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Figure 1: (a) We compute shape modification operations by examining the partial symmetry structure of a 3D model. (b) Symmetric regions
are marked in red. (c) A set of symmetric curves that cuts the model into two pieces yields a docking site that corresponds to (d) a replacement
operation. (e) A similar construction yields insertions and deletions. Lower left: input with symmetry (red: source, blue: target).

Abstract

In this paper, we address the problem of inverse procedural mod-
eling: Given a piece of exemplar 3D geometry, we would like to
find a set of rules that describe objects that are similar to the ex-
emplar. We consider local similarity, i.e., each local neighborhood
of the newly created object must match some local neighborhood
of the exemplar. We show that we can find explicit shape modifi-
cation rules that guarantee strict local similarity by looking at the
structure of the partial symmetries of the object. By cutting the ob-
ject into pieces along curves within symmetric areas, we can build
shape operations that maintain local similarity by construction. We
systematically collect such editing operations and analyze their de-
pendency to build a shape grammar. We discuss how to extract
general rewriting systems, context free hierarchical rules, and grid-
based rules. All of this information is derived directly from the
model, without user interaction. The extracted rules are then used
to implement tools for semi-automatic shape modeling by exam-
ple, which are demonstrated on a number of different example data
sets. Overall, our paper provides a concise theoretical and practical
framework for inverse procedural modeling of 3D objects.
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1 Introduction

Nowadays, model creation is one of the main bottlenecks in practi-
cal applications of 3D computer graphics. Creating high quality 3D
models is a time consuming task that requires substantial artistic
and technical skills. Consequently, a lot of recent work has focused
on “intelligent” modeling tools that to some extend “understand”
the structure of 3D shapes [Bhat et al. 2004; Sharf et al. 2004; La-
gae et al. 2005; Zhou et al. 2006; Merrell 2007; Kraevoy et al. 2008;
Gal et al. 2009].

In this paper, we propose a novel approach to the semi- and fully
automatic creation of 3D models that are similar to a piece of exam-
ple geometry. Unlike most previous work, our approach constructs
a set of explicit, procedural rules that encode how to build such
objects efficiently, leading to an inverse procedural modeling sys-
tem [Aliaga et al. 2007; S̆t’ava et al. 2010]. We formally guarantee
that each newly created object is r-similar to the input exemplar
S: Analogous to non-parametric texture synthesis [Efros and Le-
ung 1999], we demand that any point on the new object matches
some point on the exemplar within a local neighborhood of radius
r. The key observation of our paper is that the partial symmetries
of an object reveal a set of shape operations that alter the object
while guaranteeing strict r-similarity: Assume we fix a transfor-
mation T and look at the regions of an object (Figure 1a) that are
symmetric under this transformation (Figure 1b). We might find
non-symmetric regions that are separated from the rest of the model
by some symmetric area. We call these regions dockers and a curve
through a symmetric region that cuts out a docker a docking site
(Figure 1c). As the docking site geometry matches, we can ex-
change the corresponding dockers while maintaining similarity to
the input exemplar. In general, we obtain operations that insert,
delete, or replace pieces of S (Figure 1d,e). We examine the depen-
dency of such operations and encode the result in a shape grammar
that encodes a set of r-similar objects. We consider three variants:
General rewriting systems, context-free grammars, and supplemen-
tal grid structured production rules. We implement the described
analysis framework in a numerically robust way, handling general
triangle meshes as well as point cloud data from 3D scanners, and
demonstrate prototypical tools for shape modeling by example.

To the best of our knowledge, our technique is the first that is able
to compute shape grammars for general 3D surfaces from example
geometry without any user interaction (the similarity radius r is the
only parameter). We provide a theoretical framework that estab-



lishes an interesting link between partial symmetry of an object S
and a space of objects similar to S. It provides strict formal guaran-
tees: All computed models are strictly r-similar to the exemplar. In
particular, any topologically consistent, closed input manifold will
yield output models with these properties. However, in order to pro-
vide such strict guarantees, our formal framework requires models
that have perfect partial symmetries, which is currently still a main
limitation of the presented approach.

2 Related Work

Texture and geometry synthesis: Our approach is motivated by
non-parametric texture synthesis [Efros and Leung 1999; Hertz-
mann et al. 2001; Kwatra et al. 2003], which optimizes for similar-
ity of local, overlapping neighborhoods to corresponding regions in
the exemplar image. Being formulated as an optimization problem,
this leads to a hard Markov random field (MRF) inference problem.
Texture synthesis has also been applied to 2D vector graphics [Barla
et al. 2006; Ijiri et al. 2008] and the notion of local r-similarity of
neighborhoods has been generalized to 3D geometry by [Rustamov
2008]. Texture synthesis can be applied to synthesize 3D geome-
try by discretizing a base surface and synthesizing details on top
of it [Lai et al. 2005; Nguyen et al. 2005; Chen and Meng 2009;
Zhou et al. 2006; Zelinka and Garland 2006]. This requires that
the coarse scale base geometry is given as user input. Alternatively,
one can discretize the ambient space itself, synthesizing occupancy
in space. Techniques include voxel models [Bhat et al. 2004] and
implicit functions [Sharf et al. 2004; Lagae et al. 2005]. However,
it is difficult to find good solutions based on heuristic MRF opti-
mization; creating closed and well defined geometry is more chal-
lenging than synthesizing plausible 2D images. None of the known
methods have so far demonstrated results where large scale models
with complex structure, such as complete buildings, are synthesized
from scratch. [Merrell 2007] propose a related algorithm that ex-
pects building blocks aligned with a regular grid as input. These are
then placed automatically with consistency across grid faces, again
involving a discrete MRF labeling problem. The technique can han-
dle arbitrary boundary conditions but, unlike our approach, building
blocks are required as input rather than output and the regular grid
structures limits the design space significantly. This has been ad-
dressed in [Merrell and Manocha 2008], where cells are formed by
intersecting planes through faces of the exemplar model, implicitly
creating the grid structure. However, the approach is limited to very
low complexity input exemplars (examples in the paper have up to
39 input faces). [Cabral et al. 2009] examine a related idea: User
specified building blocks and a connectivity graph are the input and
the system then optimizes vertex positions and textures to form a
closed model. It requires the building blocks and their interconnec-
tion rules as input, while our paper aims at computing this type of
information automatically.

Shape grammars and inverse procedural modeling: Grammar-
based modeling is one of the most successful procedural model-
ing paradigms. Applications include plant modeling [Prusinkiewicz
and Lindenmayer 1990] and modeling of cities [Parish and Müller
2001] and buildings [Wonka et al. 2003; Müller et al. 2006]. Inverse
procedural modeling is referring to the reverse process, where rules
(such as shape grammars) have to be derived from example geome-
try. This goes beyond geometry synthesis in the sense that it not just
creates similar models from exemplars but also describes the struc-
ture of the space of such models. An early approach is the work
of [Hart and Flynn 1997] who derive fractal branching rules for
L-systems from 2D example graphics by geometric hashing, how-
ever, being limited to simple L-systems with a few rules only. In
more recent work, regular patterns have been computed from ex-
ample geometry [Pauly et al. 2008]. In [Mitra and Pauly 2008],

this technique is used for creating variants from example models
by changing the replication frequency or editing symmetric pieces
simultaneously. Our approach is based on a different idea: We do
not replicate symmetric parts but look for symmetric area (dock-
ing sites) enclosing non-symmetric geometry (dockers) such that
the non-symmetric parts can be replaced. Grid structures are found
if dockers recursively contain matching docking sites. This analy-
sis works with and without grid structures present in the example; it
can even create grids of dockers from only a single example docker,
if appropriate recursive docking sites are found. [Yeh and Mĕch
2009] analyze 2D vector graphics to detect complex 1D patterns
along curves with secondary structure. Very recently, [S̆t’ava et al.
2010] extend this idea to detect hierarchies of patterns, yielding an
L-system describing the example geometry, similar to the context
free representation provided by our algorithm. Our scenario is more
complicated as it deals with 3D surfaces that need to be assembled
in a consistent way, without holes in the surface. In contrast, 2D
vector graphics can just be composited arbitrarily. A lot of work
has been presented that uses procedural rules to fit geometry to im-
age input rather than geometry [Aliaga et al. 2007; Müller et al.
2007; Neubert et al. 2007; Tan et al. 2007; Xiao et al. 2009], which
is an even harder inverse problem. These techniques use prede-
fined classes of rules (such as hierarchical regular subdivisions of
facades [Müller et al. 2007]) or a significant amount of user input
to facilitate image interpretation but do not attempt to create shape
grammars automatically from scratch.

Smart shape deformation: Recently, a number of shape deforma-
tion techniques have been proposed that try to preserve important
object features, including non-local properties such as symmetry
or orientational alignment [Kraevoy et al. 2008; Gal et al. 2009].
Deformation methods are fully orthogonal to our approach: Unlike
our technique, they cannot insert or delete elements, nor change
the topological arrangement of building blocks the model is com-
posed of. However, our technique currently does not perform any
additional deformation. A related approach is modeling by example
[Funkhouser et al. 2004; Sharf et al. 2006; Kraevoy et al. 2007]: the
system semantically identifies similar pieces that are composited
according to user input into a joint model by deformable matching
and cutting. This allows for more general changes but still needs
user guidance to assemble the pieces.

3 Formal Model

In this section, we present our theoretical framework, proceeding in
the following steps: First, we define the basic notions of symmetry
and similarity (Subsection 3.1). Then, we describe how to compute
docking sites, dockers, and how to construct the associated shape
operations (Subsection 3.2). Afterwards, we bring these elements
into a canonical form in Subsection 3.3. Finally, we discuss how to
combine the obtained rules into a shape grammar (Subsection 3.4).

3.1 Similarity and Symmetry

Input and neighborhoods: We assume that we are given an input
exemplar S ⊂ ℝ3. For simplicity, we assume a finite, piecewise
smooth surface. For every x ∈ S, we define the r-neighborhood
NSr (x) = Nr(x) := {y ∈ S ∣ dist(x,y) ≤ r}, where dist is a
metric on S. In the following, we use the intrinsic distance within S
to correctly handle close pieces that are topologically disconnected.

Transformations: In the following, symmetry and similarity are
defined with respect to a group of admissible transformations T +

consisting of continuous, injective functions T : S → ℝ3. We de-
note the transformation of a set A as T(A) := {T(x) ∣ x ∈ A}.
For the rest of this paper, we restrict ourselves to the group of rigid



(a) r-similarity (b) r-symmetry

Figure 2: (a) r-similarity: every point of S2 is locally similar to a
point of S1, within a radius of r. (b) r-symmetry is defined analo-
gously: under a fixed transformation T, symmetric points must be
similar within a radius of r.

motions. However, most of our framework could be easily gener-
alized to different notions of symmetry and similarity, induced for
example by invertible affine mappings or by intrinsic isometries.

We can now define our notion of local similarity of objects: An
object is similar to an exemplar if each local neighborhood of the
object can be found somewhere in the exemplar (Figure 2a). We
formalize this concept in the notion of r-similarity:

r-similarity. Given two surfaces S1 and S2, S2 is r-similar to S1 if
and only if for all y ∈ S2 there exist a point x ∈ S1 and a mapping
T ∈ T + such that:

(1) T(x) = y and T(NS1r (x)) ⊆ S2.
(2) For all x̃ ∈ NS1r (x) : x ∼= T(x̃),

where “∼=” means that the local topology is preserved with respect
to the surfaces S1 and S2 where the points are contained in (for-
mally: there exist infinitesimal neighborhoods that are homeomor-
phic). Condition (1) ensures that we find a geometrically matching
neighborhood in S1 for every point of S2. Condition (2) makes sure
that the topology matches as well. In particular, we cannot map a
manifold interior point to a boundary point, or an interior point to a
T-junction, and vice versa.

Please note that the definition of r-similarity is not symmetric. We
always place the r-neighborhood on the exemplar surface S1, never
on the surface that T maps to. This is important for generalizations
to non-rigid mappings where T might contains scaling that alters
the size of the neighborhood. Analogous to r-similarity, we define
the notion of r-symmetry, where we map neighborhoods within a
single surface. We start by defining infinitesimal symmetry:

Symmetry under a transformation T: We denote the set of all
points of S that are symmetric w.r.t. a transformation T as:

�(T) := {x ∈ S ∣ T(x) ∈ S and x ∼= T(x)} ,

Two points of S are symmetric under a transformation T if T maps
between them and their infinitesimal local neighborhood is topolog-
ically equivalent. Accordingly, the non-symmetric points w.r.t. T
are denoted by �(T) := S ∖ �(T).

r-symmetry under a transformation T: The set of all points that
are r-symmetric under a transformation T is given by:

�r(T) := {x ∈ S ∣ all x̃ ∈ Nr(x) are symmetric under T}

This means, a point is r-symmetric iff its whole r-neighborhood
is symmetric under the same transformation (Figure 2b). In other
words, we obtain the r-symmetric points by an erosion operation
of radius r on the set of points that map from S back to S under
T. We will use this observation in Section 4 to devise a simple and
efficient algorithm for computing the r-similarity structure of an
object. The algorithm will actually work on a discrete set of candi-
date transformations T, constructed by matching surface features,
for which it computes the symmetric area. For now, we will just
assume that we know �r(T) for all transformations T that might
be of interest and discuss the details of symmetry detection later.

3.2 Dockers, Docking Sites and Shape Operations

Our goal is now to determine shape operations that modify an exem-
plar shape while maintaining r-similarity to the original. The key
insight of this paper is that the symmetry structure of an object re-
veals a rich set of such operations as well as their interdependence.
For now, we will consider one fixed transformation T and examine
the r-symmetry structure of S with respect to T. How to combine
the result from different transformations within a shape grammar
will be discussed later in Subsection 3.4.

�r(T) can be regarded as a binary function on the exemplar S
that marks symmetric regions on the surface (Figure 1b shows an
example visualizing �r(T) as red area). Obviously, any subset
X ⊆ �r(T) of a symmetric region can be exchanged with its cor-
responding geometry T(X ) without changing the geometry at all.
However, if we find a piece of non-symmetric geometry that is di-
vided from the rest of the model by symmetric area, we can use the
symmetric region as a docking site to replace some geometry with
different geometry while maintaining r-similarity to the exemplar.
We formalize this observation in the following definition:

Docking sites and dockers: A set of surface curves � ⊆ S is
called a docking site with respect to a transformation T, if the fol-
lowing three properties hold (see Figure 3a,b):
∙ � is r-symmetric under T: � ⊆ �r(T).
∙ � partitions the model into two topologically disconnected

pieces D� and ℛ�. This means, any continuous path in S
between the two pieces must intersect �. The piece D� con-
tains geometry that is not symmetric under T: D� ∕⊆ �r(T).
We call D� a docker for docking site �

∙ T(�) also partitions the model into two topologically dis-
connected pieces DT(�) and ℛT(�). We call T(�) the sec-
ondary docking site and DT(�) the secondary docker of �.

For clarity we will sometimes refer to the original, non-transformed
docking sites (and dockers) as primary docking sites (and primary
dockers), as opposed to secondary docking sites. By convention,
the docking site �, the dockerD� and the remaining geometryℛ�

are defined to be disjoint. The same applies to the secondaries.

Figure 3b shows an example of a partitioning of the model into the
pieces D�, DT(�),ℛ�, andℛT(�). Obviously, this is only possi-
ble if � and T(�) cut the model into disconnected pieces (Figure
3a). Figure 3c,d show how we can use docking sites and dock-
ers to modify geometry: The docking site itself is situated within
symmetric geometry. Therefore, we can cut the model through the
docking sites and replace the docker with the secondary docker, or
vice versa. By construction, the boundary is r-similar so that the
pieces fit together. Formally, every shape operation is performed
by the same rule, a replacement of dockers:

Replacement shape operations: Let � be a docking site with re-
spect to transformation T. A shape operation, op�,T is given by

op�,T : S → ℛT(�) ∪T(D�) ∪T(�).

It replaces the secondary docker with the transformed primary
docker (Figure 3c and Figure 3e, middle row). Correspondingly,
there is also a secondary shape operation opT(�),T−1

opT(�),T−1 : S → ℛ� ∪T−1(DT(�)) ∪�,

which replaces the secondary docker with the primary docker,
transformed accordingly (see Figure 3d and Figure 3e, lower row).

Obviously, a secondary operation for a docking site � and transfor-
mation T is identical to the primary replacement operation for the
docking site T(�) and transformation T−1. Please note that our



(a) no docking site (b) proper docking site (c) insert (d) delete (e) replace

Figure 3: Definition of a docking site. (a) The first part of the definition is met, but the docking site does not divide the model into two
disconnected pieces. Therefore, no valid operation results. (b) A valid docking site, meeting all three criteria. (c),(d) Dockers can be
exchanged while keeping the model r-similar to S. If primary and secondary dockers are contained in each other, this results in inserting or
deleting symmetric pieces. (e) Otherwise, geometry is just replaced; please note that this example shows a different geometry.

notation for the shape operations already makes use of this observa-
tion. The consequence in practice is that we can restrict ourselves
to collecting only primary operations; we will obtain the secondary
operations automatically by considering the corresponding symme-
tries under the inverse transformation.

Classification: We can distinguish further between different effects
of the primary operations by looking at the topological relation of
primary and secondary dockers. We obtain three cases that lead to
different types of operations, as illustrated in Figure 3c-e:
∙ Insert: DT(�) ⊂ D�. The secondary docker is a subset of

the primary docker (Figure 3c).
∙ Delete: D� ⊂ DT(�). The primary docker is a subset of the

secondary docker (Figure 3d).
∙ Replace: All other cases (Figure 3e).

Replace operations just substitute parts of the geometry with an al-
ternative piece of geometry. Insert and delete operations are special
cases of replacements that replace a piece of geometry with two or
zero copies of itself so that they effectively grow or shrink the ob-
ject. These operations (and combinations of them) are useful for
“smart resizing” of 3D objects; we will make use of this later in the
applications section. Please note that the replace shape operation is
still possible if the dockers overlap partially, i.e. D� ∩DT(�) ∕= ∅.
However, the operations become dependent (which also frequently
occurs for operations derived from two different transformations).
Resolving dependencies is discussed in Subsection 3.4.

Collision avoidance: An important aspect we neglect so far is that
of collisions. We have to make sure that T(D�) andℛT(�) do not
collide, i.e., have a non-zero distance everywhere, except from the
docking site where they meet. If this is not the case but the a newly
inserted piece collides with already existing geometry, the operation
might not be valid and we do not perform the shape operation. We
can now formulate the main result of this subsection:

Maintaining r-similarity: Given an input surface S ⊂ ℝ3 and an
r-docking site � under transformation T. If the shape operation
op�,T is not colliding, it will create a result that is r-similar to S.

3.3 Elementary Docking Sites

So far, we have shown how to extract shape operations from the
symmetry structure of an exemplar surface. However, there are
a few technical problems left: First, we can get an infinite num-
ber of equivalent operations by moving the docking site within the
symmetric region (Figure 4a). We thus need to normalize the con-
struction so that we get a canonical representation for a shape op-
eration. Even after doing this, the number of shape operations for
a single transformation T might still be exponential in the number
of non-symmetric “docker” regions, because the docking site can
select an arbitrary subset of such regions that are located within a

common symmetric region (Figure 4b). This obviously prevents us
from compactly encoding the set of all discovered shape operations.
Elementary docking sites (Figure 4c) address both problems:

Elementary docking sites: An elementary docking site is a dock-
ing site for which the closure of its docker is minimal with respect
to set inclusion. Shape operations derived from elementary docking
sites are called elementary shape operations.

Intuitively, we obtain an elementary docking site by shrinking the
docker enclosed by the docking site as much as possible, enclos-
ing only the non-symmetric region, at the boundary between r-
symmetric and non-r-symmetric area (with respect to a certain
transformation T). In addition, we are not allowed to enclose more
non-r-symmetric regions than necessary to divide the model into
two pieces, because otherwise, the docker would not be minimal.
We now discuss how to compute elementary docking sites. For
this, and all of the following, we will always assume that we have
a finite number of non-symmetric regions, i.e., �r(T) consists of
a finite number of connected sets, each with continuous boundary
curves. For practical models such as triangle meshes, this assump-
tion is always met. The idea for the algorithm is rather simple:
For any valid docker, we need to make sure that a docker is sepa-
rated completely from the remaining geometry by the docking sites,
which can be solved by simple region growing. However, we need
to simultaneously assure that the same is true for the correspond-
ing secondary dockers, which therefore requires alternated region
growing in the primary and secondary domain.

Algorithm: Computing elementary docking sites
Input: We are given an input model S, a transformation T, and the
symmetry structure �r(T).
Algorithm: We start by computing the boundary curves ∂�r(T) of
the non-symmetric regions using region growing, as well as the sec-
ondary boundaries T(∂�r(T)), which must exist due to symmetry.
This partitions the model into a set of primary and secondary non-
symmetric regions, which will be combined to valid and elementary
primary and secondary dockers next. We build a graph that en-
codes the dependencies of these regions: We connect primary and
secondary non-symmetric regions if they share a boundary curve
where the primary boundary maps to the secondary under T. The
important observation is that this does not need to be symmetric.
For example, the secondary can map to two boundaries while the
primaries only map to one each, as shown in Figure 5. In order to
obtain a valid combination we compute the connected components
in this dependency graph. All primary regions within a connected
component form one primary docker, and all secondary regions the
secondary docker. Their boundaries to the symmetric area are the
docking sites. These pieces are elementary because no smaller set
can cut the model into two pieces on both primary and secondary
side. Figure 5 shows how we subsequently add dependent pieces to
extract a valid pair of primary/secondary dockers.



(a) equivalent sites (b) combinatorial explosion (c) elementary sites

Figure 4: General vs. elementary docking sites: (a) The dock-
ing sites �1 and �′1 are equivalent. (b) By combining multiple
non-symmetric regions, we can obtain an exponential number of
non-equivalent docking sites. (c) Elementary docking sites form a
canonical set for composing more complex operations.

One can easily show that elementary dockers for the same transfor-
mation T are always disjoint. Because of this, it is easy to see that
any general shape operation with respect to a fixed transformation
T can always be achieved by a combination of elementary shape
operations. This means, for n different non-symmetric regions, we
only need to store O(n) elementary shape operations, rather than
in the worst case 2n − 1 non-elementary ones.

3.4 Extracting Shape Grammars

So far, we have found a number of operations that allow us to
change the input shape S while keeping it r-similar to the original.
However, we can only change the original input once: the changes
might alter the situation such that the original operations are not
applicable anymore. In order to enable the execution of multiple,
consecutive shape operations, we therefore need to to determine
their interdependency, and if necessary adapt the executed opera-
tion accordingly. In the following, we will describe three different
models that build sets of rules that combine multiple shape opera-
tions. We start with a straightforward construction that yields a gen-
eral Chomsky type-0 grammar (general rewriting system) based on
shape matching. This model is the most expressive, but its structure
is the least computationally accessible. Therefore, in the next step,
we compute a context-free subset of this grammar, which is easier
to handle in applications. Lastly, we add non-context free grid-
based replication rules with multiple degrees of freedom, which are
very useful for analyzing real-world objects [Müller et al. 2007].

3.4.1 A Basic Shape Matching Grammar

Assume that we are given a set of shape operations for an exem-
plar S and we want to execute multiple of these operations subse-
quently while maintaining r-similarity to S. The important obser-
vation at this point is that we can apply a shape operation in any
place where we find a suitable docking site. “Suitable” means that
the new docking site is related to the original one by an admissible
transformation T ∈ T +. In that case, we can just transform the
docker of the shape operation by T to match the new docking site.
As the admissible transformations form a group by definition, the
compound transformation will automatically be admissible as well
and the transformed operation still guarantees r-similarity. This di-
rectly yields a shape matching grammar: Before each operation,
we have to search the model for matching docking sites (using rigid
shape matching, in our case) and then obtain a selection of appli-
cable operations. Obviously, this approach is costly to compute
and incompatible with standard procedural modeling tools. In ad-
dition, the structure of the language might be very complex. As
a general rewriting system (Chomsky-0 grammar), most properties
of the language are uncomputable and thus inaccessible for con-
trolling the modeling process. Therefore, we have to extract a more
manageable subset. This is the subject of the next subsection:

(a) symm. borders (b) no docker yet (c) dep. secondary (d) final output

Figure 5: Computing elementary docking sites: (a) Transforma-
tion T and corresponding boundaries of r-symmetry. (b) The red
piece is non-symmetric. (c) It is not a docker (yet) because its sec-
ondary boundary does not split the model. (d) Adding the missing
dependent piece yields valid primary/secondary dockers.

3.4.2 Context Free Grammars

In a context free grammar, we do not perform shape matching but
use non-terminal symbols to identify a space where further geom-
etry can be plugged in. The geometry itself is encoded as terminal
symbols. A set of production rules describes which terminal and
non-terminal pieces can be plugged into the space designated by
each non-terminal piece, leading to a hierarchical structure of in-
sertions of pieces. In our framework, docking sites represent non-
terminal symbols because alternative geometry can be plugged into
the regions they enclose (Figure 6). Dockers are the pieces being
plugged in, which in turn might contain further sub-docking-sites.
Therefore, the geometry of a docker, minus that enclosed by sub-
docking-sites, corresponds to terminal symbols, and the contained
docking sites are hierarchically dependent non-terminals. We will
reflect this fact in our notation and use non-terminals and docking
sites interchangeably, as well as dockers and terminal symbols.

Using context-free production rules means that we need to be able
to tell a priori whether a certain piece of geometry that is tagged
with a non-terminal node will allow for the insertion of certain al-
ternative pieces or not. We cannot retract from this decision later
on because we do not perform any online shape matching. Any
conflicts between rules that try to alter the same piece of geome-
try must be already resolved during the construction of the formal
language. Obviously, potential conflicts are only created by desig-
nating docking sites. Identifying a docker and storing its terminal
geometry cannot create conflicts, no matter how these dockers over-
lap on the exemplar. However, if we put a docking site on a piece
of geometry, we must make sure that the docker area it encloses
does not intersect with further docking sites, because the geometry
within these bounds is subject to change. More precisely, if we cre-
ate the production rule for a single docker, the docking sites (i.e.,
the non-terminals) within this rule must not overlap. We use the
following formal classification: Two docking sites �1 and �2 are
conflicting iff �1 ∩ �2 ∕= ∅, i.e., if the docking sites intersect. �2

is hierarchically dependent on �1 iffD�2 ⊂ D�1 , i.e., the dockers
are contained in each other. Obviously, hierarchically dependent
docking sites are not conflicting in the sense of this definition, but
we still cannot combine the rules arbitrarily but need to make sure
that the docker they are based on does already exist. This idea leads
to a hierarchical construction algorithm. The main idea is to first
identify hierarchical dependence of docking sites. Then we itera-
tively consider each docker and handle all docking sites it directly
contains. If these docking sites are conflicting, we remove some of
them until all conflicts are resolved. As there are multiple alterna-
tive ways to achieve this, we in general obtain several production
rules for this docker. We now look at this more in detail:

Constructing a context-free shape grammar: We first build a
tree that encodes the hierarchical dependence of the docking sites.
A node � is contained in the subtree of a node � if and only if �
is completely contained in D� . This always yields a unique tree



Figure 6: Extracting a hierarchy of docking sites and dockers yields
a context free grammar.

because the inclusion relation is tree structured by definition. After
that, we look at each node in the tree from bottom up, starting at
the leaf nodes. The docker of each leaf node yields a terminal node
in our grammar that contains only fixed geometry and no further
non-terminals. The docking site of each leave nodes is represented
as a non-terminal node and we create the corresponding production
rules that encode two alternatives each: inserting either the primary
or the secondary docker. Now we go up one level in the hierarchy
and build more complex rules: Let � be an inner node, and C(�)
be the set of all docking sites that are direct children of this node.
These children form areas where we can insert hierarchically de-
pendent pieces (which in turn might contain further docking sites,
i.e., further non-terminals). However, the docking sites in C(�) will
in general overlap, creating conflicts. Therefore, we create multi-
ple alternative rules that each resolve the conflicts in a different
way: We consider the graph of overlapping docking sites, where
the docking sites in C(�) are the vertices and an edge is inserted if
the two sites are conflicting. In this graph, we compute the set of all
maximal independent sets. This yields the set of all sets of docking
sites that do not overlap each other. In order not to miss options, we
also need to unfold the hierarchy of overlapping nodes and include
these in the independent set computation. Each of the obtained in-
dependent sets {�1, . . . ,�k} is free of collisions and is therefore
converted into one production rule for the non-terminal �0:

�→ �1, . . . ,�k︸ ︷︷ ︸
non-terminals

, (D� ∖ (D�1
. . .D�k

))︸ ︷︷ ︸
terminal remainder geometry

The production rule encodes that the non-terminal � can be re-
placed by a set of non-conflicting docking sites and the remaining
geometry not covered by these sites. For each independent set, one
such separate rule is created. Once we have performed the opera-
tion for the primary docker of �, we repeat the same procedure for
the secondary docker, which also fits into �.

Complexity problem: The strategy has a problem in practice: the
number of maximal independent sets in a graph has an exponential
worst-case lower bound of Ω(3n/3) sets for n nodes. Correspond-
ingly, the algorithm might become impractical for complex inputs.
Therefore, we use a bounded complexity approximation in practice:
Instead of enumerating all independent sets, we sample the solution
space randomly. We iteratively choose a random node and remove
all colliding nodes until no more nodes are left. We make sure to
start at a different node each time and limit the number of trials to
a fixed constant (in our examples: 10). Thus the maximum num-
ber of computed production rules is fixed as well. In addition, we
only unfold at most one hierarchy level; if such a node still collides,
we dismiss all hierarchically contained docking sites as well. This
approximation does not yield the largest possible context free sub-
language but it is very fast and produces good results in practice.

Improvements: In order to make the grammar more expressive, we
perform shape matching between docking sites before constructing
the grammar and identify all docking sites of the same shape. This
means that not just the primary and secondary docker can be in-
serted into the corresponding non-terminal symbol but all dockers

(a) configuration for a grid patterns (b) no valid grid

Figure 7: (a) Two colliding insert/delete operations divide the
model into regions of nine different types. The corners are used
once, the central piece is repeated on a 2-grid, and the rest is lin-
early repeated. (b) Counterexample: This arrangement of docking
sites does not form a tileable grid cell.

with similar docking site. In addition, we also try to avoid docking
sites that are created by continuous symmetries, such as a window
that can slide across a flat wall. We remove such rules by detecting
slippable docking sites using the technique of [Gelfand and Guibas
2004]. We use this optional filter in all of our examples.

3.4.3 Regular Grids

Many real-world objects contain grid structures, such as a grid of
n1 × n2 windows in the facade of a building. In the following, we
will call such structures k-grids, were k is the number of discrete
degrees of freedom. A context free grammar cannot represent k-
grids for k ≥ 2 (unless we fix the repetition counts a priori, which
is not useful in our application). Thus, we add a separate grid repli-
cation rule to our shape grammar that models this case.

1-grids: In our framework, 1-grids are identified by “insert” and
“delete” shape operations: By definition, these operations are al-
ways dual to each other, and they mutually undo the effect of each
other. In addition, the insert operation can be repeated an arbitrary
number of times (up to collisions) because the inserted part by con-
struction contains a docking site for another insertion.

2-grids: Grids with more than one degree of freedom show up as
collisions of docking sites of multiple 1-grids. We first consider the
case k = 2 for two insert type shape operations op�1,T1

, op�2,T2
.

If the docking sites �1 and �2 intersect, the corresponding primary
and secondary dockers intersect as well, due to symmetry. We clas-
sify the pieces by up to nine possible cases (Figure 7a). We choose
an index of 1 for the remainder geometry, 2 for within the docking
site but outside the secondary docker and 3 for inside the primary
and the secondary docker. Accordingly, we label the pieces by r1,1
up to r3,3, taking both operations into account. Please note that
several disconnected pieces of each type might exist because the
exemplar S can be of arbitrary topology and some types of pieces
might be missing altogether. Pieces of different type have a differ-
ent purpose: types r1,1, r1,3, r3,1, and r3,3 form the “corner stones”
that are instantiated exactly once. The pieces r1,2, r2,1, r2,3, r3,2
are replicated in one direction each, forming the boundary of the
grid. Finally, the r2,2 pieces are replicated in two directions.

Identifying tileable grids: Not all pairs of conflicting 1-grids cre-
ate feasible 2-grids because the inner regions r2,2 can have non-
tileable boundaries. This can happen because a pair of symmetric
primary/secondary docking sites is cut into pieces by a different
pair of docking sites. Although the pairs of curves are symmetric,
the intersections do not need to be symmetric (Figure 7b). In or-
der to obtain a valid tileable grid, we must demand two additional
properties: First, the boundary curves of all regions ri,j must be
symmetric under the transformations T1,T2. Second, the transfor-



Figure 8: Visualization of the grammar computed for the “pipe
tree” example (Figure 10m). Each pad carries a docker, with the
color indicating matching docking sites, shown as curves in the
same color. Black curves indicate the sites at which the dockers are
inserted into the parent docking site. The white docker is the root of
the grammar. Below, an example assembly is given for illustration.

mations T1,T2 must commute to obtain a well defined grid [Pauly
et al. 2008]. If these two conditions are met, and we additionally
assume that the inserted pieces do not collide with each other, it
is easy to see that any instance of the grid is r-similar to the input
surface. Our implementation currently checks all these conditions
explicitly.

General case: The grid construction generalizes to the case of grids
with k degrees of freedom: All simplices consisting of 2k points
need to match each other under the corresponding transformations,
and all transformations need to commute. We can incorporate grids
into the shape grammar by applying the grid detection algorithm to
conflicting docking sites of the hierarchically extracted dockers.

4 Implementation

It is possible to perform all the computations described in the previ-
ous section directly on triangle meshes. However, this easily leads
to robustness problems in practice due to sliver triangles. We avoid
these issues by using an approximate representation: We store the
symmetry information �r(T) only up to a fixed sampling resolu-
tion �s, in a voxel grid with uniform spacing �s. Each voxel that
intersects with a piece of surface is labeled either symmetric or non-
symmetric. We store this information compactly using a spatial oc-
tree. Although we employ a sampled representation to store sym-
metry information, the actual test for comparing geometry is still
exact: We store the plane equations and boundary line equations
of all triangles in each voxel and match them when comparing two
pieces of geometry. We explicitly test for and exclude zero-area
triangles where two edges are collinear up to numerical precision
(which are unfortunately found frequently in real-world models).
All computations of docking sites and dockers described in Section
3 are performed directly on the voxel grid representation. Intrin-
sic distances and neighborhoods are measured as graph distance in
the graph of neighboring voxels, connected by a 26-neighborhood.
Once we have identified the voxels that constitute docking sites and
dockers, we use the boundaries of the voxels to cut out the docking
site curves and dockers out of the original triangle mesh.

Discussion: The only approximation in this strategy is in the ex-
tend of the symmetric region, which might be underestimated by
at most �s. We argue that this is a reasonable strategy: First, the
algorithm will converge to an exact solution with shrinking �s, and
thanks to the hierarchical representation, it is no problem to use an
�s much smaller than r in practice. Furthermore, the similarity pa-
rameter r is usually only a vague guess by the user so that it does
not seem necessary to approximate it with very high accuracy. In
our examples, we always set �s to r/4.

Figure 9: Editing with context free grammars: possible edits for
four different docking sites of the same model. The selected docking
site and the docker to be replaced appear in yellow, other docking
sites in light red. The rows of images above and below the model
preview editing options. In these images, the red part is the new
docker that will replace the yellow one. The blue parts are default
geometry inserted to close the model; the user can exchange these
next. Please note that many of the red dockers look similar but
offer different sub-docking sites. In a context free grammar, these
choices are encoded in different production rules if the alternative
docking sites overlap. The accompanying video shows an interac-
tive demonstration.

4.1 Symmetry Detection

Our technique requires detecting symmetries in the input model as
a first step [Mitra et al. 2006]. We use a variant of the algorithm
of [Bokeloh et al. 2009], adapted to our voxel-based representa-
tion: Whenever a rigid motion maps the input surface S onto itself,
we have found a partial symmetry. However, not all such symme-
tries are useful for modeling. For example, a planar area within
an object can be partially mapped onto itself by a continuous set
of infinitely many transformations. However, enumerating a large
number of these will not be particularly useful for modeling. We
therefore limit our algorithm to find “useful” symmetries by align-
ing salient feature lines [Bokeloh et al. 2009]. Next, we determine
the area that is symmetric under each candidate transformation by
computing the intersection of the regular voxel grid representation
with a transformed version of itself. In each cell, we compare the
original exact geometry, as described previously. This gives us a
voxel-quantized approximation of �(T). This strategy also works
naturally with point cloud data (see [Bokeloh et al. 2009] for de-
tails). To obtain the r-symmetric set �r(T), we use a fast-marching
algorithm to perform an erosion operation on the voxel grid. In the
case of raw point-cloud data from 3D scanners, we add an addi-
tional processing step that removes isolated non-symmetric voxels
within symmetric voxels in order to be robust to outliers.

4.2 Applications

We have implemented three example modeling tools within a pro-
totypical inverse procedural modeling application.

Creating random shape variations: It is often useful to be able
to create a large number of variations of a base geometry automati-
cally, for example for creating background props in a game level or
movie scene. We create random instance by executing random pro-
duction rules from the computed shape grammar. For each rule, we
check for collisions and revert to just using the original geometry
of the docking sites if 10 random rules failed to work.

Semi-automatic modeling: We have also implemented an interac-



tive editor to modify an existing shape according to user input (Fig-
ure 9). We start with the original model and display all docking sites
as surface curves. The user can then “hover” over the model, dock-
ing sites are highlighted and the user can choose from the known
production rules in order to change the model. Changes can be
made at all levels of the hierarchy. The editor always displays a
complete, r-similar model: When a new docker is inserted, its hier-
archically dependent docking sites will be filled with the geometry
that was originally contained in the docker, shown in a different
color to indicate the default behavior.

Grid-based resizing: In addition to the context free rules used
above, we also detect grid rules in the model. We let the user choose
1-grid or 2-grid rules and specify the number of repetitions.

5 Results

The results presented in this section are obtained from a sin-
gle threaded C++ implementation of our framework running on a
2.6Ghz Core2 Duo computer with 8GB of RAM.

Grid-based editing: We have applied our method to models that
contain grid structures. Examples for 1-grids are shown in Figure
10a and b, and 2-grids in Figure 10c and e-g. The spiral stairs
scene (b) has complex micro-geometry below the handrail, which
shows the numerical robustness of our implementation. The tri-
angle mesh of the parking structure example (Figure 10g) contains
many of non-manifold intersections, sliver triangles and doublet tri-
angles that cover the same area, which is typical for models that
have been designed primarily for rendering. Nevertheless, we ob-
tain stable symmetry results.

Manual and random modeling: We have performed random ex-
ample generation (Figure 10h,i and k-m) as well as manual model-
ing (Figure 10d and j). The random examples have been picked
as typical examples out of a small number of random trials, all
of which yielded reasonable geometry. An example grammar as
computed by our algorithm is shown in Figure 8. The result is
not as canonical as a manual, human designed grammar but simple
enough to be useful in interactive manual modeling. With manual
interaction, more control is possible. The editor (see Figure 9) is
easy to use and greatly facilitates shape editing; the models shown
in Figure 10 were assembled in less than a minutes each. The video
accompanying this paper shows an interactive demonstration.

Point clouds: Figure 10h,l show results for scanned facade exam-
ples. For the front of the “new town hall”, our algorithm has ex-
tracted 20 non-terminals corresponding to 40 dockers, all of which
are of 1-grid type, due to the regular structure of the model. We use
these rules to randomly insert and delete windows and the different
tower elements of the facade, which lead to plausible results in all
cases. Similar results are obtained for the “Zwinger” scan (courtesy
of M. Wacker, HTW Dresden).

Analysis: Our input scenes have a complexity ranging from 1,040
(house, Figure 10e) to 500,000 (parking structure, Figure 10g) tri-
angles. The new town hall facade consists of 1.2 million points.
The computation times for our shape analysis are rather moderate,
even for the large examples: For the facade, symmetry detection
took 72 seconds, the computation of the docking sites and dockers
18 seconds, and building the grammar 125 seconds For the park-
ing structure, the complete processing took 10 minutes, 2 minutes
of which were spent on finding symmetries and extracting docking
sites. This example is more time consuming because more sym-
metries can be found within an “exact” data set. Interactive editing
and random example generation is performed in real-time, with re-
sponse times (far) below one second for all examples shown in this
paper. The effect of choosing parameter r is illustrated in Figure

10j: small values of r (middle row) produce piano keys with arbi-
trary grids, while a bigger value (bottom row) enforces the well-
known 2/3 combinations of groups of keys. Our observation is that
other than for such subtleties, the choice of r is not critical; all other
examples use a fixed r that is set to 1.6% of the maximum bounding
box side length of the object.

Limitations: Our current approach is limited to more or less ex-
act symmetry and similarity, although some measurement noise
or small inaccuracies are acceptable. However, we cannot handle
any natural objects such as plants, animals, or people. Our cur-
rent implementation is in addition limited to rigid similarity. With
respect to shape grammars, our current applications are currently
only using context free and grid-based rules, while context-sensitive
modeling is still subject to future work. The rules that we extract
do not cover the whole space of r-similar objects but only a sub-
set; however, we can explicitly construct the members of this sub-
set. In comparison to related texture-synthesis-based modeling ap-
proaches, we are not performing variational optimization. There-
fore, we cannot “fit” models to arbitrary boundary conditions. In
principle, the building blocks extracted by our algorithm could be
used within a discrete MRF labeling algorithm to solve boundary
value problems, however facing similar optimization problems as
in texture synthesis. It is important to stress that texture/geometry
synthesis always requires solving complex optimization problems,
while our approach can still be used without.

6 Conclusions and Future Work

We have presented a theoretical framework for inverse procedural
modeling of 3D objects and a practical implementation of a semi-
automatic modeling system based on this framework. The main
conceptual idea is to create a shape grammar that describes a large
set of objects that are locally similar to a training exemplar under
rigid motions. The key observation is that a grammar describing
a large class of shape operations that maintain r-similarity can be
directly derived from r-symmetry. The main algorithmic idea is
the construction of docking sites and dockers: Whenever we can
find a curve through a symmetric area that partitions the object into
two pieces, we can derive a replacement operation that maintains
r-similarity. A topological classification yields different types of
operations (insert, delete, replace) and a hierarchical inspection of
these operations then results in a context free grammar as well as
grid-like replication rules. We believe that our proposal is only
a first step into the mostly unexplored area of inverse procedural
modeling, i.e., how to infer rules of how objects are build and struc-
tured solely from example instances. There are a number of open
problems in our paper that we have to leave for future work: In par-
ticular, it would be interesting to generalize our framework to other
notions of similarity like affine mappings with scaling (fractal pat-
terns) or isometric mappings (bending invariant modeling). While
most of our theoretical framework covers these cases, a practical
evaluation still needs to be performed. In addition to this, it is still
an open question how to define a shape grammar that includes all
r-similar objects; for general input models our current construc-
tion covers only a subset. In a similar direction, it would also be
interesting to evaluate in how far general, non-context free shape
grammars can be used for shape modeling.
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KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: image and video synthesis using
graph cuts. ACM Trans. Graph. 22, 3, 277–286.

LAGAE, A., DUMONT, O., AND DUTRÉ, P. 2005. Geometry syn-
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(a) sofas (1-grid) (b) spiral stairs (1-grid) (c) fence (2-grid)

(d) bus station (ed) (e) house (2-grid) (f) castle (2-grid)

(g) parking structure (2-grid) (h) point cloud example: “new town hall” facade (rnd)
(from the Dosch Design shape collection) (courtesy of C. Brenner, IKG Hannover)

(i) castle (rnd) (j) the effect of parameter r (ed)

(k) playground (rnd) (l) point cloud: “Zwinger” (rnd) (m) pipe tree (rnd)
(courtesy of M. Wacker, HTW Dresden)

Figure 10: Example scenes. The original scene is shown in red in each image. The scenes have been created by automatic random instancing
(rnd), semi-automatic interactive editing (ed), or grid-resizing (k-grid). See the accompanying video for details.


