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Abstract In this paper, the problem of non-rigid shape recognition is studied from

the perspective of metric geometry. In particular, we explore the applicability of diffu-

sion distances within the Gromov-Hausdorff framework. While the traditionally used

geodesic distance exploits the shortest path between points on the surface, the diffu-

sion distance averages all paths connecting the points. The diffusion distance provides

an intrinsic distance measure which is robust, in particular to topological changes.

Such changes may be a result of natural non-rigid deformations, as well as acquisition

noise, in the form of holes or missing data, and representation noise due to inaccurate

mesh construction. The presentation of the proposed framework is complemented with

examples demonstrating that in addition to the relatively low complexity involved in

the computation of the diffusion distances between surface points, its recognition and

matching performances favorably compare to the classical geodesic distances in the

presence of topological changes between the non-rigid shapes.

Keywords Non-rigid shape matching, Diffusion geometry, Gromov-Hausdorff

distance, Topology, Missing data, Partiality.

1 Introduction

Non-rigid shapes are ubiquitous in the world we live in, from microscopic bacteria to

tissues and parts of our body. Since pattern recognition applications need to deal with
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objects encountered in everyday life, non-rigid shape analysis has become important in

many modern applications, such as object retrieval and recognition, surface matching,

navigation, and target detection and recognition. One of the cornerstone problems in

the analysis of non-rigid shapes is the problem of shape similarity : given two objects,

we need to tell how similar or dissimilar they are. This can be quantitatively expressed

as a distance between two shapes. The main difficulty in such a comparison stems from

the immense number of degrees of freedom present in the problem as a result of possible

deformations that the non-rigid shapes can undergo.

A common way in which the problem of non-rigid shape similarity has been ap-

proached in the pattern recognition literature is to try to find a representation of shapes

which is invariant to a given class of deformations [51]. Using such a representation, it

is then possible to compare shapes regardless of their deformations, when these defor-

mations are limited to the given class. Riemannian geometry is of help in finding such

invariant representations [22]. It is well-known, for example, that the intrinsic proper-

ties of a shape remain invariant under inelastic deformations, i.e., deformations that

do not stretch or tear the object. Many recent papers, e.g., [7–9,24,27,30,38,41,48,

49,58,59,61,62,66], exploit this fact in order to construct deformation-invariant shape

distances and surface matching techniques.

Elad and Kimmel [24] introduced a method for the recognition of 3D shapes based

on Euclidean embedding, extending previous efforts by Schwartz et al. [62] (see also

[66]). The key idea of the method is to consider a shape as a metric space, whose

metric structure is defined by the geodesic distances between pairs of points on the

shape. 1 Geodesic distances, being an intrinsic property of the shape, are invariant to

any inelastic deformation the shape can undergo, or using metric geometry terminol-

ogy, we can say that such deformations are isometric or metric-preserving with respect

to the geodesic distances. Two non-rigid shapes are compared by first having their

respective geodesic metric structures mapped into a low-dimensional Euclidean space

using multidimensional scaling (MDS) [21], and then rigidly matching the resulting

images (called canonical forms). MDS allows to “undo” the non-rigid deformations of

the shapes, leading to a bending-invariant shape comparison framework based on the

pairwise geodesic distances. This method has been used in three-dimensional face recog-

nition [7], analysis of articulated two-dimensional shapes and images [39,40], texture

mapping and object morphing [10,29,73], and shape segmentation [35].

Due to the fact that the canonical forms method uses an intermediate metric space

to compare two shapes, inaccuracies are introduced, as it is theoretically impossible

to embed a generic metric structure into a finite-dimensional Euclidean space with-

out distorting it. It was shown empirically in [11,24,23,67] that using spaces with

non-Euclidean (non-flat) geometry makes it possible to obtain more accurate represen-

tations, but can not avoid the embedding error completely.

In [48], Mémoli and Sapiro proposed a metric framework for non-rigid shape com-

parison based on the Gromov-Hausdorff distance. This distance was introduced by

Mikhail Gromov, [28], as a way to compute similarity between metric spaces. Using

the Gromov-Hausdorff formalism, the comparison of two shapes can be posed as direct

comparison of pairwise distances on the shapes (basically, in the discrete case, the com-

parison up to permutations of the corresponding pairwise distance matrices or their

corresponding submatrices). Since no fixed intermediate space is forced, the representa-

1 Recall that the geodesic distance between two points is the length of the shortest path,
traveling on the surface of the shape, that connects the points.
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tion error inherent to canonical forms can be avoided. The Gromov-Hausdorff distance

computation is an NP-hard problem, and together with a number of theoretical results,

Mémoli and Sapiro proposed a practical approximation scheme with explicit probabilis-

tic bounds connecting the approximation to the actual Gromov-Hausdorff distance and

the number of available sample points.

According to an alternative but mathematically equivalent definition [16], the

Gromov-Hausdorff distance computation can be posed as measuring the distortion of

embedding one metric space into another. Bronstein et al. [8,9], observing the connec-

tion between this formulation of the Gromov-Hausdorff distance and MDS, proposed

an efficient computation of such embedding based on a continuous optimization prob-

lem similar in spirit to MDS, referred to as generalized MDS (GMDS). This method

follows the line of thought of embedding into non-Euclidean spaces where instead of

embedding each shape into Euclidean, hyperbolic, or spherical spaces, as classically

done in MDS, the embedding is done from one shape into the other. We exploit the

GMDS computational framework for the examples in this paper. Alternative computa-

tional techniques based on the relaxation of the Gromov-Hausdorff distance have been

recently proposed [43].

All the aforementioned contributions on the Gromov-Hausdorff and MDS-based

shape analysis frameworks considered geodesic distances as the invariant used to in-

trinsically compare non-rigid shapes. This is motivated by a number of fundamental

reasons. First, many natural object deformations can be approximated as inelastic

ones. Thus, methods based on geodesic distances allow good shape recognition accu-

racy. Second, there exists a plethora of efficient numerical methods for the computation

of geodesic distances for diverse shape representations [36,46,47,64,69,71].

At the same time, the notable drawback of the geodesic distances is their sensitivity

to topological transformations. By modifying the connectivity of the shape, one can

significantly alter the paths between points, and in particular the shortest one, which in

turn, can result in significant changes of the geodesic distances. Inconsistent topology

or “topological noise” are common phenomena in shapes acquired using 3D scanners

or obtained as a result of point cloud triangulation [70]. Thus, in order to be able to

deal with real-life data, it is important for shape similarity methods to be topology-

invariant or at least topologically robust. Of course, topological changes can result from

natural non-rigid deformations as well, e.g., bending of an open hand until the finger

tips touch. A practically useful shape recognition system should be able to somehow

deal with these transformations.

It should be noted, however, that the metric model of shapes allows to represent

a shape as a generic metric space with any metric. Also, neither the canonical forms

framework nor the Gromov-Hausdorff distance are necessarily limited to geodesic dis-

tances. Using another intrinsic distance, insensitive or robust to topological changes,

instead of geodesic ones, could potentially make these methods cope with topological

noise and topological deformations in general. In [12,14], Bronstein et al. showed that

using Euclidean distances (which are robust to topology changes but not invariant

or even robust to non-rigid deformations), and geodesic distances (which are invari-

ant to non-rigid deformations but not to topology changes) together in a framework

resemblant both of the GMDS and iterative closest point (ICP) algorithms [4,17], al-

lows to obtain a shape similarity method more robust to topological changes than the

one obtained with the geodesic distances alone. Also, it was shown in [12,14] that

the Gromov-Hausdorff type distance between shapes modeled as metric spaces with

Euclidean geometry allows to obtain an alternative formulation, and then use GMDS
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as a computation method for the ICP method, a classical approach for rigid shape

comparison (for more detailed analysis, see [44]).

Motivated by the generality of the metric model of shapes, and the need to cope

with topological transformations in non-rigid shape analysis, in this paper we propose

to use diffusion geometry in the Gromov-Hausdorff framework. Diffusion distances,

introduced by Lafon et al. [19,37], are related to the probability of traveling on the

surface from one point to another in a fixed number of random steps (random walk).

There are a number of reasons that lead us to use these distances instead of geodesic

ones when we deal with topological noise and changes. First, the diffusion distance is an

average length of paths connecting two points on the shape, while the geodesic distance

is the length of the shortest path. This naturally makes diffusion distances less sensitive

to topological changes [41,53,61,65]. Secondly, both diffusion and geodesic distance

are intrinsic, thus invariant to inelastic deformations. Finally, diffusion distance can be

efficiently computed from the eigenvalues of a discrete approximation to the Laplace-

Beltrami operator (or simply the eigenvalues of a weighted connectivity matrix).

The interested reader is referred to [33,42,58,61] for some recent works on 3D shape

recognition based on spectral methods, both for geodesic matrices and the Laplace-

Beltrami operator, which is closely related to the diffusion distance [31]. For example,

Reuter et al. [58,60] consider the spectra (eigenvalues) of the Laplace-Beltrami oper-

ator and use this as bending invariant signature for shape recognition. Rustamov [61]

uses both eigenvalues and eigenvectors of the Laplace-Beltrami operator, in order to

construct a shape representation and stresses its relevance for topological robustness.

The diffusion distance was also exploited in [41] for 3D point cloud recognition using

the framework of distance distributions [52] by Osada et al. and to construct intrin-

sic descriptors for feature-based shape recognition [53,65]. Bronstein [15] showed the

relation between the approaches of [61] and [41].

Combining the Gromov-Hausdorff framework with diffusion distances provides a

fundamental framework leading to a non-rigid shape comparison and matching ap-

proach which is robust to topological transformations such as holes and point-wise con-

nectivity changes. The Gromov-Hausdorff distance is an invariant metric on the space

of equivalence classes of shapes under shape isometries. It allows to compare shapes

as metric spaces directly, without resorting to approximations such as low-dimensional

embedding into a Euclidean space. Methods based on such pre-defined embeddings are

theoretically sub-optimal [28] (see also [44]), the Gromov-Hausdorff distance can not

be achieved by projecting onto finite dimensional Euclidean spaces, and typically result

in worse performance for our applications, as experimentally demonstrated in [8,9] and

in this paper. The Gromov-Hausdorff distance is also supported by a well-developed

theory, relating it to metric geometry of shapes. The computation of the Gromov-

Hausdorff distance not only permits to match isometric shapes, but also to quantify

their distance from isometry, that is, their ε-isometry, that measures how much the

intrinsic distances are preserved [16].

The remainder of this paper is organized as follows. Following a description of the

contributions of this paper, next, in Section 2 we present the metric approach to shape

matching and recognition, and the Gromov-Hausdorff framework. Section 3 describes

the basic diffusion distance theory. Section 4 summarizes the relations between different

methods. Section 5 is devoted to the numerical computation of the proposed shape

distance based on the GMDS algorithm, and Section 6 presents experimental results

which include comparisons with previous approaches. Finally, Section 7 concludes the

paper.
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1.1 Contributions

In this paper we address the challenge of invariant shape similarity and correspondence

under a wide class of shape transformations, such as bending, connectivity change, and

missing information. To achieve this, we put together two fundamental mathematical

frameworks. The first is the metric approach for shape representation, modeling shapes

as metric spaces and using Gromov’s results on distances between metric spaces to

measure shape similarity directly from their metric structures, without resorting to

suboptimal approximate representations. The second mathematical framework is the

spectral analysis of surfaces, connecting Laplace-Beltrami operators of surfaces to ran-

dom walks and giving rise to the diffusion geometry.

Each one of these two fundamental theories have been recently shown to be very

successful for different aspects of shape analysis, when acting separately. We here show

that putting them together permits to address new problems such as shape matching

under these challenging conditions. The generality of the metric approach allows us

to use different metrics, and in particular, diffusion metrics derived from the Laplace-

Beltrami operator. We show that the class of invariance (robustness) obtained by using

the diffusion metric is wider than in the case of the geodesic metric, and the resulting

shape similarity and correspondence approaches are less sensitive to topological changes

of the shapes and to missing information.

Finally, previous experimental results [41] demonstrated that the Gromov-Hausdorff

framework is accuracy-wise superior to distance distribution methods in the geodesic

case. Here, we provide experimental evidence of the same behavior in the case of dif-

fusion distances.

2 Metric approach for shape matching and recognition

In this section we present some basic concepts that constitute the core of the metric

approach for shape recognition, staying mostly at the intuitive level. For a rigorous

and insightful treatment of the topic, the reader is referred to [16,28].

2.1 Basic notions in metric geometry

We model a non-rigid shape as a metric space (X, dX), where X is a two-dimensional

smooth compact connected and complete Riemannian surface (possibly with boundary)

embedded into R3, and dX : X×X → R is a metric measuring distances between pairs

of points on X. The key idea of the metric approach is to compare shapes as metric

spaces. Two shapes (X, dX) and (Y, dY ) are similar if the metrics between pairs of

corresponding points on X and Y coincide, i.e., there exists a bijective map ϕ : X → Y

such that dY ◦ (ϕ×ϕ) = dX . Such a ϕ is called an isometry and X and Y in this case

are said to be isometric. Isometry implies that in terms of intrinsic metric geometry,

the two shapes are indistinguishable and thus are equivalent.

The notion of isometry can be relaxed in order to define similarity of shapes. We

will refer to a set C ⊂ X×Y of pairs such that for every x ∈ X there exists at least one

y ∈ Y such that (x, y) ∈ C, and similarly for every y ∈ Y there exists an x ∈ X such

that (x, y) ∈ C, as a correspondence between X and Y . Note that a correspondence C
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is not necessarily a function. We can define the distortion of the correspondence as the

discrepancy between the corresponding metrics,

dis(C) := sup
(x,y),(x′,y′)∈C

∣∣dX(x, x′)− dY (y, y′)
∣∣ .

We say that the shapes X and Y are ε-isometric if there exists a correspondence C

with dis(C) ≤ ε. Such a C is called an ε-isometry. ε-isometry can be regarded as a

criterion of shape similarity. For small values of ε, the shapes are similar, and for large

values of ε, the shapes are dissimilar in a metric sense.

2.2 Distance distributions

In [52], Osada et al. proposed to describe shapes using shape distributions. In par-

ticular, the D2 distribution in the authors’ terminology is the histogram of pairwise

Euclidean distances between the points of the shape. Such a description is invariant

to Euclidean transformations. Two shapes can be compared by comparing their cor-

responding distributions. The work in [6] provides further theoretical basis for this

approach.

In [30,41], it was proposed to use intrinsic distances instead of the Euclidean ones.

This way, a deformation-invariant descriptor is obtained; shape comparison can be done

same as in Osada et al. [52]. The authors in [41] showed two types of distances: geodesic

and diffusion. In [61], Rustamov used shape distribution applied to Euclidean distances

on eigenmaps of the Laplace-Beltrami operator, which is equivalent to distribution of

commute time (see detailed discussion in Section 4).

2.3 Canonical forms

One of the first attempts in the computer vision community to regard non-rigid shapes

as metric spaces and formulate shape similarity in terms of metric geometry was pro-

posed by Elad and Kimmel [24]. The metric geometry of (X, dX) (dX being the geodesic

distance in [24], and the one derived from the spectral framework later in [61]), is repre-

sented in some fixed metric space (Z, dZ) (typically, a low-dimensional Euclidean space),

in such a way that the metric dZ is as close as possible to the metric dX by means of

a minimum-distortion embedding ϕ : X → Z. The low-dimensional representation of

(X, dX) was dubbed in [24] a canonical form.

The canonical form can be computed by solving the multidimensional scaling prob-

lem [21],

min
ϕ:X→Z

max
x,x′∈X

‖dX(x, x′)− dZ(ϕ(x), ϕ(x′))‖,

where ϕ(X) gives the canonical form. In general, the canonical form is not unique,

and is defined up to an isometry in Z. Also, in most cases the representation is not

exact, since in general there is no isometry between (X, dX) and the pre-defined space

(Z, dZ).
Given two shapes (X, dX) and (Y, dY ), their canonical forms ϕ(X) and ψ(Y ) are

computed. ϕ(X) and ψ(Y ) can be compared as subsets of the metric space (Z, dZ)
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using the Hausdorff distance,

dZH(ϕ(X), ψ(Y )) = max

{
max

y∈ψ(Y )
min

x∈ϕ(X)
dZ(x, y), max

x∈ϕ(X)
min

y∈ψ(Y )
dZ(x, y).

}

Since the canonical forms are defined up to an isometry in (Z, dZ), in order to undo

the isometry ambiguity, rigid shape comparison algorithms such as ICP [4,17], can be

employed. In essence, ICP algorithms minimize the Hausdorff distance between the

canonical forms on all the isometries in (Z, dZ),

dICP(ϕ(X), ψ(Y )) = min
i∈Iso(Z)

dZH(ϕ(X), i ◦ ψ(Y )),

2.4 Spectral canonical forms

The method of Elad and Kimmel is intimately related to spectral embeddings such as

those proposed by Belkin and Niyogi [1], Rustamov [61], and Lafon et al [19,37]. The

main idea of these approaches is to create an Euclidean representation of the shape by

taking a few eigenvectors of a Laplacian (Laplace-Beltrami operator) defined on the

shape. The metric induced by the Laplace-Beltrami operator is the diffusion metric

described in details in Section 3.2.

There are two major differences between Elad-Kimmel canonical forms obtained

using MDS and canonical forms obtained by spectral embedding. First, unlike the Elad-

Kimmel canonical forms always defined up to an isometry in the embedding space,

the spectral canonical form are unique if the Laplace-Beltrami operator has unique

eigenvalues (no multiplicity). In case of eigenvalues with multiplicity greater than one,

the degrees of freedom in the spectral canonical form can come from permutations of

the Laplace-Beltrami eigenfunctions (or more generally, also reflections in subspaces

spanned by the multiple eigenfunctions) [42,54].

Secondly, Lafon et al and Rustamov showed that if all the eigenvectors are used

(implying an infinite-dimensional Euclidean representation), the embedding is isomet-

ric, that is, the resulting canonical form is a theoretically exact representation of the

diffusion geometry of the shape. In practice, however, a finite-dimensional approxima-

tion is used by taking the first eigenfunctions of the Laplace-Beltrami operator [1,61].

The implications of such an approximations are discussed in Section 4.

Finally, note that the canonical forms consider a pre-defined space to map onto,

the Euclidean space, and in the case of the spectral canonical form, the map itself

is pre-selected as well. The distance presented next optimizes over these selections as

well.

2.5 Gromov-Hausdorff distance

An elegant framework to represent similarity of metric spaces as a distance was pro-

posed by Gromov [16,28] and introduced into the non-rigid shape recognition area in

[48].

The source of inaccuracy of canonical forms was the fixed metric space (Z, dZ)
(and fixed embedding map). It is generally impossible to select a common metric space

in which the geometry of any shape can be accurately represented. However, (Z, dZ)
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and the map can be chosen in an optimal way for given two surfaces, resulting in the

following shape distance:

dGH(X, Y ) := inf
ϕ:X→Z
ψ:Y→Z
Z

dZH(ϕ(X), ψ(Y )), (1)

where ϕ and ψ are isometric embeddings, and dZH is the Hausdorff distance in (Z, dZ).
dGH is called the Gromov-Hausdorff distance.

For compact surfaces and our shape recognition framework, the Gromov-Hausdorff

distance can also be expressed in terms of the distortion obtained by embedding one

surface into another,

dGH(X, Y ) :=
1

2
inf
C

dis (C), (2)

where the infimum is taken over all correspondence C, and dis (C) is the distortion

defined above. The two expressions (1) and (2) are equivalent [16].

The Gromov-Hausdorff distance is a metric on the quotient space of metric spaces

under the isometry relation, and thus, in the context of the metric space model for shape

recognition, is a good candidate for a shape distance [48]. Being a metric particularly

implies that dGH(X, Y ) = 0 if and only if X and Y are isometric. More generally,

if dGH(X, Y ) ≤ ε, then X and Y are 2ε-isometric and conversely, if X and Y are ε-

isometric, then dGH(X, Y ) ≤ 2ε [16]. The latter property relates the Gromov-Hausdorff

distance to the notion of ε-isometry and makes it a good criterion of similarity between

shapes.

2.6 Choice of a metric

The metric approach we have described and the Gromov-Hausdorff distance do not

specify any particular choice of the metric dX . In general, dX is independent of X and

can be defined quite arbitrarily. There are, however, two natural choices of dX . The

first choice is the geodesic metric, measuring the length of the shortest intrinsic path

between a pair of points, constructing the intrinsic geometry of X. The second choice

is the extrinsic Euclidean metric, measuring the length of a line in R3 connecting two

points on X that relates to the extrinsic geometry in which X is embedded, i.e., R3

(see also [44]).

Extrinsic geometry is invariant to rigid transformations of the shape (rotation,

translation, and reflection), which preserve Euclidean distances. However, nonrigid de-

formations may change the extrinsic geometry (see example in Fig. 1). As a result, the

Euclidean metric is not suitable for the comparison of shapes with significant bending

or other type of non-rigid deformations. The intrinsic geometry on the other hand is

invariant to inelastic shape deformations which do not stretch or tear the shape. As

a particular case, it is also invariant to rigid transformations. Therefore, the geodesic

metric is a good choice for comparing non-rigid shapes, as has been confirmed by

numerous results as those mentioned in the introduction.

Another important type of transformations a shape can undergo are those changing

the shape topology. Omitting formal definitions, the topology of X can be thought of as

a collection of neighborhoods of every point on X. This defines the connectivity of the

shape - which points can be reached by a small step from a neighbor point. Topology
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Fig. 1 Illustration of the difference between intrinsic and extrinsic similarity for comparison
of non-rigid shapes with different topology. Bending the fingers makes the left and the middle
shapes (open palm and bent hand, without fingers yet touching, respectively) extrinsically
dissimilar while being intrinsically similar. Additionally gluing/touching the fingers (bottom
right) makes the shapes intrinsically dissimilar, as the connectivity change modifies the intrinsic
geometry.

can change as a result of non-rigid deformations, such as a person bending, fingers

touching, or a paper folding. Topological dissimilarities between shapes can also be the

result of noise, typically arising in acquisition of shapes by a 3D scanner. Connectivity

changes do not change the geometry (location of the points) of the shape, therefore,

the Euclidean metric is not sensitive (or at least robust) to such transformations. Yet,

geodesic distances can drastically change as a result of minor connectivity changes,

since such changes alter the shortest paths between two points on the shape.

It is therefore important to use a metric which is both intrinsic (and thus invariant

to non-rigid deformations) and also invariant (or at least robust) to topological changes.

In this paper, we propose to use in the Gromov-Hausdorff framework a different metric

that while being intrinsic and invariant to bends, is also robust to topological changes,

thereby simultaneously enjoying important properties of both extrinsic and intrinsic

geometry. This distance is explained next.

3 Diffusion geometry

In [19,37] (see also [1] for a related early effort), Lafon et al. introduced diffusion

maps and diffusion distances as a method for data parametrization, embedding, and

dimensionality reduction. Informally, the diffusion distance between two points on a

shape is related to heat diffusion on a shape (hence the name), or equivalently, the

probability of arriving from one point to another by a random walk in fixed time. Since

the diffusion distance operates on paths defined on the shape, it is an intrinsic property,
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and as a result, is bending-invariant. Moreover, since the diffusion distances have an

effect of averaging over all possible paths connecting two points, while the geodesic

distance is the length of just the minimal one, the former can be more robust than the

geodesic distance in cases where topological changes are present [65,53].

As an illustration, imagine the hand shape and two points on the tips of the in-

dex finger and the thumb (see Figure 1). If the two fingertips are not touching, then

both geodesic and diffusion distances between the two points are large, as all paths

connecting the two points travel throughout the whole hand. Yet, if the hand is bent

in such a way that the fingertips touch each other, the minimal geodesic will re-route

itself through the shortcut across the fingertips instead of going through the hand,

leading to a significant change in the geodesic distance. For the diffusion distance,

this new path added as a result of the topology change is averaged with the other

paths, which reduces the effect of such a change. The lesser sensitivity to topological

changes attributed to the averaging property of the diffusion distance, may come at

the expense of a potential reduction in discriminative power, as it usually happens in a

tradeoff between invariance and discriminativity. However, many applications require

robustness to topological changes, where this approach is advantageous. Besides the

above properties, the diffusion distance is a metric, and thus, a valid candidate for the

definition of a metric space used in the Gromov-Hausdorff shape model.

3.1 Heat kernels

Formally, in order to define the diffusion distance, we resort to the heat equation,

(
∆X − ∂

∂t

)
u = 0, (3)

governing the distribution of heat u on the surface. Here, ∆X denotes the Laplace-

Beltrami operator, a generalization of the Laplacian to non-Euclidean domains. The

fundamental solution ht(x, z) of the heat equation (3), also called heat kernel, is the

solution of the heat equation with a point heat source at x ∈ X. The heat kernel

ht(x, z) provides the heat value at time t at point z ∈ X. Interpreting the heat kernel

probabilistically, ht(x, z) can be associated with the probability of getting to point z

by means of a random walk on X of length t starting at point z.2

For compact manifolds, the Laplace-Beltrami operator has discrete eigendecompo-

sition of the form

∆Xφi = λiφi, (4)

where λ0 ≥ λ1 ≥ ... are eigenvalues and φ0, φ1, ... are eigenfunctions. Since ∆X is a

positive semi-definite operator, λ0 = 0, λ1, λ2 · · · ≥ 0 and φ0 = const.

The heat kernel can be presented as [34]

ht(x, z) =

∞∑

i=0

e−λitφi(x)φi(z) (5)

2 More precisely, given a Brownian motion Wt on X and a Borel set C ⊂ X, the integral∫
C ht(x, z)dz is the probability P (Wt ∈ C) of the Brownian motion ending up in C after time

t [19,37,53,65].
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in the Laplace-Beltrami eigenbasis. In practical computation, the heat kernel is ap-

proximated by taking the sum over the first k + 1 largest eigenvalues,

h̃t(x, z) =

k∑

i=0

e−λitφi(x)φi(z). (6)

Since the eigenvalues typically decay fast, a small k can be sufficient (see Section 5.1

for more details).

3.2 Diffusion distance

The diffusion distance is defined as a cross-talk between two heat kernels,

d2
X,t(x, y) = ‖ht(x, ·)− ht(y, ·)‖2L2(X)

=

∫

X
|ht(x, z)− ht(y, z)|2dz. (7)

It is inversely related to the connectivity of points x and y by paths of length t (i.e.,

if there are many such paths connecting x and y, the distance dX,t(x, y) is small) [19,

37,53,65]. As will be shown later, dX,t is a metric and therefore can be used to define

a valid metric space in our framework.

Using the eigenfunctions of ∆X , the diffusion distance can also be expressed as [15]

d2
X,t(x, y) =

∞∑

i=1

e−2λit(φi(x)− φi(y))2, (8)

which allows its discretization as will be shown in Section 5.1.

3.3 Commute time

A notion related to the diffusion distance is the commute time, given by

δ2X(x, y) = 2

∫ ∞

0
d2

X,t(x, y)dt (9)

=

∞∑

i=1

1

λi
(φi(x)− φi(y))2, (10)

While diffusion distance reflects the connectivity of two points by paths of length t,

the commute time is the sum of the diffusion length of all possible paths connecting a

pair of points [55,15]. Commute time is also a metric.
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3.4 Eigenmaps

Maps of the form Φ(x) = (α(λ0)φ0(x), α(λ1)φ1(x), . . . ) where α is some function of

the eigenvalues, are referred to as Laplacian eigenmaps [1]. Informally, Φ(x) can be

considered as an infinite-dimensional canonical form of X; for this reason, we also use

the term spectral canonical form.

In particular, for α(λi) = e−λit, the map ΦX,t(x) = (e−λ0tφ0(x), e−λ1tφ1(x), . . . )

given by the heat kernel, is called a diffusion map [19]. For α(λi) = λ
−1/2
i , i ≥ 1, the

map ΦX(x) = (λ
−1/2
1 φ0(x), λ

−1/2
2 φ1(x), . . . ) was referred to as global point signature

(GPS) embedding by Rustamov [61].

Unlike canonical forms computed by MDS, an eigenmap is uniquely defined (i.e.,

there are no degrees of freedom related to the isometry in the embedding space) if

the Laplace-Beltrami operator has no eigenvalues of multiplicity greater than one.

Otherwise, the ambiguity in the definition of the eigenmap is up to switching between

the eigenfunction corresponding to the eigenvalues with multiplicity and changes in

their signs. For example, if λi = λi+1 = ... = λi+l−1 is an eigenvalue of multiplicity

l, then the components i, ..., i + l − 1 of the GPS embedding ΦX(x) are of the form

ciλ
−1/2
i φπi(x), ..., ci+l−1λ

−1/2
i φπ(i+l−1)(x), where π is an arbitrary permutation on

the indices and ci, ..., ci+l−1 ∈ {−1, 1}. Such ambiguities arise in cases of symmetric

shapes [54]. In general, two eigenmaps differ by a permutation of coordinates, i.e.,

ΠΦ(x), where Π is a permutation of indices {0, 1, ...}.
In practice, a finite-dimensional eigenmap is constructed by taking the first k + 1

components of the eigenmap, Φ̃(x) = (α(λ0)φ0(x), . . . , α(λk)φk(x)). In simple cases

(small k and no ambiguity due to eigenvalue multiplicity), the comparison of such

eigenmaps can be performed using standard rigid similarity methods such as ICP.

In case of k >> 1 and shape symmetries resulting in multiple eigenvalues, such a

comparison is a challenging problem [54].

As a possible remedy, Rustamov [61] proposed applying Osada’s method [52] to

eigenmaps, representing shapes as histograms of pairwise Euclidean distances mea-

sured on the GPS embedding Φ̃X(x). This way, explicit matching of the canonical forms

with all the related problems is avoided. In particular, the Euclidean distances are in-

sensitive to problems related to eigenfunction permutations, since ‖Φ(x) − Φ(y)‖2 =

‖ΠΦ(x)−ΠΦ(y)‖2 for any permutation Π. Moreover, the comparison of distance dis-

tributions is computationally efficient. The price paid in this approach is the reduction

of discriminativity, as there can be many shapes with equal distance distributions but

different geometry (see [6]).

4 Relations between methods

4.1 Distance distributions

The observation

‖ΦX,t(x)− ΦX,t(y)‖2 = dX,t(x, y), (11)

and

‖ΦX(x)− ΦX(y)‖2 = δX(x, y) (12)

provide an alternative expression of the diffusion distance and commute time (see

details and proof in [15]). In practical computations, we use the approximation (6),
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yielding an approximate diffusion distance d̃X,t(x, y) = ‖Φ̃X,t(x)− Φ̃X,t(y)‖2 and ap-

proximate commute time δ̃X(x, y) = ‖Φ̃X(x)− Φ̃X(y)‖2.
Equations (11) and (12) have a few implications. First, by virtue of (11) and (12),

both the diffusion distance and the commute time are metrics. Secondly, the distribu-

tion of diffusion distances d̃X,t approximated with a finite number of eigenvalues and

eigenfunctions on the shape is equivalent to the distribution of the Euclidean distances

on the diffusion map Φ̃X,t(X). Similarly, the distribution of approximate commute

times δ̃X is equivalent to the distribution of the Euclidean distances on the GPS em-

bedding Φ̃X,t(X). In other words, the Euclidean distances measured on the eigenmaps

coincide with distances arising from diffusion geometry measured on the shape itself.

Using the relation between diffusion and commute time distance, we conclude that

the methods of Rustamov [61] and Mahmoudi and Sapiro [41] are equivalent (up to

integration over all t) and arrive to a similar shape distance in different ways. Compu-

tationally, diffusion distances are usually more advantageous than commute time, in

the sense that they require less eigenfunctions and eigenvalues [15].

4.2 Gromov-Hausdorff distance and ICP

Equations (11) and (12) also imply that the metric spaces (X, d̃X,t) and (Φ̃X,t(X), ‖ ·
‖Rk+1) are isometric. Given two shapes X and Y , the Gromov-Hausdorff distance

between X and Y with the approximated diffusion distances dX,t and dY,t is equal

to the Gromov-Hausdorff distance in the space of spectral canonical forms with the

Euclidean metric,

dGH((X, d̃X,t), (Y, d̃Y,t)) = dGH((Φ̃X,t(X), ‖ · ‖Rk+1), (Φ̃Y,t(Y ), ‖ · ‖Rk+1)).

In [44] Memoli showed that the Gromov-Hausdorff distance in the Euclidean space is

equivalent to the ICP distance,

c · dICP ≤ dGH ≤ dICP

in the sense of equivalence of metrics (c > 0 is a constant). This result implies that,

from the computational point of view, the distance resulting from the comparison of

spectral canonical forms using ICP is metrically equivalent to the method proposed in

this paper once the diffusion distance has been approximated with a finite number of

eigenfunctions as detailed above. Note, however, that metric equivalence should not be

confused with equality: for example, L1 and L2 metric are equivalent but not equal.

Particularly important for shape comparison, unlike the ICP distance, the Gromov-

Hausdorff distance is explicitly related to the notion of ε-isometry, our criterion of shape

similarity. Moreover, ICP-based comparison of shapes is impractical for large dimen-

sions (k >> 1) and is further complicated by the problem of eigenfunction permutation

in case of symmetries. Our method based on direct approximation of the Gromov-

Hausdorff distance does not suffer from these problems. This means that while we

can approximate the diffusion distance with k >> 1, and then compute the Gromov-

Hausdorff distance dGH((X, d̃X,t), (Y, d̃Y,t)), we can not in practice compute dICP to

compute dGH((Φ̃X,t(X), ‖ · ‖Rk+1), (Φ̃X,t(Y ), ‖ · ‖Rk+1)) when k >> 1.

Finally, shape comparison based on the Gromov-Hausdorff framework is known

to outperform distance distribution-based methods from the point of view of accu-

racy in the case of geodesic metric dX [8,9,41] (being, however, computationally more
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expensive). We expect the same behavior in the case of diffusion geometry, i.e., the

Gromov-Hausdorff framework to be superior to methods based on distributions of dif-

fusion distances (Rustamov and Mahmoudi & Sapiro).

4.3 Choice of the scale

The advantage of diffusion geometry is the presence of time parameter t, allowing to

compare shapes at different scales. At the same time, it introduces the problem of scale

selection. Similarly to Mahmoudi and Sapiro [41], we used a fixed scale selected empiri-

cally to maximize the algorithm performance in our experiments. This straightforward

approach does not make use of the multi-scale nature of diffusion geometry.

In particular, some of the shape transformations (e.g. topological changes and de-

formations) are less prominent at certain scales [15]. If such transformations are present

at the same time, the choice of a single scale is impossible. In [15], it was shown that

using all the scales for shape comparison results in better performance than a single

scale.

The problem of scale selection was also addressed by Mémoli [45] as a follow-up

of the present paper. Mémoli proposed the spectral Gromov-Wasserstein distance, in

which the scale is an optimization problem and sup is taken over all t > 0. This way,

the most discriminative scale that tells two shapes apart is chosen [45].

5 Numerical computation

In order to make the problems of intrinsic shape similarity and correspondence com-

putationally tractable, our first step consists of the discretization of the shapes X and

Y and their corresponding metrics dX and dY . We first assume the shapes to be rep-

resented as discrete approximations X̂ and Ŷ of the underlying continuous smooth

surfaces X and Y , respectively. In our implementation, triangular meshes were used

for this purpose, and points on X̂ and Ŷ were represented in barycentric coordinates.

5.1 Discrete geodesic and diffusion distances

The first step is the computation of the discretized metrics on X̂ and Ŷ , denoted here

as d̂
X̂

and d̂
Ŷ

, respectively. The discretized metrics d̂
X̂

and d̂
Ŷ

can be represented as

symmetric matrices of distances.

The geodesic metric is computed using the fast marching algorithm on triangulated

surfaces [36].3 The main idea of fast marching is to simulate wavefront propagation on a

triangular mesh, associating the time of arrival of the front with the distance traveled,

assuming constant propagation speed. This allows to measure the distance from a

point to all the rest of the points on the shape (computation that can be performed in

linear time [71]). Repeating the process for all the points used as a source, the pairwise

geodesic distances are obtained.

3 Basic versions of the fast marching algorithm is available online at http://tosca.cs.
technion.ac.il/book/resources.html
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The diffusion metric is computed using formula (8). For this purpose, we first

compute the discrete approximation of the Laplace-Beltrami on the mesh, which has

the following generic form

(∆
X̂

f)i =
1

ai

∑

j

wij(fi − fj), (13)

where f : X̂ → R is a scalar function defined on the mesh X̂, represented as a vector of

function values at the vertices of the mesh, wij are weights, and ai are normalization

coefficients. In matrix notation, Equation (13) can be written as

∆
X̂

f = A−1Lf, (14)

where A = diag(ai) and L = diag
(∑

l 6=i wil

)
− (wij).

Different discretizations [5,26,72] of the Laplace-Beltrami lead to different choice

of A and W . In this paper, we used the popular cotangent weight scheme [50], in which

wij = cot αij + cot βij (αij and βij are the two angles opposite to the edge between

vertices i and j in the two triangles sharing the edge) for j in the 1-ring neighborhood of

vertex i and zero otherwise, and ai is proportional to the sum of the areas of the trian-

gles sharing the vertex xi. It can be shown [68] that this discretization preserves many

important properties of the continuous Laplace-Beltrami operator, such as positive

semi-definiteness, symmetry, and locality, and in addition it is numerically consistent,

i.e., converges to the continuous Laplace-Beltrami operator.4 The later property is es-

pecially important since it gives consistent approximation of the eigenfunctions across

different shape triangulations.

By solving the generalized eigendecomposition problem [38]

Aφ = λLφ, (15)

k smallest eigenvalues λ0, ..., λk and corresponding eigenfunctions φ0, ..., φk : X̂ → R of

the discretized Laplace-Beltrami operator are computed. The discrete diffusion distance

between points xi, xj is approximated as

dX,txi, xj ≈
k∑

l=1

e−2λlt(φl;i − φl;j)
2. (16)

The boundary conditions used are Dirichlet. In some cases, e.g. when dealing with

shapes with boundaries or missing parts, Neumann boundary conditions may be ad-

vantageous. In such cases, finite elements methods (FEM) used by Reuter et al. [57]

could be a more accurate discretization. We should also note that though we used tri-

angular meshes, both the geodesic and diffusion distances can be efficiently computed

for other surface representations as well, including point cloud data [2]. Therefore, the

framework introduced here is not limited to meshes.

4 Convergence here is understood in the following sense: the solution of a discrete PDE with
the discrete Laplace-Beltrami operator converges to the solution of the continuous counterpart
under some conditions on the mesh refinement.
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5.2 Discrete Gromov-Hausdorff distance

Following the description in Section 2.5, our next goal is to construct a discrete approx-

imation of a correspondence between the discrete shapes and evaluate its distortion. In

the GMDS framework, correspondence is found by embedding points of X̂ (typically,

subset of the vertices of X̂) into Ŷ and vice versa (note that images of the points under

these embeddings do not necessarily fall on the vertices of Ŷ or X̂, respectively). The

distortion is computed by measuring the difference between the metric between the

points in the original shape and the metric between their corresponding images under

the embedding in the other shape.

Let us fix two sufficiently dense finite samplings P = {p1, ..., pm} and Q = {q1, ..., qn}
of X̂ and Ŷ , respectively.5 A discrete correspondence between the shapes is defined

as C = (P × Q′) ∪ (Q × P ′), where P ′ = {p′1, ..., p′n} and Q′ = {q′1, ..., q′m} are some

(different) sets of samples on X̂ and Ŷ corresponding to Q and P , respectively. One

can think of C as the union of the graphs of two discrete functions ϕ : P → Ŷ and

ψ : Q → X̂, parametrizing the class of all discrete correspondences. P ′ and Q′ are the

optimization variables in the GMDS problem.

Given two sets P and P ′ on X̂, we can construct an m×n distance matrix D(P, P ′),
whose elements are the distances d̂

X̂
(pi, p

′
j) (either geodesic or diffusion, depending on

the context). In these terms, the distortion of the correspondence C can be written as6

dis (C) =

∥∥∥∥
(

D(P, P ) D(P, P ′)
D(P, P ′)T D(P ′, P ′)

)
−

(
D(Q′, Q′) D(Q′, Q)

D(Q′, Q)T D(Q, Q)

)∥∥∥∥ ,

where ‖·‖ is some norm on the space of (m+n)×(m+n) matrices. The selection of the

infinity norm ‖D‖∞ = maxi,j |dij | is consistent with the Gromov-Hausdorff distance,

however, in practice more robust norms like the Frobenius norm ‖D‖2F = trace(DDT)

are often preferable (see [8,43,48] for discussions on the regularization of the infinity

norm in the Gromov-Hausdorff framework by other lp norms).

The discretization of dis (C) leads directly to a discretized approximation of the

Gromov-Hausdorff distance between shapes, which can be expressed as

d̂GH(X̂, Ŷ ) :=
1

2
min

P ′,Q′
dis (C).

Note that only P ′ and Q′ participate as continuous minimization variables, while P

and Q are constants (given samples on the respective shapes). The above minimization

problem is solved using GMDS – a numerical procedure resembling in its spirit standard

multidimensional scaling.

We use barycentric coordinates to represent points on X̂ and Ŷ . In these coordi-

nates, a point pi lying in a triangle ti on X̂ is represented as a convex combination

of the triangle vertices (corresponding to the indices t1i , t2i , and t3i ) with the weights

ui = (u1
i , u2

i , u3
i )T. We will denote by T = (t1, . . . , tm)T the vector of triangle indices

5 We use the farthest point sampling [32] strategy to produce r-separated/coverings of the
shape, where the parameter r controls the radius of the sampling (see [48] for details on the
relationships between the Gromov-Hausdorff distance between these discrete coverings and the
underlying continuous spaces). Such farthest sampling strategy can also be easily applied both
to meshes and point cloud data.

6 For a detailed explanation why this expression is equivalent to the Gromov-Hausdorff
distance, see for example [16,44].
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and by U = (u1, . . . , um) the 3 ×m matrix of coordinates corresponding to the sam-

pling P . Similarly, the samplings P ′, Q, and Q′ are represented as (T ′, U ′), (S, V ) and

(S′, V ′). For the sake of notation simplicity, we are going to use these interchangeably.

It was shown in [13] that a first-order approximation of a geodesic distance between

p′i and p′j on X̂ can be expressed as the quadratic form

Dij(P
′, P ′) ≈ u′Ti




Dt1i ,t1j
(P, P ) Dt1i ,t2j

(P, P ) Dt1i ,t3j
(P, P )

Dt2i ,t1j
(P, P ) Dt2i ,t2j

(P, P ) Dt2i ,t3j
(P, P )

Dt3i ,t1j
(P, P ) Dt3i ,t2j

(P, P ) Dt3i ,t3j
(P, P )


 u′j .

Other distance terms are expressed similarly. Using tensor notation, we can write

dis (C) ≈
∥∥(U, U ′)D

X̂
(T, T ′)(U, U ′)− (V, V ′)D

Ŷ
(S, S′)(V, V ′)

∥∥2

F
,

where D
X̂

(T, T ′) is a rank four tensor whose ij-th elements are defined as the 3 × 3

distance matrices above, and D
Ŷ

(S, S′) is defined in a similar way.

The resulting objective function dis (C) is a fourth-order polynomial with respect to

the continuous coordinates U ′, V ′, also depending on the discrete index variables T ′ and

S′. However, when all indices and all coordinate vectors except one, say, u′i, are fixed,

the function becomes convex and quadratic with respect to u′i. A closed-form minimizer

of dis (u′i) is found under the constraints u′i ≥ 0 and u′1i + u′2i + u′3i = 1, guaranteeing

that the point p′i remains within the triangle t′i. The GMDS minimization algorithm

proceeds iteratively by selecting u′i or v′i corresponding to the largest gradient of the

objective function, updating it according to the closed-form minimizer, and updating

the corresponding triangle index to a neighboring one in case the solution is found on

the boundary of the triangle. The reader is referred to [13] for further implementation

details.

6 Experimental results

In this section, we present experimental results showing the advantages of using the

diffusion distance instead of the geodesic one for shape comparison with topological

changes under the metric model. We perform experiments both with shape similarity

and correspondence (matching).

6.1 Data

The experiments were performed on meshes taken from the TOSCA dataset [14].7

Seven classes of objects were used (see figures 2 and 3): centaur, horse, cat, dog, two

male shapes (Michael and David), and one female shape (Victoria). In each class, the

shape underwent different types of transformations (Figure 4). The transformations

included null (no transformation), isometry (near-isometric bending), topology (con-

nectivity change obtained by welding some of the shape vertices), topology+isometry,

triangulation (different triangulations of the same shape), and partiality (missing in-

formation, obtained by making holes in the shape). These transformations simulate

7 Dataset is available online at http://tosca.cs.technion.ac.il/book/resources_data.
html
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Fig. 2 The base shapes used in the experiments: centaur, horse, dog, cat, woman, and two
males.

typical artifacts and deformations encountered in real life in the shapes reconstructed

from 3D scanners data. Multiple instances of each transformation were created for each

shape class. Totally, the dataset consisted of 245 different shape instances (centaur: 22,

horse: 31, Michael: 55, David: 29, Victoria: 39, dog: 32, cat: 37). Shapes in the null

transformations were sampled at approximately 1500 points; shapes in triangulation

transformation had between 250 to 2000 points.

6.2 Similarity

In the first set of experiments, we compared five different approaches for shape sim-

ilarity: the proposed Gromov-Hausdorff framework with diffusion distances, Gromov-

Hausdorff framework with geodesic distances [9,48], canonical forms with geodesic

distances [24], canonical forms with diffusion distances (diffusion maps [20]), and, for

reference, Rustamov’s GPS embedding [61]. These approaches were used to compute

the similarity of shapes, with the goal to distinguish between different classes of shapes

while being insensitive to intra-class transformations.

An L2 version of the Gromov-Hausdorff distance was computed using the GMDS

algorithm with a matrix of geodesic or diffusion distances measured on the shape, as

described in Section 5. A multiresolution scheme was used for GMDS with m = n = 64

points at the finest scale. Initialization was at 8 points at the lowest scale, using the
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Fig. 3 A few representative shapes used in the experiments.

branch-and-bound algorithm described in [56]. The typical convergence time for GMDS

was about 10− 30 sec.

Discrete geodesic distances were computed using fast marching [36], as described in

Section 5.1. As detailed above, diffusion distances with time parameter t = 2500 were

computed using formula (8) by performing eigendecomposition of the Laplace-Beltrami

operator on the mesh. k = 200 eigenvalues were used. These values were experimentally

found to produce good results.

Canonical forms with geodesic distances were computed by applying least squares

MDS to the matrix of geodesic distances measured on the shape, embedding them
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Triangulation Partiality Topology 

Null 

Fig. 4 Different types of shape transformations used in the experiments: null, isometry,
topology, and partiality.

into R3 [24]. From our experiments, this dimensionality was sufficient and increasing

the dimensionality of the embedding space did not lead to significant improvement.

For canonical forms with diffusion distances, the embedding was computed by taking

the first three eigenvectors of the Laplace-Beltrami operator of the shape to obtain a

representation in R3 [1,20].8 In both cases, the canonical forms in R3 were compared

using ICP (while in the infinite dimensional case this is not needed for the diffusion

embedding, since the embedding is unique and invariant, it helps in the finite and

discrete scenario which provides only an approximation of the embedding).

GPS embedding was computed using k = 200 eigenfunctions of the Laplace-

Beltrami operator. Commute time distributions were approximated using histograms

with 500 bins.

The similarity quality was first quantitatively measured by plotting the receiver op-

erating characteristic (ROC) curves for each approach, representing a tradeoff between

the false acceptance rate (FAR) and the false rejection rate (FRR). Each ROC curve

was computed as follows: the confusion matrix (matrix of distances between different

shapes) was thresholded by a value ranging from zero to the maximum distance value.

Shapes with distances falling below the threshold were regarded similar (i.e., instances

of the same object); those with distances above the threshold were regarded dissimi-

lar (different objects). The FAR was computed as the percentage of dissimilar shapes

wrongfully identified as similar. The FRR was computed as the percentage of similar

8 We used three eigenvectors since ICP is impractical in higher dimensions.
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Table 1 EER (in %) on the two datasets obtained by the five different approaches. Experi-
ment I included shapes with Null, Isometry, and Triangulation transformations. Experiment II
included shapes with Null, Isometry, Triangulation, Topology, Isometry+Topology, and Par-
tiality transformations. Best results are in bold.

Gromov-Hausdorff Canonical forms GPS
Geodesic Diffusion Geodesic Diffusion

Experiment I 4.95 2.22 15.01 17.82 25.74
Experiment II 15.49 2.02 16.32 16.44 16.97

shapes wrongfully identified as dissimilar. For small values of the threshold, the FAR is

small (two shapes must have a very small distance in order to be considered similar),

while the FRR is large. For large values of the threshold, the FAR is large and the FRR

is small. Ideally, both should be as small as possible, meaning that the recognition is

accurate. A single number capturing the recognition error was computed as the point

at which the values of FAR and FRR coincide (referred to as equal error rate or EER).

In the first experiment, we used a subset of the whole dataset, excluding topology

and partiality (missing data) transformations. The partial dataset consisted of 101 dif-

ferent shape instances (centaur: 10, horse: 12, Michael: 24, David: 11, Victoria:16, dog:

13, cat: 15). All the instances within each shape class were approximately isometries.

Figures 5 and 6 show the confusion matrices (null transformation to all) obtained us-

ing the Gromov-Hausdorff and canonical shape frameworks with geodesic and diffusion

distances. Figure 7 shows the ROC curve (false acceptance rate FAR vs false rejection

rate FRR), representing the accuracy of shape recognition for all the five approaches.

The EER is shown in Table 1 (first row).9

In the second experiment, we used the entire dataset, including topology and par-

tiality transformations. Figures 8 and 9 show the confusion matrices obtained using

different approaches. Figure 10 shows the ROC curve (false acceptance rate FAR vs

false rejection rate FRR), representing the accuracy of shape recognition for all the

approaches. The corresponding EER is shown in Table 1 (second row).

We can make a few observations at this point. First, the Gromov-Hausdorff frame-

work is more accurate than the canonical forms approach and than methods based on

distance distributions. This corresponds to results previously reported in the literature

[48,9], and reflects the fact that canonical forms can be regarded as an approxima-

tion to a distance between metric spaces. The inferior performance of GPS embedding

is attributed to the discriminative power loss when passing from shape geometry to

distributions.

Second, observe the behavior of the Gromov-Hausdorff framework with diffusion

and geodesic distances in the first and second experiments. Both approaches (GMDS

with diffusion and geodesic distances) behave well in the first experiment where the

dataset contains only nearly-isometric transformations (EER of 2.22% and 4.95%, re-

spectively). However, the picture changes notably in the second experiment when non-

isometric transformations (topology and partiality) are added: the EER in the geodesic

case increases more than three times to 17.55%, while in the diffusion case it remains

approximately the same (2.28%). This is a clear evidence that the proposed approach

is less sensitive to topological noise and missing parts.

9 A slightly better performance of the Gromov-Hausdorff framework with diffusion distances
over geodesic ones in case of Isometry transformations may be explained by the fact that the
transformations are not truly isometric and involve some elastic deformations.
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GMDS (diffusion) 

GMDS (geodesic) 

Fig. 5 Confusion matrices for shape similarity using the Gromov-Hausdorff framework with
geodesic (top) and diffusion (bottom) distances on the data of the first experiment. Shown are
distances from null transformations of each shape class (rows) to all instances in the dataset
(columns). Brighter color represents larger distances (smaller similarity).

Third, the proposed approach is insensitive to different sampling and triangulations

of the shapes. Finally, one can observe from the confusion matrices that horse-like

shapes (centaur and horse) and human-like shapes (two males and female) are similar,

though still distinguishable from each other.

As an additional shape recognition quality criterion, for each shape class we looked

at the inter/intra cluster ratio, defined as the ratio between the average inter-cluster

distance (average of all the distances from the null shape of the class to all the instances

of shapes from other classes) and the average intra-cluster distance (average of all the

distances between the transformations of a shape of the same class). Small intra-cluster

distance means different deformations of the shape are considered similar; large inter-
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Canonical forms (diffusion) 

Canonical forms (geodesic) 

Fig. 6 Confusion matrices for shape similarity using the canonical forms framework with
geodesic (top) and diffusion (bottom) distances on the data of the first experiment. Shown are
distances from null transformations of each shape class (rows) to all instances in the dataset
(columns). Brighter color represents larger distances (smaller similarity).

cluster distance means different shape classes are considered dissimilar. Higher ratio of

the two implies better ability to discriminate between different shape classes and lower

sensitivity to transformations.

Table 2 shows the inter/intra cluster distance ratio for GMDS with geodesic and

diffusion distances on the dataset of the second experiment. GMDS with diffusion

distances performs significantly better in the case of topological transformations and

missing data (average ratio of 2.76 for geodesic versus 5.61 for diffusion).
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Fig. 7 ROC curves for the first experiment.

Table 2 Inter-cluster and intra-cluster average distance and the intra/inter-cluster average
distance ratio obtained by GMDS with geodesic and diffusion distances on the second (full)
dataset. Distances were normalized by maximum distance. Larger inter/intra cluster ratio
means better recognition.

Geodesic Diffusion
Intra Inter Inter/Intra Intra Inter Inter/Intra

Centaur 0.067 0.397 5.94 0.074 0.516 6.94
Horse 0.064 0.652 10.24 0.041 0.679 16.65

Michael 0.118 0.327 2.76 0.088 0.413 4.68
David 0.069 0.255 3.70 0.063 0.490 7.83

Victoria 0.138 0.288 2.08 0.059 0.402 6.82
Dog 0.065 0.362 5.61 0.068 0.676 9.96
Cat 0.070 0.302 4.31 0.060 0.513 8.55

6.3 Correspondence

In the second class of experiments, we compared the performance of the Gromov-

Hausdorff framework with diffusion and geodesic distances on the problem of shape

matching and correspondence. TOSCA shapes with known groundtruth correspon-

dence were used. The correspondence computed by both methods was compared to the

groundtruth.

To quantify the correspondence quality, let C = P × Q be the computed corre-

spondence and let C0 = P0 × Q0 be the groundtruth correspondence. Let us denote

P ′0 = {p ∈ P : (p, q) ∈ C0 and q ∈ Q} (the true corresponding points to Q in X) and

Q′0 = {q ∈ Q : (p, q) ∈ C0 and p ∈ P} (the true corresponding points to P in Y ). We

define the correspondence quality as

d(C, C0) =
1

2

(‖DX(P0, P ′0)‖∞ + ‖DY (Q0, Q′0)‖∞
)
,
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GMDS (diffusion) 

GMDS (geodesic) 

Fig. 8 Confusion matrices for shape similarity using the Gromov-Hausdorff framework with
geodesic (top) and diffusion (bottom) distances on the data of the second experiment. Shown
are distances from null transformations of each shape class (rows) to all instances in the dataset
(columns). Brighter color represents larger distances (smaller similarity).

where DX and DY are the corresponding geodesic distance matrices. In simple words,

this criterion finds the maximum geodesic distance between the set of computed cor-

responding points and the true corresponding points. Geodesic distances are used in

d(C, C0).

Tables 3 and 4 show the correspondence quality between different transformations

of the male and dog objects, obtained by GMDS with geodesic and diffusion distances,

respectively. When the transformation is an approximate isometry (first row in both

tables), both methods produce correspondence of approximately equal quality (24.03

and 20.88 for male, 30.11 and 30.51 for dog). The correspondence error is non-zero

because the transformation is not truly isometric. However, the picture is different in
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Canonical forms (diffusion) 

Canonical forms (geodesic) 

Fig. 9 Confusion matrices for shape similarity using the canonical forms framework with
geodesic (top) and diffusion (bottom) distances on the data of the second experiment. Shown
are distances from null transformations of each shape class (rows) to all instances in the dataset
(columns). Brighter color represents larger distances (smaller similarity).

the case of a topological transformation (obtained by locally changing the connectivity

only without deforming the shape). The correspondence error of GMDS with geodesic

distances is almost five times larger than that of GMDS with diffusion distances in the

male shape (29.79 versus 6.13); correspondence error of GMDS with geodesic distances

is over twice larger that of GMDS with diffusion distances in the dog shape (21.26

versus 7.96). This is yet another indication that the proposed approach is less sensitive

to topological changes.

Figures 11 and 12 provide a visualization of these phenomena. Figure 11 shows a

correspondence between different near-isometric deformations of the dog object. The

shapes are nearly isometric and both methods produce good correspondence. Figure 12
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Fig. 10 ROC curves for the second experiment.

Table 3 Correspondence quality for the male object.

Geodesic Diffusion
Isometry 24.03 20.88
Topology 29.79 6.13

Table 4 Correspondence quality for the dog object.

Geodesic Diffusion
Isometry 30.11 30.51
Topology 21.26 7.96

shows the correspondence between male shapes with different connectivity. The corre-

spondence produced by GMDS with geodesic distances is bad (note for example the

magnified part showing the corresponding points on the feet), while the one obtained

with diffusion distances is good.

7 Conclusions

In this paper, we addressed the problems of shape similarity and correspondence in

the presence of topological changes. We used the metric approach, modeling shapes

as metric spaces and posing the problem of shape similarity as the similarity between

metric spaces. We showed that the Gromov-Hausdorff distance, previously applied to

geodesic metrics for bending-invariant shape recognition, can be applied to shapes

endowed with diffusion geometry, leading to a topologically robust approach for non-

rigid shape comparison and matching.
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Groundtruth GMDS 
(geodesic) 

GMDS 
(diffusion) 

Fig. 11 Correspondence between two isometric instances of a dog shape. Left to right: ground
truth correspondence, correspondence using GMDS with geodesic distances, and correspon-
dence using GMDS with diffusion distances. Voronoi regions around the corresponding points
are shown in different colors.

In particular, we showed how replacing the geodesic distance between pair of sur-

face points by the diffusion distance, leads to recognition improvements for data with

topological variations such as holes and connectivity changes. This robustness to holes

is a first step toward the recognition of partial shapes, since the missing portion can

be considered as a “hole.”

In addition to the practical consequences brought by the proposed framework, as

with the works on canonical forms, these results suggest moving beyond the classical

use of geodesics for intrinsic non-rigid shape matching in the Gromov-Hausdorff metric

framework. Thereby, the use of other intrinsic distances, as well as other kernels in the

diffusion framework, deserves further study. The combination of such distances may

lead to further performance improvements as well. The combination of the Gromov-

Hausdorff and diffusion framework with topological features as those described in [63]

is of great practical interest as well. The close relationship of the diffusion distance
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Groundtruth GMDS 
(geodesic) 

GMDS 
(diffusion) 

Fig. 12 Correspondence between two instances of a male shape with different connectivity.
Left to right: ground truth correspondence, correspondence using GMDS with geodesic dis-
tances, and correspondence using GMDS with diffusion distances. The different topology is
obtained by welding the vertices at a point marked by the red circle. Voronoi regions around
the corresponding points are shown in different colors.

with graph methods raises the issue of considering results from the graph theory com-

munity [18], including graph matching algorithms [25], and their relationship with the

framework here detailed.

At a theoretical level, many existing questions are emphasized and new ones are

posed. The geometry of the shape space defined by the Gromov-Hausdorff metric with

diffusion distances is of great theoretical and practical significance. In addition, the

study of the classes of shape transformations under which the diffusion geometry is

invariant (“diffusion isometries”) and their relation to “geodesic isometries” should

give an important insight on the cases in which each of the methods is preferable.
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23. A. Elad and R. Kimmel, Geometric methods in bio-medical image processing, vol. 2191,

ch. Spherical flattening of the cortex surface, pp. 77–89, Springer, 2002.
24. , On bending invariant signatures for surfaces, IEEE Trans. Pattern Analysis and

Machine Intelligence (PAMI) 25 (2003), no. 10, 1285–1295.
25. D. Farin, P. H. N. de With, W. Effelsberg, and P. H. N. De, Recognition of user-defined

video object models using weighted graph homomorphism, SPIE IVCP, 2003.
26. M.S. Floater and K. Hormann, Surface parameterization: a tutorial and survey, Advances

in multiresolution for geometric modelling 1 (2005).
27. R. Gal, A. Shamir, and D. Cohen-Or, Pose-oblivious shape signature, IEEE Trans. Visu-

alization and Computer Graphics 13 (2007), no. 2, 261–271.



31

28. M. Gromov, Structures Métriques Pour les Variétés Riemanniennes, Textes
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faces, ACM Transactions on Graphics 23 (2004).

71. L. Yatziv, A. Bartesaghi, and G. Sapiro, O(N) implementation of the fast marching algo-
rithm, J. Computational Physics 212 (2006), no. 2, 393–399.

72. H. Zhang, Discrete combinatorial Laplacian operators for digital geometry processing,
SIAM Conference on Geometric Design, 2004, pp. 575–592.

73. G. Zigelman, R. Kimmel, and N. Kiryati, Texture mapping using surface flattening via
multi-dimensional scaling, IEEE Trans. Visualization and Computer Graphics (TVCG) 9
(2002), no. 2, 198–207.


