially increase the length lki (Eq. 2), mak-
ing it less likely to collapse. Since this only affects the con-
stants in the system, it does not affect the interactive perfor-
mance of our approach. If an edge does collapse we refuse
the last motion and rollback to the previous position.

Note that linear programming could be used to enforce
this inequality, for instance by incrementally updating con-
straints during interactive manipulation [BMSX97]. In prac-
tice interactive feedback makes it easy to detect and avoid
degeneracies during manipulation: It seemed unnecessary to
resort on more complex solvers in our context.

User-defined additional constraints In some cases (e.g.,
Fig. 6(left)), it may be necessary to add additional con-
straints. Our system provides a simple mechanism to link
two vertices, resulting in an additional constraint. An exam-
ple is shown in Fig. 6(right).

3.5. Limitations

One of the main limitations is that we ignore surface in-
terpenetration, which can result in internal structures going
through walls.

The behavior of the reshape depends on the chosen han-
dles, and an unfortunate choice may result in undesired mo-
tions. Thankfully, given the interactive nature of our ap-
proach the user can quickly correct for such cases, as illus-
trated Fig. 11. Note that the system behaves reasonably even

if the user ask for deformations where edge direction cannot
be preserved, as illustrated Fig.5(right).

Many of these limitations could be addressed by adding
constraints; however, we cannot infer all these constraints
since they often depend on model semantics.

Figure 6: Left: parts of the roof frame (in the blue circle)
should move together; however they do not share edges or
vertices. Right: The user can add an a link between appro-
priate vertices, resulting in appropriate deformation.

4. Texture reshape

The vast majority of interactive applications enhance the
appearance of objects with texture mapping. But surpris-
ingly most existing geometry editing approaches do not
provide special treatment of textures during deformation.
For single-material models texture synthesis from example
methods could be used to automatically obtain a new texture
map [WL00]. However, on architectural models textures are
often much richer, contain many architectural elements: A
door frame, various decorative elements and other wall de-
tails. It is therefore very important to retain and preserve the
appearance of this information when the user changes the
geometry of a mesh, even though the only information we
have are the texture pixels.

We thus propose a new approach to resize texture
maps targeted at architectural environments, inspired by
ideas from image warping [WTSL08], image comple-
tion [DCOY03] and texture synthesis from example [EL99].
It is designed to perform efficiently during interactive ma-
nipulation of the geometry, while providing high quality re-
sults. Our work is most similar to the approach of [WTSL08]
in that it deforms the texture to concentrate stretch in
some particular areas. However we cast a different formu-
lation based on the new notion of directional autosimilarity
(Sec. 4.2).

In the following we use texture map to designate the im-
age mapped onto a surface and stochastic texture to desig-
nate areas of the image having homogeneous content.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Cabral & S. Lefebvre & C. Dachsbacher & G. Drettakis / Structure-Preserving Reshape forTextured Architectural Scenes

4.1. Overview

Consider the texture in Fig. 7(a); if we enlarge the geometry
with no special treatment, we get the result of Fig. 7 (b). We
want to get the result shown in (c), where structured parts
of the texture are preserved, and stretching is focused on the
stochastic texture regions.

To do this we use directional autosimilarity, which mea-
sures whether a texture region remains similar to itself if
slightly translated along a given direction. We typically
compute this measure along the two main image axes.
Our autosimilarity measure often takes large values across
edges and low values in the direction parallel to edges (see
Fig. 7(d)). In areas of stochastic content it exhibits a low
value - compared to edges - in all directions. This provides
an effective measure to detect regions of similar homoge-
neous content.

We encode this measure in an autosimilarity map
(Fig. 7(d)). We then warp the texture using a grid, shown
in Fig. 7(e). The goal is to first replicate edge-length changes

Figure 7: (a) The original textured polygon. (b) The poly-
gon has been stretched without reshape. (c) The desired re-
sult, where features are preserved. (d) Directional autosim-
ilarity map. (e) The grid on the original texture. (f) The de-
formed grid. Note how rigid features are preserved.

Figure 8: (a) Stretched texture: inset shows blurred de-
tail. (b) Texture segmentation into rigid/stochastic regions.
(c) Detail tiles extracted from original texture (color rectan-
gles) (d) Stretched texture: inset shows re-introduced detail,
extracted from tiles. (Please zoom to see details)

from geometry reshape to texture space, and then to deform
the grid guided by the autosimilarity measure, giving the re-
sult shown in Fig. 7(f). We use the result to generate a map
of distorted texture coordinates for the stretched polygon.

As we can see in Fig. 8(a), details in stretched regions
are now blurred. We want to reintroduce detail by finding
and using appropriate regions in the original texture. We do
this by segmenting the texture into rigid/stochastic regions
(Fig. 8(b) and then extracting detail tiles Fig. 8(c). These
are regions of stochastic content which can be tiled to re-
introduce detail into stretched regions. We introduce an ap-
propriate rendering technique that can use this information,
giving the final result shown in Fig. 8(d).

4.2. Directional texture autosimilarity

Architectural texture maps often contain a mix of structural
elements and areas of homogeneous, stochastic texture con-
tent. That is, for a given pixel neighborhood in these areas
other, similar pixel neighborhoods can be found in its vicin-
ity. Since we know these textured areas are easier for us to
reproduce, our goal will be to detect them so as to focus
stretch onto them.

When the geometry is deforming, the edges of the tex-
tured polygon will change length (Sec. 3.2). Often these
changes will be anisotropic, for instance when a wall is

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Cabral & S. Lefebvre & C. Dachsbacher & G. Drettakis / Structure-Preserving Reshape forTextured Architectural Scenes

widened while keeping its height. The structural elements
contained in textures are often parallel or orthogonal to the
ground plane - a plinth, a door frame or brick walls are good
examples. These structural elements are likely to be very
auto-similar in a given direction along which they can be
considered as a texture. This implies that stretch is not likely
to be visible if applied in this same direction - however it
must be prevented in other directions.

In order to exploit these degrees of freedom, we intro-
duce the notion of directional autosimilarity. We start from
a given set of directions, typically the vertical and horizontal
texture space axes. For each direction we compute an error
map indicating whether each pixel location can be consid-
ered as an autosimilar texture in the given direction. This
is done by comparing small neighborhoods along a 1D line
centered on the pixel and oriented parallel to the current di-
rection.

More formally, we define an error at a given pixel p ex-
pressing how far we are from autosimilarity:

T~dir(p) =
1

2∆

p+∆ ~dir

∑
q=p−∆ ~dir

q 6=p

||N(q)−N(p)||2 (9)

where ~dir is the considered direction, ∆ controls how far
around the pixel we search and N(p) is a pixel neighbor-
hood around p. We typically use 5×5 neighborhoods and a
value of ∆ = 10. The result for two directions can be seen in
Fig. 7(d), encoded as red and green.

4.3. Deformation grid and Constraints

We now exploit directional autosimilarity maps to deform
the texture map. We achieve this using a deformation grid
overlaid on the texture map. We intersect the grid with the
contour of the surface polygon in texture space, using a DDA
approach for robustness. This is illustrated Fig. 7. The spac-
ing of the grid is chosen to be as large as possible while still
preserving the features of the texture map. We typically use
a spacing of 1

32 in normalized texture space.

We call nodes the vertices of the grid. We distinguish three
types of nodes: corner nodes, denoted ci, boundary nodes,
which lie on the edge of the polygon boundary but are not
corners, denoted bi, and interior nodes (Fig. 7(d)). We use gi
to denote any kind of grid node (interior, boundary or cor-
ner).

We deform this grid in two steps, first solving for the
shape of the textured polygon (i.e., the corner nodes) and
then for the boundary and interior nodes.

Grid corner constraints First, in order to determine the
new shape of the polygon in texture space we replicate the
changes in length of the world space polygon edges. We de-
form the texture space polygon using a gradient-based ap-
proach [BS08]. Second, as we shall see, for efficiency we

impose that boundary edge directions are maintained. Fi-
nally, we fix the position of one corner node to remove the
translational degree of freedom of the system.

We use the same convention as for geometry reshape
where c̃i denotes the (variable) position of corner i during
reshape. For gradient-based deformation of the triangles we
consider each corner ci, i = 0..2 of each triangle T in the
textured surface. We define the set of NT (ci) of neighboring
corners ck, with |NT (ci)| the size of this set. We thus have:

|NT (ci)|c̃i − ∑
ck∈NT (ci)

[c̃k + rki (ci − ck)] = 0 (10)

where rki is the length change ratio of edge ki from the ge-
ometry reshape.

The interior node system, defined in the following section,
depends on the direction of the polygon contour edges. To
avoid having to refactor the interior system during interac-
tion, we constrain the edges of the contour to maintain their
direction, using a 2D version of Eq. (1), replacing vi by ci.

Interior grid node constraints The first constraint concerns
boundary nodes bk, contained in the edge defined by corners
ci,c j. We define Ncic j to be the normal direction to the edge
defined by ci,c j. We require that the bk remain on the edge,
by imposing the following constraint:

b̃k ·Nc jci = c̃i ·Nc jci (11)

Note that thanks to the edge direction constraint described
above, normal Nc jci will never change during interactive ma-
nipulation.

For interior nodes we want to achieve a deformation
which will preserve rigid regions and concentrate stretching
in stochastic regions. For each edge defined by grid nodes
gi,g j and for each deformation direction ~dir (there are typi-
cally two), we define energy ei j to be minimized:

ei j =
(
(g̃i − g̃ j) · ~dir − (gi − g j) · ~dir

)
si j (12)

We define the stiffness weight si j using the autosimiliarity
error map T~dir in direction ~dir as:

si j = smin +T~dir

(
vi + v j

2

) (
1+ salign

(
1−|(v j− vi) · ~dir|

))
(13)

where T is accessed with a 2D coordinate in texture map
space, smin is the stiffness of texture areas, salign controls
how much orthogonal alignment must be preserved. Note
that we equalize luminance in all textures, and we assume
that lighting information is not included.

4.4. Online Reshape Solver

To achieve online texture reshape we use an approach anal-
ogous to that used for geometry (Sec.3.3). We express all
constraints as a linear system and weight equations with re-
spect to their importance. We use a direct least square solver

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Cabral & S. Lefebvre & C. Dachsbacher & G. Drettakis / Structure-Preserving Reshape forTextured Architectural Scenes

(sparse Cholesky factorization [TCR03]). For fast interactive
manipulation we pre-factor the matrices for both the contour
and interior system. During interactive manipulation, only
the vector b needs to be recomputed and AT b updated, where
A contains the constraint equations.

An example is shown in Fig. 7 where the textured surface
has been stretched significantly. For efficient storage and dis-
play, we manipulate and store uv coordinates rather than the
texture itself. The deformation is thus coded in these coordi-
nates, which are rendered into a render target and stored as
a texture of the same resolution as the original texture map.
We call this the distortion map. During rendering we thus
use one level of indirection to access the original texture.

Regions where stretching has occurred will of course
be blurred, since the texture hardware interpolation will be
used. This is illustrated in Fig. 7(b). To alleviate this prob-
lem, we present a new approach to reintroduce details for the
reshaped texture.

For toroidal textures we want to have an integer number
of tiles covering the polygon. We solve for the corners, then
extract a bounding square in texture space. This allows us
to compute the number of repetitions in UV and the amount
of distortion for a single tile (not to be confused with the
detail tiles described below). We then solve as usual for the
interior nodes. Windows on the right of Fig. 9 are repeated
in this manner.

4.5. Reintroducing detail

The first step in recovering detail is to identify within the
texture which regions can be used as a model to reintro-
duce details. We first perform a binary segmentation of the
texture into stochastic and structural areas following our au-
tosimilarity measure. We then identify stochastic regions and
“grow” a rectangular tile within each such region. These tiles
will be used to reintroduce detail during rendering. Figure 8
illustrates this process.

Texture segmentation and Detail extraction To segment,
we first merge the directional autosimilarity error maps (typ-
ically we have two, one along each axis), keeping the largest
error for each pixel. This gives us a new map measuring how
rigid each pixel is in the worst case direction. We apply a
binary segmentation [BJ01] onto this map. After experimen-
tally setting the parameters of the segmentation we use the
same ones on all textures of our dataset. This works well in
practice since our textures all have equalized luminance and
do not contain lighting information.

The segmentation separates the texture in disconnected
regions (see Fig. 8(b)). We assume that each region corre-
sponds to a stochastic texture with locality and stationary
properties [WL00] - note that while this is not to be expected
in general, it works well in our cases since most architectural
textures depict regions of homogeneous materials separated
by structural elements.

Within each region we seek to extract a rectangular tile
representative of the details, with the goals of using this to
re-introduce detail when stretching occurs. Starting from a
random seed we grow the rectangular tile in a “spiral-like”
manner. We perform several iterations and keep the largest
rectangle as our tile (Fig. 8(c)). This naive search could be
improved using more involved algorithms [DMR97].

For each texture, we finally create a tilemap which indi-
cates in each pixel the tile ID associated with its region. The
tile ID indexes a small table which contains the upper and
lower corner of each tile. If a pixel belongs to a rigid region,
the tile ID is set to a special value (for example 0).

Online Detail sliding After solving the system for the poly-
gon, we obtain new texture coordinates for each vertex. Dur-
ing rendering of the final scene, these per-vertex texture co-
ordinates are interpolated by the rasterizer and passed over
to the fragment shader. We use these coordinates to access
the deformation map (see Sec. 4.4), retrieving the coordi-
nates computed by the deformation grid. Directly accessing
the original texture with these coordinates produces blurred
details.

Instead, we perform a lookup in the tilemap to determine
whether the pixel has an associated tile. If yes, we perform a
lookup in the texture from the tile, using a modulo operation
to let the tile cycle in heavily stretched regions.

Directly using colors from the tiles would produce arti-
facts at the boundary of stretched regions. Instead, we sep-
arate the original image into a base and a detail layer using
a bilateral filter [TM98]. We only use the tiles on the detail
layer, the base layer being stretched as previously. However
in the base layer stretched areas contain no detail.

Finally, to avoid modifying the original texture when no
stretch is applied we gracefully transition from the original
detail layer to the tiled details using a measure of the lo-
cal stretched. This is easily computed from the deformation
grid.

The shader pseudo-code below summarizes these opera-
tions:

UV = distortionMap(p); // p contains the distorted coordinates
tile = tilemap(UV); // UV accesses tilemap & original texture
if(tile != 0) { // pixel isnt rigid

detailTile = lookup(tileMap, p modulo tileSize);
color = base(UV) + lerp(detail(UV), detailTile, stretch);

}
else

color = base(UV) + detail(UV);

The result of this operation is that detail is added in the
stretched regions. In addition, the modulo operation during
the lookup of the tilemap will result in tiles being repeated
when necessary. We illustrate these operations in Fig. 8.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Cabral & S. Lefebvre & C. Dachsbacher & G. Drettakis / Structure-Preserving Reshape forTextured Architectural Scenes

Figure 9: An example of houses with a complex roof frame using three pieces shown left. We show two views of two different
variants of the resulting house.

Piece vars nnz nnz nodes edges eqns factor solve
A At A

114 2136 4284 38 60 217 4 ms 1 ms

1314 30294 60936 438 760 3874 2155 ms 10 ms

258 5604 13068 86 176 517 44 ms 1 ms

909 15588 30681 303 530 1555 175 ms 3 ms

Table 4: Performance measure for some of the meshes uti-
lized in the paper. nnz stands for ’number of non-zero en-
tries’, vars for variables and eqns for equations.

5. Results and Applications

The geometry (Sec. 3) and texture (Sec. 4) reshaping algo-
rithms constitute the core of our approach. We next present
present three examples using a “mesh piece modeling” ap-
plication. To truly appreciate our results, please see the ac-
companying video.

Texture and geometry reshape can be used together to
form a powerful tool for the edition and creation of archi-
tectural scenes. The user can create complex models based
on a small set of initial pieces, which are either specifically
built for this purpose, or are easily available (e.g., the pieces
of a game level in our examples).

We assume that each piece has “portals” associated at
each extremity, and that portals are compatible, i.e., have the
same number of vertices. This is for example the case with
the game level pieces we extracted.

The user deforms and connects pieces to achieve the de-
sired result, for example as in Fig. 1 for roads, or Fig. 10
for game levels. When modifications are made on a given
piece, deformations and reshape are appropriately propa-
gated along the chain of pieces. We can limit the propaga-
tion length during interactive manipulation; when the user
releases the handles, the propagation is completed. We also

cache the matrix factorizations to accelerate updates. Please
see the video for example usage.

Mesh pieces and Interactive tool We have developed an
interactive tool providing a simple, yet intuitive interface to
assemble and reshape pieces. The interface allows the user
to connect pieces (by their portals) and reshape them. To
connect two pieces, the user simply clicks on a piece por-
tal, which brings up a list of possible pieces with matching
portals that can be connected to the selected piece (left hand
side of the interface - see Fig. 1). Reshaping is possible by
clicking on any vertex: when one vertex is selected as a han-
dle, an axis-widget is shown, allowing the user to move the
vertex. Changes made to this vertex propagate through all
pieces affected. Besides moving vertices, the user can also
add constraints between edges (rigidity values can be added
interactively in a pop-up menu - Fig. 1).

Applications: House/Road Building and Doom Levels We
first show an example of house building in Fig. 9. We then
show an example with road blocks in Fig. 1. As we can see,
quite complex road structures, with bridges, many-lane high-
ways, overpasses etc. can be built from a small number of
initial pieces. Fig. 10, shows game level pieces and the con-
struction of a new modified level using our approach.

In these examples, mesh pieces had between 200-1400
vertices (450-4000 equations), creating the matrix takes
from 40-800ms (unoptimized), and factorization takes be-
tween 20ms and 2.5s (for the bridge piece). For textures fac-
torization takes 20-330ms with a maximum of almost 5000
equations.

6. Discussion and Conclusion

We have already discussed limitations specific to geometry
reshape in Sec. 3.5. In terms of other limitations, we cur-
rently assume that the models are well formed in textured
indexed face sets. We have found this to be a reasonable
assumption for example with the game levels of “Doom”
we tested here. For the custom-built pieces we also show
here, no particular modifications were required in the mod-
eler’s workflow to produce models we could use. Nonethe-
less, it may be desirable to re-use model pieces which have

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Cabral & S. Lefebvre & C. Dachsbacher & G. Drettakis / Structure-Preserving Reshape forTextured Architectural Scenes

Figure 10: Examples of our Doom level construction. We show the level building blocks and two views of a final construction
made in tens of seconds. Note that these pieces do not trivially connect by construction. Textures and models from the game
Doom IIITM. c©Id Software, all rights reserved.

some inconsistencies in terms of connectivity information,
for instance data from 3D scanners. We did some initial ex-
perimentation with such pieces, and we found that a simple
voxelization approach to determine corners was sufficient to
extract corners and connectivity. Evidently, a general robust
solution is a very difficult problem with strong links to mesh
repair techniques [Ju04]. Since our method is primarily de-
signed to be applied to models created by 3D modeling soft-
ware we do not expect this to be be a major limitation.

Another limitation is our assumption that each connected
component of texture detail contains one tile. Evidently this
may not be the case; A multi-label segmentation should be
performed to identify this and extract the appropriate tiles.

Finally, we currently assume that portals of pieces are
“compatible”. Correctly treating incompatible portals is a
hard problem; a more general “geometry matching” ap-
proach needs to be developed. While methods to treat gen-
eral meshes exist (e.g., [FKS∗04]), they are not necessarily
adapted to architectural pieces. We are actively pursuing this
direction of research.

Adding feedback between texture rigidity constraints and
geometric reshape should be relatively straightforward to
add. This would be particularly helpful in cases when we
cannot identify detail tiles for examples.

To conclude, we have introduced a new approach which
simultaneously treats geometry and texture reshape of archi-
tectural or structured man-made models. Our new algorithm
enables modeling by adapting and varying existing pieces,
and chaining them together, achieving rapid construction of
complex models.

7. Acknowledgments

We would like to thank Fernanda Andrade Cabral for her
help with modeling and texturing. We also thank Frédo Du-
rand, Eugene Fiume and Olga Sorkine for their input, as well
as the reviewers for their helpful comments and for suggest-
ing many improvements to the paper.

Figure 11: Left and middle: The choice of handles results
in undesired motions. Right: Thanks to interactive feedback
the user easily chooses a better set of handles and achieves
the desired reshape.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

M. Cabral & S. Lefebvre & C. Dachsbacher & G. Drettakis / Structure-Preserving Reshape forTextured Architectural Scenes

References
[AS07] AVIDAN S., SHAMIR A.: Seam carving for content-aware

image resizing. ACM Trans. on Graphics (Proc. of SIGGRAPH
2007) 26, 3 (2007).

[BBK05] BOTSCH M., BOMMES D., KOBBELT L.: Efficient lin-
ear system solvers for mesh processing. In IMA Conference on
the Mathematics of Surfaces (2005), pp. 62–83.

[BFH05] BERNDT R., FELLNER D. W., HAVEMANN S.: Gener-
ative 3d models: a key to more information within less bandwidth
at higher quality. In Web3D ’05: Proceedings of the tenth inter-
national conference on 3D Web technology (2005), pp. 111–121.

[BJ01] BOYKOV Y. Y., JOLLY M. P.: Interactive graph cuts for
optimal boundary region segmentation of objects in n-d images.
vol. 1, pp. 105–112 vol.1.

[BMSX97] BORNING A., MARRIOTT K., STUCKEY P., XIAO
Y.: Solving linear arithmetic constraints for user interface appli-
cations. In UIST ’97: Proceedings of the 10th annual ACM sym-
posium on User interface software and technology (New York,
NY, USA, 1997), ACM, pp. 87–96.

[BS08] BOTSCH M., SORKINE O.: On linear variational surface
deformation methods. IEEE Trans. on Vis. and Comp. Graphics
14, 1 (2008), 213–230.

[DCOY03] DRORI I., COHEN-OR D., YESHURUN H.:
Fragment-based image completion. ACM Trans. on Graphics
(Proc. of SIGGRAPH 2003) 22, 3 (2003), 303–312.

[DMR97] DANIELS K., MILENKOVIC V., ROTH D.: Finding the
largest area axis-parallel rectangle in a polygon. Computational
Geometry: Theory and Applications 7, 1-2 (1997), 125–148.

[EA08] EA: Spore, 2008. http://www.spore.com.

[EL99] EFROS A. A., LEUNG T. K.: Texture synthesis by non-
parametric sampling. In IEEE International Conference on Com-
puter Vision (September 1999), pp. 1033–1038.

[FKS∗04] FUNKHOUSER T., KAZHDAN M., SHILANE P., MIN
P., KIEFER W., TAL A., RUSINKIEWICZ S., DOBKIN D.: Mod-
eling by example. ACM Trans. on Graphics (Proc. of SIGGRAPH
2004) (2004).

[Gle92] GLEICHER M. L.: Integrating constraints and direct ma-
nipulation. In Proc. of the ACM SIGGRAPH Symp. on Interactive
3D Graphics (New York, NY, USA, 1992), ACM, pp. 171–174.

[Ju04] JU T.: Robust repair of polygonal models. ACM Trans. on
Graphics 23, 3 (2004), 888–895.

[KJS07] KRAEVOY V., JULIUS D., SHEFFER A.: Model com-
position from interchangeable components. In Pacific Graphics
(2007).

[KSCOS08] KRAEVOY V., SHEFFER A., COHEN-OR D.,
SHAMIR A.: Non-homogeneous resizing of complex models.
ACM Trans. on Graphics (Proc. of ACM SIGGRAPH ASIA 2008)
27, 5 (2008).

[Loa85] LOAN C. V.: On the method of weighting for equality-
constrained least-squares problems. SIAM Journal on Numerical
Analysis 22, 5 (1985), 851–864.

[LWW08] LIPP M., WONKA P., WIMMER M.: Interactive visual
editing of grammars for procedural architecture. ACM Trans. on
Graphics (Proc. of SIGGRAPH 2008) 27, 3 (Aug. 2008).

[Mer07] MERRELL P.: Example-based model synthesis. In Proc.
of the ACM SIGGRAPH Symp. on Interactive 3D Graphics and
Games (2007).

[MM08] MERRELL P., MANOCHA D.: Continuous model syn-
thesis. In SIG - Asia (New York, NY, USA, 2008), no. to appear,
ACM SIGGRAPH, p. to appear.

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
GOOL L. V.: Procedural modeling of buildings. In ACM Trans.
on Graphics (Proc. of ACM SIGGRAPH 2006) (2006), pp. 614–
623.

[MZWG07] MÜLLER P., ZENG G., WONKA P., GOOL L. V.:
Image-based procedural modeling of facades. ACM Trans. on
Graphics (Proc. of ACM SIGGRAPH 2007) 26, 3 (2007), 85.

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The algorithmic
beauty of plants. Springer-Verlag New York, Inc., 1990.

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural modeling of
cities. In Proc. SIGGRAPH ’01 (2001), ACM, pp. 301–308.

[SCOL∗04] SORKINE O., COHEN-OR D., LIPMAN Y., ALEXA
M., RÖSSL C., SEIDEL H.-P.: Laplacian surface editing. In
SGP ’04: Proc. EG/SIGGRAPH Symp. on Geometry processing
(2004), pp. 175–184.

[TBTS08] TAI Y.-W., BROWN M. S., TANG C.-K., SHUM H.-
Y.: Texture amendment: Reducing texture distortion in con-
strained parameterization. SIG - Asia to appear, to appear (2008),
to appear.

[TCR03] TOLEDO S., CHEN D., ROTKIN V.: Taucs: A library
of sparse linear solvers, 2003. http://www.tau.ac.il/
~stoledo/taucs/.

[TM98] TOMASI C., MANDUCHI R.: Bilateral filtering for gray
and color images. In ICCV ’98: Proc. of the Int. Conf. on Comp.
Vision (1998), p. 839.

[WL00] WEI L.-Y., LEVOY M.: Fast texture synthesis using tree-
structured vector quantization. In SIGGRAPH’01 (2000), ACM
SIGGRAPH, pp. 479–488.

[WTSL08] WANG Y.-S., TAI C.-L., SORKINE O., LEE T.-Y.:
Optimized scale-and-stretch for image resizing. ACM Trans. on
Graphics (Proc. of ACM SIGGRAPH ASIA 2008) 27, 5 (2008).

[XSF02] XU K., STEWART J., FIUME E.: Constraint-based au-
tomatic placement for scene composition. In Graphics Interface
(2002), pp. 25–34.

[YZX∗04] YU Y., ZHOU K., XU D., SHI X., BAO H., GUO B.,
SHUM H.-Y.: Mesh editing with poisson-based gradient field
manipulation. In Proc. SIGGRAPH (2004), pp. 644–651.

[ZHW∗06] ZHOU K., HUANG X., WANG X., TONG Y., DES-
BRUN M., GUO B., SHUM H.-Y.: Mesh quilting for geometric
texture synthesis. In ACM Trans. on Graphics (Proc. of ACM
SIGGRAPH 2006) (2006), pp. 690–697.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

http://www.spore.com
http://www.tau.ac.il/~stoledo/taucs/
http://www.tau.ac.il/~stoledo/taucs/

