%)\' Lee Lorenz, Brent Sheppard

Jenkins, if | want another yes-man, I’ll build one!

Versioning and Eventual Consistency
COS 461: Computer Networks
Spring 2011

Mike Freedman
http://www.cs.princeton.edu/courses/archive/spring11/cos461/

Ordering

* TCP sequence numbers uniquely order packets
— One writer (sender) sets the sequence number

— Reader (receiver) orders by seq number

e But recall distributed storage: may be more
than one writer

— One solution: If single server sees all the writes, can
locally assign order in the order received, not sent

— Recall partitioned storage: What about ordering
writes handled by different servers?

Time and distributed systems

* With multiple events, what happens first?

A shoots B

B dies

Time and distributed systems

* With multiple events, what happens first?

B shoots A

A dies

Time and distributed systems

* With multiple events, what happens first?

A shoots B B shoots A

A dies B dies

Just use time stamps?

* Need synchronized clocks

* Clock synch via a time server

O

P Time server S

Cristian’s Algorithm

Uses a time server to synchronize clocks
Time server keeps the reference time

Clients ask server for time and adjust their local
clock, based on the response

— But different network latency — clock skew?

Correct for this? For links with symmetrical latency:

RTT =T T

resp received ~ 'req sent
Thewlocal = Tserver + (RTT/2)
Errorclock = Tnew local — Told local

Is this sufficient?

Server latency due to load?
— If can measure T =T + (RTT + lag / 2)

hew local server

But what about asymmetric latency?
— RTT / 2 not sufficient!

What do we need to measure RTT?
— Requires no clock drift!

What about “almost” concurrent events?
— Clocks have micro/milli-second precision

Events and Histories

* Processes execute sequences of events

* Events can be of 3 types:

— local, send, and receive

* The local history h of process p is the
sequence of events executed by process

Ordering events

* Observation 1:
— Events in a local history are totally ordered

Process / > —0—0—0 -0 o —o ° >
Host time

* Observation 2:
— For every message m, send(m) precedes receive(m)

Host 1 *—o—0@ @ e e — >
\ time
m
Host 2 —@ () - (e () Q o>

time

Happens-Before (Lamport [1978])

* Relative time? Define Happens-Before (—) :
— On the same process: a — b, if time(a) < time(b)
— If pl sends mto p2: send(m) — receive(m)

— Transitivity: If a —b and b —=c then a —=¢c

* Lamport Algorithm establishes partial ordering:
— All processes use counter (clock) with initial value of O
— Counter incremented / assigned to each event as timestamp

— A send (msg) event carries its timestamp
— For receive (msg) event, counter is updated by

max (receiver-counter, message-timestamp) + 1

Events Occurring at Three Processes

P+ @ @ >

P, ® » Physical
time
C (\

P3 ® o >

Lamport Timestamps

P+

P2

» Physical

P3 ® ®

time

Lamport Logical Time

Physical Time

Y

0 1 2 3 4

Host 1
1 3 4
Host 2 ° 2 5
. 3 3
Host 3 ©
3 5

Host 4 o 4

14

Lamport Logical Time

Physical Time

Y

0 1 2 3 4

Host 1

Host 2 ° >

Host 3 ©

Host 4 o 4

Logically concurrent events!

Vector Logical Clocks

 With Lamport Logical Time
— e precedes f = timestamp(e) < timestamp (f), but
— timestamp(e) < timestamp (f) = e pr es f

Vector Logical Clocks

 With Lamport Logical Time
— e precedes f = timestamp(e) < timestamp (f), but
— timestamp(e) < timestamp (f) = e pr es f

* V\ector Logical time guarantees this:
— All hosts use a vector of counters (logical clocks),
ith element is the clock value for host i, initially O

— Each host i, increments the ith element of its vector upon an
event, assigns the vector to the event.

— A send(msg) event carries vector timestamp
— For receive(msg) event,

Vieceiver] +1 otherwise

_ Max (Vieceiverli] » Vinsglil), if jis not self
Vreceiver[.l] =

Vector Timestamps

P1

P2

P3

(1,0,0) (2,0,0)

. _
a b m
(21,00 (22,0 - Physical
. : o time
(0,0,1) (2,2,2)
. _

o f

Vector Logical Time

Physical Time

S
—_—

1,0,0,0 2,0,0,0
Host 1
1,0,0,0
1,2,0,0

Host 2 1.1,0,0

1,2)0,0

2,0,2,0

Host 3 2,0,1,0 . 2,2,3,0
Host 4

2,0,2,1

_ Max (Vi ceiverlil » Vinselil), if j is not self
Vreceiver['] = V

]+1 otherwise

receiver[j

Comparing Vector Timestamps

a=b ifthey agree at every element
a<b ifali] <=bli] for every i, but !(a = b)
a>b ifa[i] >=Dbli] for every i, but !(a = b)

a || b ifali] <bli], a[j] > b[j], for somei,j (conflict!)

If one history is prefix of other, then one vector
timestamp < other

If one history is not a prefix of the other, then (at
least by example) VTs will not be comparable.

Given a notion of time...

...What’s a notion of consistency?

* Global total ordering? See Wednesday

 Today: Something weaker!

21

Causal Consistency

Do you care?

e Concurrent writes may be seen in a different order
on different machines.

* Writes that are potentially causally related must be
seen by all processes in the same order.

Causal Consistency

W(x,a) W(x,c)
Host 1
a=R(x) W(x,b)
Host 2
Host 3 a=R (x) b=R(x) c=R(x)
a=R (x) c=R(x) Db=R(x)
Host 4

 W(x,b) and W(x,c) are concurrent

— So all processes may not see them in same order

* Hosts 3 and 4 read a and b in order, as potentially
causally related. No causality for ¢, however.

Examples: Causal Consistency

Host
Host
Host

Host

Host
Host
Host

Host

> W NN =

= W NN R

W(x,a)
W(x,b)
b=R(x) a=R(x)
a=R(x) b=R(x)
W(x,a)
a=R(x) W(x,b)
b=R (x) a=R(x)
a=R(x) b=R(x)

24

Causal Consistency

* Requires keeping track of which processes
have seen which writes

— Needs a dependency graph of which op is
dependent on which other ops

— ...or use vector timestamps!

26

Where is consistency exposed?

—

* Original model b/w processes with local storage

 What if extend this to distributed storage application?
— If single server per key, easy to locally order op’s to key
— Then, causal consistency for clients’ op’s to different keys
— What if key at multiple servers for fault-tolerance/scalability?
— Servers need consistency protocol with replication

Partial solution space for DB replication

* Master replica model
— All writes (& ordering) happens at single master node
— In background, master replicates data to secondary
— Common DB replication approach (e.g., MySQL)

* Multi-master model
— Write anywhere
— Replicas run background task to get up to date

 Under either, reads may not reflect latest write!

Eventual consistency

If no new updates are made to an object, after some
inconsistency window closes, all accesses will return
the same “last” updated value

Prefix property:
— If Host 1 has seen write w; ,: i th write accepted by host 2
— Then 1 has all writes w , , (for j<i) accepted by 2 prior to w;,

Assumption: write conflicts will be easy to resolve
— Even easier if whole-"object” updates only

Systems using eventual consistency

 DNS: each domain assigned to a naming authority

— Only master authority can update the name space

— Other NS servers act as “slave” servers, downloading DNS
zone file from master authority

— So, write-write conflicts won’t happen

S ORIGIN coralcdn.org.
@ IN SOA ns3.fs.net. hostmaster.scs.cs.nyu.edu. (

18 : serial

1200 ; refresh

600 ; retry

172800 ; expire

21600) ; minimum

Typical impl of eventual consistency

e Distributed, inconsistent state

— Writes only go to some subset of storage nodes
* By design (for higher throughput)
* Due to transmission failures
* Declare write as committed if received by “quorum” of nodes

* “Anti-entropy” (gossiping) fixes inconsistencies
— Use vector clock to see which is older
— Prefix property helps nodes know consistency status
— If automatic, requires some way to handle write conflicts
» Application-specific merge() function

* Amazon’s Dynamo: Users may see multiple concurrent
“branches” before app-specific reconciliation kicks in

31

Amazon’s Dynamo: Back-end storage

Client Requests

\{/
FRTRTRT
~_

R
s

Request Routing

Problem

Partitioning

Technique

Consistent Hashing

Advantage

Incremental
Scalability

High Availability

Vector clocks with
reconciliation

Version size is
decoupled from

Reguest Routing

Dynamo instances

\
S

iliﬂ

le——

Amazon
S3

BT WATIES during reads update rates.
el Avalla-b-lllty and
durability when
temporary Sloppy Quorums :
) some replicas not
failures .
available.
Recovering I Synchromz.es |
permanent S divergent replicas in
failures P background.

Membership and
failure detection

Gossip-based
membership and
failure detection

Avoids needing
centralized registry.

Summary

Global time doesn’t exist in distributed system
Logical time can be established via version #’s

Logical time useful in various consistency models
— Strong > Causal > Eventual

Wednesday
— What are algorithms for achieving strong consistency?

— What'’s possible among distributed replicated?
 Strong consistency, availability, partition tolerance: Pick two

