Finger table

N8 +1 [N14
N8 + 2 |N14
N8 +4 |N14
N8 + 8 |N21
N8 +16 |N32
N8 +32 [N42

N51

N48

P2P Systems and Distributed Hash Tables

Section 9.4.2

COS 461: Computer Networks
Spring 2011

Mike Freedman
http://www.cs.princeton.edu/courses/archive/springl1/cos461/

P2P as Overlay Networking

* P2P applications need to:

— Track identities & IP addresses of peers
* May be many and may have significant churn

— Route messages among peers
* If you don’t keep track of all peers, this is “multi-hop”

* Overlay network
— Peers doing both naming and routing
— |IP becomes “just” the low-level transport

Early P2P

Early P2P I: Client-Server

* Napster
— Client-server search 1. insert
— “P2P” file xfer)

U
LR ns i

]
=

2. search

----——---—---. |:|_7 Xyz.mp3 ?
3. transfer

Early P2P Il: Flooding on Overlays

I

==

\ \%3 \sea rch

% /E\ -
i

FIoodmg

Early P2P Il: Flooding on Overlays

|:|_7
J
f] 7xyz.mp3 ?

Flooding

i
x

sea rch

Early P2P Il: Flooding on Overlays

Early P2P II: “Ultra/super peers”

e Ultra-peers can be installed (KaZaA) or self-
promoted (Gnutella)
— Also useful for NAT circumvention, e.g., in Skype

Lessons and Limitations

* Client-Server performs well
— But not always feasible: Performance not often key issue!

* Things that flood-based systems do well
— Organic scaling
— Decentralization of visibility and liability
— Finding popular stuff
— Fancy local queries

* Things that flood-based systems do poorly
— Finding unpopular stuff
— Fancy distributed queries
— Vulnerabilities: data poisoning, tracking, etc.
— Guarantees about anything (answer quality, privacy, etc.)

Structured Overlays:
Distributed Hash Tables

Basic Hashing for Partitioning?

* Consider problem of data partition:

— Given document X, choose one of k servers to use

e Suppose we use modulo hashing
— Number servers 1..k

— Place X on server i = (X mod k)
* Problem? Data may not be uniformly distributed

— Place X on server i = hash (X) mod k
* Problem?
— What happens if a server fails or joins (k 2 kt1)?
— What is different clients has different estimate of k?

— Answer: All entries get remapped to new nodes!

Consistent Hashing

lookup (key,)
':/ ’: ““ ;\
G Ry = = H A A &
key,=value
key, key, keys

* Consistent hashing partitions key-space among nodes

* Contact appropriate node to lookup/store key
— Blue node determines red node is responsible for key,

— Blue node sends lookup or insert to red node

Consistent Hashing

e e
O o *e e
L4 . 3 * & .
. . .
. ’ . .

Bl & =l H & & R
00001 0010 0110 1010 | 1100 1110 1111
0001 0100 1011
* Partitioning key-space among nodes
— Nodes choose random identifiers: e.g., hash(IP)
— Keys randomly distributed in ID-space: e.g., hash(URL)

— Keys assigned to node “nearest” in ID-space

— Spreads ownership of keys evenly across nodes

Consistent Hashing

* Construction ”
— Assign n hash buckets to random points

on mod 2 circle; hash key size = k 12 4
— Map object to random position on circle

— Hash of object = closest clockwise bucket v Q

— successor (key) = bucket

e Desired features

— Balanced: No bucket has disproportionate number of objects

— Smoothness: Addition/removal of bucket does not cause
movement among existing buckets (only immediate buckets)

— Spread and load: Small set of buckets that lie near object

Consistent hashing and failures

Consider network of n nodes 14 0
If each node has 1 bucket
— Owns 1/nt" of keyspace in expectation 12)
— Says nothing of request load per bucket
8

If a node fails:

— Its successor takes over bucket
— Achieves smoothness goal: Only localized shift, not O(n)
— But now successor owns 2 buckets: keyspace of size 2/n

Instead, if each node maintains v random nodelDs, not 1
— “Virtual” nodes spread over ID space, each of size 1 /vn
— Upon failure, v successors take over, each now stores (v+1) /vn

Consistent hashing vs. DHTs

Consistent Distributed

Hashing Hash Tables
Routing table size O(n) O(log n)
Lookup / Routing O(1) O(log n)
Join/leave: O(n) O(log n)

Routing updates

Join/leave: O(1) O(1)
Key Movement

Distributed Hash Table

A &2 = H |2 A R
00001 0010 0110 1010 | 1100 1110 1111
0001 0100 1011

* Nodes’ neighbors selected from particular distribution

— Visual keyspace as a tree in distance from a node

17

Distributed Hash Table

B 4 = = & A R

0000 0010 0110 1010 1100 1110 1111

* Nodes’ neighbors selected from particular distribution
— Visual keyspace as a tree in distance from a node

— At least one neighbor known per subtree of increasing size /
distance from node

18

Distributed Hash Table

-
2 & ju B2 A A
0000 0010 0110 1010 1100 1110 1111

* Nodes’ neighbors selected from particular distribution
— Visual keyspace as a tree in distance from a node

— At least one neighbor known per subtree of increasing size /
distance from node

 Route greedily towards desired key via overlay hops

19

The Chord DHT

* Chordring: ID space mod 2160

— nodeid = SHA1 (IP address, i)

K54 7

for i=1..v virtual IDs
— keyid = SHA1 (name)

* Routing correctness:

— Each node knows successor and
predecessor on ring

* Routing efficiency:
— Each node knows O(log n) well-
distributed neighbors

N5

N48

K30

N21

Basic lookup in Chord

N1

lookup (id):
if (id > pred.id && K54
id <= my.id)

lookup(K54)

/

N8

N51

return my.id; N4

else

return succ.lookup(id); N21

N32

* Route hop by hop via successors
— O(n) hops to find destination id

22

Efficient lookup in Chord

lookup (id):
if (id > pred.id && K54 N5
id <= my.id)

lookup(54)
s

o N14
return my.id; Nas

else
// fingers() by decreasing distance N21
for finger in fingers(): ¥

if id <= finger.id

N32

return finger.lookup(id);

return succ.lookup(id);

* Route greedily via distant “finger” nodes
— O(log n) hops to find destination id

Building routing tables

1

lookup(54)

K54

N51

Routing Tables

N14

Finger table N21

N8 + 1 |N14
NE + 2 |N14
NE + 4 |N14
N8 + 8 |N21
N8 +16 |N32 N32
N8 +32 | N42

N51

N48

N42

Foriin1...log n:
finger[i] = successor ((my.id + 2') mod 2160

Joining and managing routing

* Join:
— Choose nodeid
— Lookup (my.id) to find place on ring

— During lookup, discover future successor
— Learn predecessor from successor

— Update succ and pred that you joined
— Find fingers by lookup ((my.id + 27) mod 2160) ..«

N32

* Monitor: K30 |

— If doesn’t respond for some time, find new JM
* Leave: Just go, already! ’N.;;;’¢6

— (Warn your neighbors if you feel like it) NG2 =

DHT Desigh Goals

* An “overlay” network with:
— Flexible mapping of keys to physical nodes
— Small network diameter
— Small degree (fanout)
— Local routing decisions
— Robustness to churn
— Routing flexibility
— Decent locality (low “stretch”)

* Different “storage” mechanisms considered:
— Persistence w/ additional mechanisms for fault recovery
— Best effort caching and maintenance via soft state

Storage models

* Store only on key’s immediate successor

— Churn, routing issues, packet loss make lookup
failure more likely

e Store on k successors
— When nodes detect succ/pred fail, re-replicate

e Cache along reverse lookup path
— Provided data is immutable
— ...and performing recursive responses

Summary

* Peer-to-peer systems
— Unstructured systems
* Finding hay, performing keyword search
— Structured systems (DHTSs)
* Finding needles, exact match

e Distributed hash tables
— Based around consistent hashing with views of O(log n)
— Chord, Pastry, CAN, Koorde, Kademlia, Tapestry, Viceroy, ...

* Lots of systems issues

— Heterogeneity, storage models, locality, churn management,
underlay issues, ...

— DHTs deployed in wild: Vuze (Kademlia) has 1M+ active users

