
EUROGRAPHICS 2010 / M. Chen and O. Deussen
(Guest Editors)

Volume 30 (2011), Number 2

Shape Analysis with Subspace Symmetries

Alexander Berner1 Michael Wand1,2 Niloy J. Mitra3 Daniel Mewes1 Hans-Peter Seidel1

1MPI Informatik 2Saarland University 3KAUST / IIT Delhi

Abstract

We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape
is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity
transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to
more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring
the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace
symmetries based on detecting linearly correlated correspondences among graphs of invariant features. The de-
tected subspace symmetries along with the modeled variations are useful for a variety of applications including
shape completion, non-local and non-rigid denoising. We evaluate our technique on various data sets. We show
that for models with pronounced surface features, subspace symmetries can be found fully automatically. For
complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense
correspondences that can subsequently be used in various applications, such as model repair and denoising.

1. Introduction

Self-similarity and repetitions are ubiquitous in man-made
and natural objects. Such structural regularities often relate
to form, function, aesthetics, and design considerations. Dis-
covering structural redundancies along with their dominant
variation modes from 3D geometry not only allows us to
better understand the underlying objects, but is also benefi-
cial for several geometry processing tasks including compact
representation, symmetrization, shape completion, intuitive
shape manipulation.

Given an object S, our goal is to look for a piece of geom-
etry U ⊆ S and a collection of associated mapping functions
f(i) : U → R3 that respectively create instantiations f(i)(U),
thereby matching the original geometry S up to an allow-
able error tolerance. Most previous efforts restrict the map-
ping functions to families of reflections, rigid mappings, and
similarity transforms [MGP06,PSG∗06,MGP07,PMW∗08].
Many real-world objects such as different windows of a
building or ornamental structures in man-made sculptures,
however, exhibit structural redundancies that cannot be cap-
tured by such constrained mappings (see Figure 7).

A central challenge in generalizing the notion of symme-
try is to decide on the allowable space of admissible transfor-
mations f(i): While too much flexibility using a large num-

ber of parameters lead to overfitting and spurious matches,
an overly restrictive mapping fails to compactly capture re-
dundancy present in the input. Our key idea is to not look at
a prescribed set of admissible transformations independent
of the input but first look for more general mappings sup-
ported by the input data. Then, we learn the space of useful
variations by analyzing the ensemble of detected mapping
functions, thus building a model for capturing variations ex-
hibited by the input geometry.

We formalize the above observation by introducing the
notion of subspace symmetries. We constrain the deforma-
tion functions f(i) to lie within a low dimensional affine sub-
space of all possible mappings. Thus, although each instance
is described by a small amount of data, i.e., the low dimen-
sional coordinate vector within the subspace, we still al-
low large variations for the individual mapping functions.
In spirit of classical principal component analysis (PCA),
the existence of a low dimensional structure within a high
dimensional shape space serves as a validation criterion
to characterize corresponding geometry. Our problem set-
ting, however, is different from traditional PCA: We have to
search for the useful correspondences, which are unknown,
in the raw input to help reveal such a subspace structure. This
is a challenging search problem. We propose an algorithm to
find subspace symmetries that acts in three steps (see Figure
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Figure 1: Finding subspace symmetries. We use features to find initial guesses for the correspondences that span the sub-
space. For an input model (a), we identify crease lines using extremal principal curvatures (b), and extract graphs of such
crease lines (c). Subgraphs are then matched and refined using a learned subspace model to establish initial sparse correspon-
dences (d). Finally, dense correspondences are estimated using a regularized subspace fitting technique (e).

1): Assuming that the mapping functions approximate pre-
serve invariance of chosen features, the algorithm first finds
patterns of features that are linearly correlated. Starting from
the initial set of sparse matches, we use a variational regu-
larizer to extend the mappings to dense correspondences and
build the final subspace. We then use this knowledge to re-
fine further search results. Although the approach is limited
by the design and choice of the feature detection scheme,
to the best of our knowledge, this is the first algorithm for
automatic detection of subspace symmetries. To overcome
the restrictions, we also support a semi-supervised variant
of the algorithm that allows the user to bootstrap the sub-
space learning by providing a few hints regarding suitable
features for processing challenging input models, especially
noisy and incomplete ones. We tested our algorithm on a set
of synthetic benchmark scenes as well as real world 3D scan-
ner data in order to study its performance. For scenes with
clear feature structure (see Figure 1), we detect the domi-
nant salient symmetries fully automatically. In challenging
and ambiguous scenes, however, we require the user to mark
a few points to guide the feature detector. Applications to
non-local non-rigid denoising and shape completion are also
presented.

Our main contributions are – introduction of subspace
symmetries that define symmetry in geometric data with-
out restrictions to simple, parameterized mapping functions
along with practical algorithms to efficiently compute such
symmetries and the applications thereof.

2. Related Work

Shape analysis. Symmetry detection, a central topic in
shape analysis, is widely used for pattern detection and reg-
ularity analysis in images and in 3D geometry. An object is
said to be symmetric if it is (partially) invariant under the
action of allowable symmetry transforms. A common ap-
proach is to identify a set of candidate transforms derived us-
ing potential correspondences, and map the correspondences
to a space of transforms. This remodels the global problem
of symmetry detection to local identification of clusters in
the transformation space [LE06, MGP06, PSG∗06]. The ap-

proach has been extended to detect (commutative) Euclidean
regularity [PMW∗08] and isometric regularity [MBB10] in
3D geometry. Such techniques are designed to handle trans-
formation families that can be compactly represented using
a few parameters, e.g., translation, rotation, uniform scaling.
However, generalizing the concept to handle other transfor-
mations involving many more parameters is challenging due
to the ambiguity in the mappings, and difficulty in identi-
fying good set of potential correspondences. Further, it is
difficult to extend such techniques to learn data dependent
allowable variation modes.

Enumeration based methods including geometric hash-
ing [GCO06], robust auto-alignment [SKS06], spherical har-
monics analysis [MSHS06], primitive fitting [SWWK08]
are also inapplicable given the high dimensionality of the
non-rigid transformation space. Ovsjanikov et al. [OSG08]
perform global intrinsic symmetry detection using eigen-
analysis of the surface Laplace-Beltrami operator, while
Xu et al. [XZT∗09] extend Euclidean symmetry trans-
form [PSG∗06] using a computed scalar field to detect par-
tial intrinsic reflection symmetry. Lasowski et al. [LTSW09]
perform partial intrinsic symmetry detection based on a
Markov random field model. Recently, Kim et al. [KLCF10]
propose a robust algorithm based on Mobius voting for
global intrinsic symmetry detection. It is unclear how to ex-
tend these methods, specifically designed to handle intrinsic
symmetries, to handle more general transformations.

Graph-based symmetry detection. Symmetry detection
can be formulated as an instance of partial graph match-
ing. Graphs, constructed using feature lines or curves as
nodes and their respective aligning transformations as edges,
are analyzed to identify repeated subgraphs revealing partial
symmetries. The main challenge of such feature-based meth-
ods is to compute reliable and stable features from noisy and
incomplete data. Berner et al. [BBW∗08] use regions of min-
imum slippability, while Bokeloh et al. [BBW∗09b] employ
crease lines as features, which yield particularly useful cues
for shape matching. These algorithms rely on rigid align-
ment of local line patterns using iterative-closest-lines.
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Global Shape Registration. In shape retrieval, topological
matching techniques have been used to recognize seman-
tically similar shapes, e.g., [HSKK01]. Recently, Zhang et
al. [ZSCO∗08] propose a global shape matching framework
based on comparing graphs of extremity features and eval-
uating the induced deformation of an assignment in order
to match shapes such as humans or animals. The use of
an elastic deformation model, however, limits the variability
of models that can be handled. This problem has been par-
tially addressed in [ATCO∗10], where objects are reduced to
skeletons and graph matching, and multi-dimensional scal-
ing is employed to find similar skeletons. A similar idea has
also been explored for global registration of animation se-
quences of 3D scans of deformable objects [ZST∗10]. Ex-
isting methods for densely matching significantly dissimilar
objects mostly assume a smooth mapping function such as
thin plate splines [ACP03], or work with restricted statisti-
cal models [HSS∗09], and require manual initialization of
each match.

Dimension reduction. Projections on low dimensional
affine (or non-linear [SSM98]) subspaces have been used
in a large number of computer vision and graphics applica-
tions. Eigenfaces [KS90, TP91] use low dimensional spaces
to model photographs of human faces. The method was ex-
tended to handle geometric data by Blanz and Vetter [BV99]
in their highly influential work to construct a PCA space of
faces from a collection of 3D range scans of images reg-
istered using optical flow. Allen et al. [ACP03] extend the
method to match different human body shapes using local
optimization guided by manually annotated markers. Estab-
lishing dense correspondence allows the use of statistical
learning techniques to describe spaces of plausible shapes,
poses, and dynamics [ASK∗05,SZGP05,HSS∗09], and also
for specific families of objects such as the shape of car bod-
ies [KFS∗07]. We explore affine 3D shape spaces with cor-
respondences for symmetry detection – a direction that has
been unexplored by previous methods and no global unsu-
pervised or semi-supervised partial matching method has
been provided in the cited work.

3. Subspace Symmetries

In this section, we introduce the notion of subspace symme-
tries. Our goal is to produce an output model comprising of a
set of shapes in correspondence such that they form an affine
shape space. The key challenge is to simultaneously estimate
shape spaces and their associated correspondences.

Affine shape spaces. Let a set of shapes S := {S1, . . . ,Sk}
be in correspondence with each shape Si := (V (i),E) being
represented as a set of vertices V (i) = {v(i)1 , . . . ,v(i)n } sharing
the same connectivity structure encoded by a set of edges
E. Thus, each shape Si can be considered a point in a 3n-
dimensional shape space, i.e., Si ∈ R3n. Assume that the re-
spective points of V (i) across shapes are in correspondence.

Figure 2: Affine subspace correspondences are not always
unique. The three flat shapes form a 1-dimensional shape
space, but the two examples show two different solutions to
the correspondence problem.

The set S is said to be spanned by independent basis
shapes B = {b1, . . . ,bd} and a mean shape b0 with bi ∈R3n

sharing the same edge connectivity E, if and only if, each
shape Si can be uniquely expressed as:

Si = Ti

(
b0 +

d∑
k=1

λ
(i)
k bk

)
, (1)

with λ
(i)
k being scalar coefficients and addition referring to

vector addition of respective elements of the vertex sets.
Since such a linear space does not represent rotations well,
we additionally store a rigid transformation Ti for each in-
stance Si. Thus, shape Si can be compactly encoded as
{λ(i)

1 , . . . ,λ
(i)
d } and its rigid placement Ti in the scene. Given

an example set S, we can compute a model according to
Equation 1 using a polar decomposition to extract the rigid
motion and PCA to retrieve the subspace. The mean vector
of {V (i)} yields b0, while covariance analysis of the mean
centered vertex sets {V (i)−b0} produces an orthogonal ba-
sis set {b1, ...,bd}, which spans the affine subspace. Further,
the respective covariance values σ1, ...,σd along the princi-
pal directions encode the likelihood of variations by a posi-
tive definite quadratic form. This information can be used to
estimate the likelihood of a given shape to lie in this space
of variations.

Correspondences. In the following, we use fi→ j to denote

the function that maps points v(i)k to their corresponding

points v( j)
k for k ∈ {1, . . . ,n}. It is easy to see that these func-

tions, after factoring out the rigid components, form an affine
subspace of dimension d for any fixed i as well; correspon-
dence functions could be seen as an alternative parametriza-
tion of the space. This also holds for correspondences from
the mean shape b0 to models in Si.

Fitting the model to data. Once we know an affine model
of the subspace symmetries, we can robustly perform model
completion from imperfect data. Thus given a noisy and in-
complete shape s, we project the shape to the base space B
by optimizing for coefficients {β1, . . . ,βd} that best repre-
sent s in the least squares sense. More specifically, our goal
is to solve the optimization:

min
T,{βk}

d

(
s,T

(
b0 +

∑
k

βkbk

))
, (2)
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Figure 3: Subspace assumption helps in refining matches.
(Bottom-left) The two principal eigenmodes of the “key”
element, (top) iterative fitting, alternating between rigid
alignment and subspace coordinates, (bottom-right) rain-
bow color coded dominant eigenmode for signed subspace
coordinates for all detected matches, blue being minimum.

where, T denotes a rigid transform, and d(a,b) is a suitable
(squared) distance measure between two shapes a and b. In
this paper, we use the sum of squared point-to-plane dis-
tances (with truncation for far away points to improve outlier
robustness) as our distance measure. We solve this optimiza-
tion problem by iteratively computing the best rigid match
to closest model points, using iterated closest point (ICP),
and projecting the corresponding points into the PCA space.
Later, we describe how to use feature based matching to ini-
tialize the optimization.

Invariance and regularization. In general, the restriction
that the set of symmetry instances have to form an affine
shape space of low dimension is not sufficient to uniquely
establish correspondences across these shapes. For exam-
ple, for corresponding planar regions in a shape we can
find multiple different correspondence functions that form
an affine subspace (see Figure 2). We therefore employ an
additional (weak) regularizer: We minimize the spatial sec-
ond derivatives of the correspondence functions fi→ j. This
means, among all ambiguous solutions, we prefer the one
with the least spatial bending of the correspondences func-
tions as measured using a “thin plate spline” regularizer.

4. Extracting Subspace Symmetries

In this section, we discuss how to identify subspace models
from input geometry that are used to find symmetric parts.
The main challenge is to find correspondences that actually
span a low dimensional affine shape space. Without any a-
priori knowledge, this is challenging due to the combina-
torial nature of the problem. A simple brute-force search
would require computation time exponential in the number
of correspondences involved. We therefore propose an algo-
rithm that is based on the additional assumption of the avail-
ability of invariant features: We assume that corresponding
pieces of geometry show features that are invariant under

the space of mappings fi→ j. On the other hand, matching
features do not necessarily imply right correspondence.

We detect an arrangement of such features (Section 4.1)
and use them to initialize a subspace search algorithm that
establishes dense subspace correspondences (Section 4.2).
Although this fully automatic symmetry detection approach
works well on clean models, it may fail on challenging cases
when the input is severely corrupted with noise and has
large missing parts. Such failures arise in the initialization
stage as our assumption on invariant features breaks down.
In such cases, we propose a semi-supervised extraction strat-
egy (Section 4.3) to allow the user to annotate a few training
correspondences to seed the search for subspace variations.

Note that our feature matching strategy is not the only
possibility, but other variations are conceivable, leading to
similar or improved results. The focus of this paper, how-
ever, is not on feature detection. Instead our goal is to detect
subspace symmetries (mostly) automatically, but in a practi-
cally feasible way.

4.1. Graph Matching

We now present our algorithm to find and match invariant
features (see Figure 1). First, we extract a graph of features
that is resilient to moderate deformations. The graph extrac-
tion is motivated by the observation that relationships across
feature points and their connecting feature lines are bet-
ter preserved under deformations, as compared to absolute
geometry. We use crease lines of high curvature that have
been demonstrated to capture shape characteristics [OBS04].
Bokeloh et al. [BBW∗09b] have effectively used such fea-
ture graphs for Euclidean symmetry detection. We present
an overview of the graph creation algorithm and refer to our
technical report for further details [BBW∗09a].

Feature graphs. Given the input model (Figure 1a), we
estimate the principal curvature values and directions at
every point of the model using moving-least-squares fit-
ting [DB02] (Figure 1b). We then threshold the resulting
scalar field using a user specified threshold, keeping only
points with large absolute maximum curvature. Next, we ap-
ply a morphological erosion operation to shrink the remain-
ing area to thin lines and crossings. We place feature points
at each line end and at each intersection. We then construct
the feature graph with the feature points as nodes and the
intermediate line segments acting as edges (Figure 1c).

Pairwise graph matching. We now use the computed
graph to search for candidate matches. Based on our assump-
tion that partial similarity between adjacent feature lines re-
mains invariant under moderate deformations, detecting rep-
etition patterns amounts to solving a partial graph matching
problem. To this end, we employ a greedy algorithm. We
extract a small number of example correspondences using a
simple and conservative approach to initiate the creation of
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Figure 4: Building and using a discrete subspace model. (a) Complete and incomplete graph matches; (b) the algorithm builds
a model of the complete matches by parametrizing edges by edge length and mapping corresponding points to vectors that are
used in a PCA analysis; (c) partial matches are refined and refitted using the learned PCA space.

the subspace model. Later, we extend the model by detect-
ing other repeated instances using a constrained search in the
discovered subspace (see Section 5).

For matching, each edge in the graph is tagged by a num-
ber of attributes. We store the intrinsic length, as well as the
average principal curvature values of points along the crease
lines that the edges follow. We retain the signs to discrim-
inate between ridges and valleys. Each edge in the graph
is additional annotated by the outdegree of its two adjacent
vertices, and the angles between the edge and further edges
adjacent to the vertices.

We use a simple rule that edges can only be matched if
their length values are within a certain ratio of each other (3
in our experiments), the value of the average crease curva-
ture matches up to a constant factor (3 in our experiments)
and the outdegree of adjacent vertices matches up to ±1. In
addition, pairs of edges are matched if their intermediate an-
gles agree up to a threshold (±10 degrees). All these user
defined threshold define the matching model.

We explore potential matches in the graph by sampling
and region growing. Starting from a random seed edge, we
collect all its potentially matching edges. Then, we test each
pairwise match against its candidate matching edges. For
each pairwise match, we greedily grow the match by adding
adjacent edges to the current match if they satisfy the match-
ing criterion.

In our algorithm, we discard matches that do not have a
matching graph topology, i.e., edges that form a loop on the
source side must also form the same loop at the target side.
This is important as the graph topology carries a strong cue
for identifying correct matches. However, as we allow for
over-segmentation of edges, i.e., additional vertices, we skip
over vertices based on their deviation from the expected pa-
rameters. Specifically, among all the possible vertices, we
select the vertex with the smallest deviation from the ex-
pected metric parameters.

We repeat this several times starting from independent
random seeds and retain only the best matches, i.e., the
ones containing the largest number of matched edges and
instances. In all our experiments, we perform 200 rounds of
random sampling and keeping matches involving at least 5
graph elements.

Multiple instances. After the initialization step, we have a
list of partial subgraph matches. Each match starts from a
source graph containing the start edge, and maps to different
target graphs, only partially overlapping in the source do-
main. For further processing, we only handle instances with
sufficient overlap, thus describing the same instance. There-
fore, we delete all matches without substantial overlap (typ-
ically, 60% of the candidate matches) with the largest found
match. The remaining partial graph matches are used in fur-
ther processing (Figure 4a).

We also determine all the complete matches and use them
to initialize the subspace model. The partial matches are
used as candidates to be matched to the subspace model. For
increased robustness, we iterate the whole graph matching
pipeline multiple times with random seeds in an outer loop
(100 iterations in our experiments). We keep the solution that
maximizes the product of the number of instances that are in
complete correspondence and the number of edges involved.

Building a discrete subspace model. We now compute a
subspace approximation of the candidate salient line pat-
terns, which are likely to correspond to actual subspace sym-
metric geometry. First, we establish correspondence across
the line segments using a simple arclength parametrization
(Figure 4b), normalized to overall unit length. Points at the
same distance from the start vertex are then set to be corre-
sponding. We sample each edge uniformly and form a long
vector of corresponding points. We compute a subspace rep-
resentation of the form of Equation 1 using PCA, with rigid
transforms factored out, as described in Section 3. We keep
those eigenmodes with eigenvalues of at least 10% of the
(unsigned) magnitude of the largest.

Discrete refinement. Using the learned subspace, we now
refine the remaining matches by considering the previously
unconsidered partial matches. The local geometry of the can-
didates are validated in the subspace model of the feature
lines (Figure 4c) by minimizing Equation 2, as discussed in
Section 3. For increased robustness, we only use the pre-
viously extracted points of high curvature as target shape
for the alignment since the feature lines cannot map to flat
regions. After matching, we measure the Mahalanobis dis-
tance to the PCA model, and discard matches with a dis-
tance larger than three times the standard deviation. Note
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Figure 5: Detected subspace symmetries on two synthetic examples. Dense correspondence visualized using mapped textures.

that our model space is significantly low rank in proportion
to the high dimensional embedding shape space. Hence, a
slight amount of random noise can lead to, with high proba-
bility, unstable Mahalanobis distance. Therefore, we assume
a small uniform covariance of σ

2I in all directions, and add
this to the covariance obtained from the PCA analysis. σ

corresponds to the noise level in the data (including small
effects not modeled by our subspace model).

Note that the refinement step is critical to a viable solu-
tion to the subspace symmetry detection problem. Impor-
tantly, the subspace symmetries can be initialized with a
small amount of data. Subsequently, we use the model to
identify and verify candidate matches arising out of partial
and ambiguous data. Figure 1d shows the final result of the
discrete matching after discrete refinement, while Figure 3
shows how PCA coordinates can be learned and how a par-
tial example match is found.

4.2. Dense Subspace Correspondences

Corresponding feature line skeletons that form a low-
dimensional subspace are good indicators that the dense ge-
ometry points enclosed by the cells of these feature graph
also form a low dimensional subspace. To test such candi-
dates, we bring the dense points into correspondence and
then again perform PCA while factoring out rigid alignment.

In order to extend the discrete matches to dense cor-
respondences, we use a regularized deformable ICP simi-
lar to the deformation framework introduced by Allen et
al. [ACP03]. We cut out the dense geometry S0 enclosed
by the source graph, and match back onto the original input
geometry S1 at a different location, where a second instance
has been detected by the discrete matching. We denote the
matching function by f : S0 → R3. We regularize f using
a thin-plate-spline energy (as motivated in Section 3), seed-
ing the optimization using the computed discrete matches as
known boundary condition correspondences.

Let the known discrete point-to-point matches, obtained
by sampling along the edges of the feature graph, be denoted
as: (xi, fi), i = 1, . . . ,k, where fi denotes the known value for

f(xi). Overall, we minimize the following least-squares en-
ergy function:

E(f) := λd

∫
S0

d (f(x),S1)dx+λr ‖Hf‖2
F dx

+λb

K∑
i=1

‖fi− f(xi)‖2

where, Hf a 3× 9 matrix containing all second derivatives
of f. In other words, Hf is a concatenation of the Hes-
sian matrices of all three component functions of f that de-
scribe the mapping in the (output) x-, y-, and z-directions,
with the second derivatives taken with respect to the in-
put x-, y-, and z-directions. We take the Frobenius norm of
this matrix, thereby uniformly penalizing spatial curvature
of the mapping using the well-known thin-plate spline en-
ergy. The weights λd ,λr and λb balance the effects of the
(squared) distance to the target surface, smoothness of the
solution, and the deviation from the boundary conditions, re-
spectively. We start with λd = 0 and progressively increase
the weight for the data term in course of the optimization
to obtain a tight fit. The contribution due to the Hessian
component is controlled by a user parameter λr. For known
correspondences, the minimization is convex and solved us-
ing a linear system. Therefore, the first iteration results in a
globally optimal alignment according to the feature matches.
Thus we have a reliable pre-alignment for the later steps. We
now introduce the data term, and the optimization is per-
formed iteratively. In each subsequent iteration, the distance
function d is updated using the (squared) point-to-plane dis-
tance to the closest model point. We discretize f on a simple
spatial finite-differences grid and solve the resulting sparse
linear system using conjugate gradients.

We perform this matching for each of the found (discrete)
symmetries, thus resulting in dense correspondences en-
coded by a number of matching functions fi := f1→i, where
we use index one to denote our start instance, i.e., the ini-
tial location of the start edge. Finally, we compute a space
S = {S1, f2(S1), . . . , fk(S1)} to compute the final subspace
model using rigid alignment followed by a PCA analysis.
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(a) input model (mesh) (b) feature graph (c) discrete matches (d) dense correspondences 

 
(e) Reconstruction: The deformed instances are overlaid and 
projected to the subspace for denoising and detail transfer. 

(f ) Hole filling: a partial match is identified and filled with matching 
geometry from the subspace 

 Figure 6: Top row: Automatic detection of subspace symmetry on a scanned point cloud data of a church (“Marktkirche” in
Hannover). Bottom row: Automatic non-local non-rigid denoising and hole filling on the same model.

4.3. Semi-Supervised Algorithm

When the input objects have significant variations or are
highly corrupted by noise, our initial discrete feature graph
correspondences can be unstable, and fail to suitably seed
the symmetry subspace search. In such cases, we provide an
optional mechanism to train the feature matching model in
a semi-supervised fashion. Although better feature detectors
may produce slightly improved performance, we believe that
in certain cases user inputs are unavoidable to provide unam-
biguous leads for a reliable creation of initial subspace can-
didates, which can then be automatically refined and other
instances learned.

We ask the user to click on a small number of feature
points that should be in correspondence. The algorithm com-
putes a descriptor of the local geometry for each point using
histograms of intrinsic distances to nearby samples within a
neighborhood ball. We build a PCA model of the descriptors
and add a regularizer σdescrI to the covariance matrix to ac-
count for noise. The user interactively specifies σdescr check-
ing when false positives start appearing. Using the PCA
model, we automatically detect all points on the model with
descriptors that fall within the covariance of the model, us-
ing a maximum Mahalanobis distance of three sigma. Next,
we connect the feature points using geodesic paths on the
underlying surface. We simultaneously grow regions from
all the feature points to compute intrinsic Voronoi regions,
and join only those point-pairs that have a connecting edge
in the dual triangulation.

5. Applications

Instance replacement. The detected correspondence fields
fi→ j between all instances enable non-local edits, which are
otherwise difficult to perform. Base geometric patches can

now be easily textured, altered, and replaced, and the edits
automatically propagated to all the symmetric instances. We
use this tool to show the correspondence mapping across the
instances.

Shape completion. Once a subspace model is discovered,
we can robustly detect partial matches by verifying poten-
tial candidates against the subspace. This allows us to au-
tomatically repair incomplete geometry, which is common
due to occlusion and scanning artifacts. We use the partial
feature graph to initialize the matching and compute the least
squares best fitting mapping function f by projecting the con-
straints into the subspace. Finally, we deform the base ge-
ometry using the established spatial mapping function f for
shape completion.

Denoising. We use the established correspondences for
scan denoising. This mode is particularly interesting since
we can establish general, non-rigid mappings that previous
techniques fail to detect. For denoising, we first compute the
mapping functions from the mean shape b0 to all other in-
stances as fmean→i. Using the inverse mappings f−1

mean→i we
then copy all the data points to the mean shape domain. Fi-
nally, we use a standard moving least squares reconstruction
in the mean domain for denoising, and transfer back the re-
sults using the original maps fmean→i.

6. Results and Discussion

We tested our algorithm on a variety of models, both syn-
thetic and scanned. All the scanned model point clouds are
reconstructed using Poisson surface reconstruction to gener-
ate approximately isotropic meshes as inputs.

Results of our algorithm are depicted in Figure 1, 5, 6, and
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7. We visualize the discrete matches using the same color as
the corresponding graph elements. In order to display the
dense correspondence, we paint a texture on one of the in-
stances and transfer it to the other instances using the com-
puted deformation fields fi. Several examples contain self-
symmetries, such as a chair that can be mirrored along its
side and mapped back to itself. Our algorithm detects all (for
synthetic) or most (for scanned examples) of these additional
symmetries. However, for clarity of presentation we show
only the global self-symmetry of the instances: We only vi-
sualize the match whose rigid component has the smallest
deviation, in the Frobenius sense, from the identity map.

Synthetic test scenes. We first report experimental results
on clean synthetic datasets, which are not corrupted with
noise, and are complete. For such models, feature matches
provides good seeds for the subspace search, and we reli-
ably obtain perfect results, i.e., our algorithm finds all the
non-rigid self-similarities that we expect to extract from the
data (see Figure 5). As our algorithm works at the level of
feature graphs, the matching results do not depend on the
tessellation of the meshes, as long as the underlying geome-
try and topology remain unchanged.

Real-world 3D scans. The problem quickly becomes chal-
lenging for scanned inputs, which usually contain various
artifacts including ambiguity due to noise, missing data,
and allowed non-rigid deformations. Our first dataset is a
scanned PC keyboard (see Figure 1). This data set reveals a
clear feature structure that is extracted by our automatic al-
gorithm. As shown in Figure 3, we obtain a subspace model
with two dominant directions of variations, which are suffi-
cient to match all keys in the keyboard with high precision.
Thanks to the initial Poission surface reconstruction, our al-
gorithm is quite robust under increasing noise levels. Figure
9 shows the same scene with artificial Gaussian noise added
to the original scan. Recognition becomes problematic only
after the noise level starts blurring out the feature lines. Fig-
ure 6 shows the results for a LiDAR scan of a 14th cen-
tury gothic church – the Marktkirche from the well-known
scan repository provided by the IKG of Hannover Univer-
sity. Our algorithm detects the repeated windows, even un-
der non-uniform scaling, and subsequently establishes dense
correspondences across the instances.

Next, we use a scan of a small clay replica of a statue
(Figure 7, top), which provides a challenging example due
to variations in clay instances. Again we automatically dis-
cover most of the ornaments below the neck of the statue.
However, to resolve the grid ambiguity, we manually desig-
nate the “cut-out” of one instance (shown in purple). Oth-
erwise, the algorithm detects larger instances with several
pieces combined that are mapped in groups. Although cor-
rect, this creates a large, overlapping set of detected parts. A
discrete group reduction algorithm [MGP06, PMW∗08] act-
ing on the discrete permutation group of the detected feature
correspondences could resolve this issue automatically. As

grid detection is not the main focus of this work, we leave
this for future work.

The automatic mode fails on the most complicated exam-
ple, as shown in Figure 7 (bottom), since we fail to get a
good set of seeds for initial subspace construction. There-
fore, we allow the user to click on example features (two dif-
ferent tips of the scales, two more examples at the bottom).
Afterwards, one example graph (one scale) is selected. This
information is sufficient to remove distracting features and
recognize all the major scales on the back of the dinosaur.
We obtain a subspace with overall four main directions. In
particular, the first two are intuitively interpretable, encoding
size and skewness of the scales (see Figure 8a-b and sup-
plementary video). Subsequent dense correspondence estab-
lishment works well.

Shape completion and denoising. We demonstrate denois-
ing and hole filing on the Hannovarian church data set (Fig-
ure 6e,f). The algorithm detects a partial match and fills in
geometry that is closest in a least-squares projection to the
learned subspace. Similarly, we combine the geometry in-
formation across all the instances and perform a non-local,
non-rigid denoising. This reproduces fine details and sharp
edges better than in any single instance of the original scan.
However, some subtle details that vary across the instances
are lost by our algorithm when working with the available
scan resolution (by looking very closely at the original data,
one can guess that there are a different number of glass ele-
ments in large vs. small windows).

All the examples ran in the order of 5-10 minutes on
a 2.5 GHz Core2Duo laptop with 8GB RAM with un-
optimized code with the following breakup: each RANSAC
step inner loop ran in about 5-30 seconds depending on
graph complexity, line PCA building took around 30 sec-
onds, and instance refinement order of few seconds, and
finally, the most expensive dense correspondence ran in
around 3-8 minutes depending on the complexity of the sym-
metries and the grid resolution of thin plate spline solver,
with dense PCA taking less than a minute.

Limitations. The main limitation of our subspace symme-
try analysis algorithm stems from the assumption that the
chosen feature detector can detect enough nodes to seed a
subspace model search. In presence of significant noise or
large missing parts, this assumption breaks down for our
choice of feature curves, thus forcing the algorithm to switch
to a semi-supervised mode. Even then, our model does not
capture all possible cases. For example, the structures on the
wing of the “Gargoyle” model in Figure 9d do not lead to in-
tersecting graph edges. The other line pattern on the rest of
the model are also not clear enough to seed subspace models
(even with some user interaction). Furthermore, the features
guided matching in general has the drawback that it involves
manual setting of parameter values. For models without a
clear crease-line structure, fully automatic matching is usu-
ally not possible. However, this problem is reduced if we
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(a) input data (b) feature graph (c) discrete matches: color encodes corresp. 
parts, purple = designated grid element 

(d) dense correspondences 

  

(e) input model (mesh) (f) feature graph (g) discrete matches (h) dense correspondences 

 Figure 7: Top: Statue scan; matching is fully automatic. However, we chose one grid element manually to resolve grid ambigu-
ities. Bottom: Dinosaur model scan. The user specifies 4 example features and one subgraph(purple) to bootstrap the detection.

    

(a) chairs eigenmodes (b) dino eigenmodes (c) coordinate of first eigenvector (shown as rainbow color map) 

 Figure 8: (a, b) Shapes along the two dominant eigenmodes for the detected parts on the chair and dino datasets, respectively.
(c) Visualization of the normalized signed coefficients along top eigen-direction, using the rainbow map, blue being minimum.

allow the user to click on a few example features in order
to prune out irrelevant features and spurious matches. Also
the success of the approach is dependent on the richness of
the subspace symmetry present in models. We found many
man-made models to be a rich source of such symmetries,
as shown in our experiments. Note, there remains a funda-
mental tradeoff between the compactness and variability of
the subspace, the amount of noise that can be handled, and
the number of feature points that are required to seed the
candidate set of discrete sub-graph matches.

Conclusion and future work. We introduced subspace
symmetries to capture similarity between surface geometry,
which are related by non-rigid transformations that are not
arbitrary but span a low-rank subspace. The resultant sym-
metry subspace then has a natural compact description, and
effectively captures the variations of the underlying surface.
We presented an algorithm to detect such symmetries, both
automatically and also in a semi-supervised mode. The sub-
space symmetry detection algorithm was tested on various
classes of inputs. Further, the extracted symmetry subspaces
enable a range of interesting geometry processing tasks in-
cluding non-local non-rigid denoising, model completion,

simultaneous instance replacement, while factoring out the
underlying subspace variations.

In the future, it will be interesting to further explore means
to compactly encode model variations, and find low-rank
subspaces of interest in the general space of shapes. Cap-
turing the model variations and the distributions of the em-
bedding parameters can allow efficient generation of statis-
tical variations in shape spaces, thus producing subtle data-
driven variations in shape families. Finally, further efforts
are needed to explore alternate feature descriptors that can
robustly initialize and capture subspace symmetries.
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