

Network and Communication Security

Section 8.1 - 8.3

COS 461: Computer Networks
Spring 2011

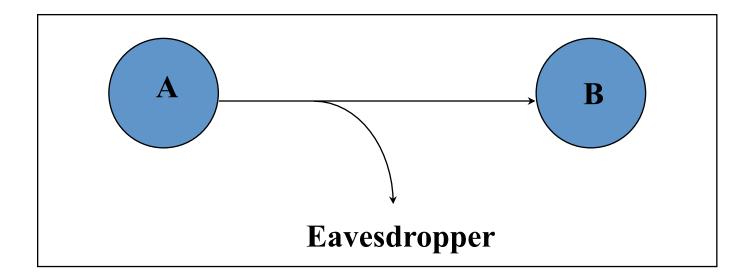
Mike Freedman

http://www.cs.princeton.edu/courses/archive/spring11/cos461/

Overview

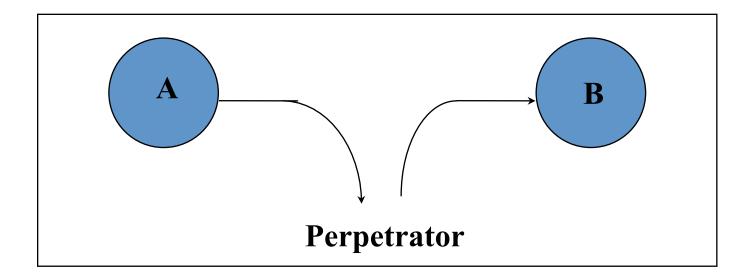
- Network security and definitions
- Brief introduction to cryptography
 - Cryptographic hash hunctions
 - Symmetric-key crypto
 - Public-key crypto

Internet's Design: Insecure

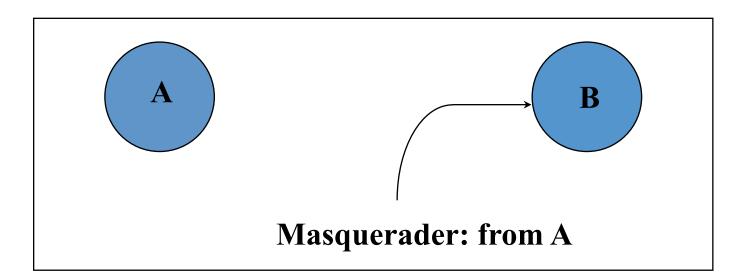

- Designed for simplicity
- "On by default" design
- Readily available zombie machines
- Attacks look like normal traffic
- Internet's federated operation obstructs cooperation for diagnosis/mitigation

Basic Components

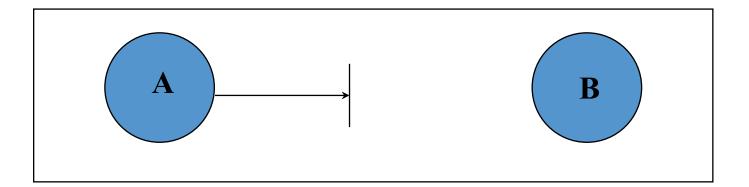
- Confidentiality: Concealment of information or resources
- Authenticity: Identification and assurance of origin of info
- Integrity: Trustworthiness of data or resources in terms of preventing improper and unauthorized changes
- Availability: Ability to use desired info or resource
- Non-repudiation: Offer of evidence that a party indeed is sender or a receiver of certain information
- Access control: Facilities to determine and enforce who is allowed access to what resources (host, software, network, ...)


Eavesdropping - Message Interception (Attack on Confidentiality)

- Unauthorized access to information
- Packet sniffers and wiretappers (e.g. tcpdump)
- Illicit copying of files and programs


Integrity Attack - Tampering

- Stop the flow of the message
- Delay and optionally modify the message
- Release the message again


Authenticity Attack - Fabrication

- Unauthorized assumption of other's identity
- Generate and distribute objects under identity

Attack on Availability

- Destroy hardware (cutting fiber) or software
- Modify software in a subtle way
- Corrupt packets in transit

- Blatant denial of service (DoS):
 - Crashing the server
 - Overwhelm the server (use up its resource)

Impact of Attacks

- Theft of confidential information
- Unauthorized use of
 - Network bandwidth
 - Computing resource
- Spread of false information
- Disruption of legitimate services

Introduction to Cryptography

What is Cryptography?

- Comes from Greek word meaning "secret"
 - Primitives also can provide integrity, authentication
- Cryptographers invent secret codes to attempt to hide messages from unauthorized observers

- Modern encryption:
 - Algorithm public, key secret and provides security
 - May be symmetric (secret) or asymmetric (public)

Cryptographic Algorithms: Goal

- Given key, relatively easy to compute
- Without key, hard to compute (invert)
- "Level" of security often based on "length" of key

Three Types of Functions

- Cryptographic hash Functions
 - Zero keys

- Secret-key functions
 - One key

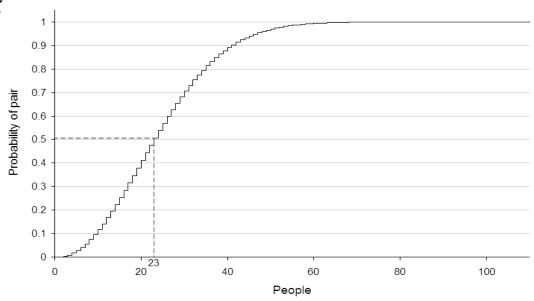
- Public-key functions
 - Two keys

Cryptographic hash functions

Cryptography Hash Functions

 Take message, m, of arbitrary length and produces a smaller (short) number, h(m)

Properties


- Easy to compute h(m)
- Pre-image resistance: Hard to find an m, given h(m)
 - "One-way function"
- Second pre-image resistance: Hard to find two values that hash to the same h(m)
 - E.g. discover collision: h(m) == h(m') for m != m'
- Often assumed: output of hash fn's "looks" random

How hard to find collisions? Birthday Paradox

- Compute probability of *different* birthdays
- Random sample of *n* people taken from k=365 days
- Probability of no repetition:

$$-P = 1 - (1)(1 - 1/365)(1 - 2/365)(1 - 3/365)...(1 - (n-1)/365)$$

-
$$P \approx 1 - e^{-(n(n-1)/2k)}$$

- Let $k=n$, $P \approx 2^{(N/2)}$

How Many Bits for Hash?

- If m bits, takes $2^{m/2}$ to find weak collision
 - Still takes 2^m to find strong (pre-image) collision

• 64 bits, takes 2³² messages to search (easy!)

Now, MD5 (128 bits) considered too little

SHA-1 (160 bits) getting old

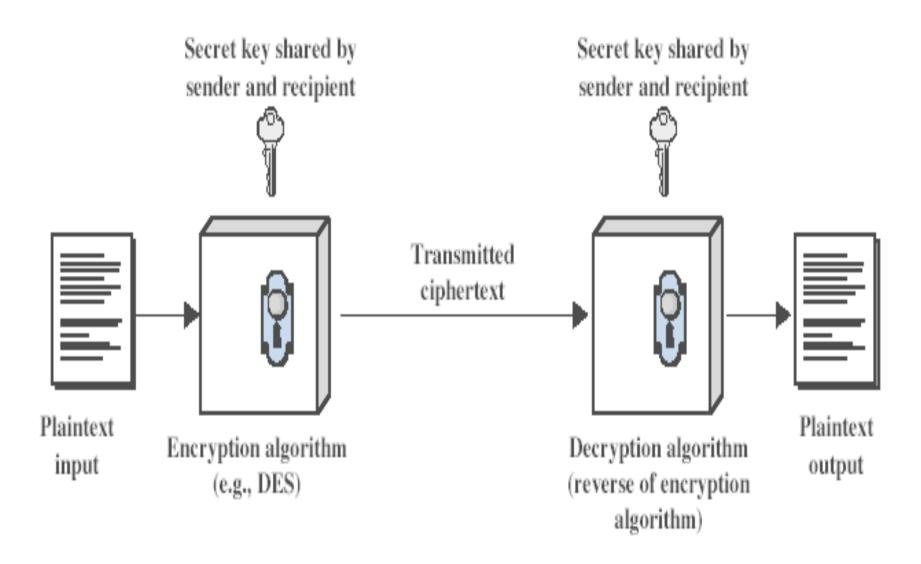
Example use #1: Passwords

- Password hashing
 - Can't store passwords in a file that could be read
 - Concerned with insider attacks!
 - Must compare typed passwords to stored passwords
 - Does hash (typed) == hash (password) ?
 - Actually, a "salt" is often used: hash (input | | salt)
 - Avoids precomputation of all possible hashes in "rainbow tables" (available for download from file-sharing systems)

Example use #2: Self-certifying naming

- File-sharing software (LimeWire, BitTorrent)
 - File named by $F_{name} = hash (data)$
 - Participants verify that hash (downloaded) == F_{name}
 - If check fails, reject data
- Recursively applied...
 - BitTorrent file has many chunks
 - Control file downloaded from tracker includes:
 - \forall chunks, F_{chunk name} = hash (chunk)
 - BitTorrent client verifies each individual chunk

Example use #3: TCP SYN cookies


- What state is established during TCP conn setup?
 - Server: Initial Sequence Number (ISN), kernel bufs, MSS info
 - Attack: Setup state at server with SYN, never follow-up
 - Particularly bad: client spoofs IP, never needs response
- General idea of SYN cookies:
 - Server responds to Client SYN with SYN-ACK cookie
 - timestamp = time() mod 32
 - seqno = f (timestamp, src ip, src port, dest ip, dest port)
 - Server's ISN = timestamp [5b] || mss[3b] || seqno [24b]
 - Keeps no state. Delays memory buffer allocation.
 - Honest client responds with ACK (of server ISN)
 - Server checks response. If seqno valid, establishes conn

Symmetric (Secret) Key Cryptography

Symmetric Encryption

- Also: "conventional / private-key / single-key"
 - Sender and recipient share a common key
 - All classical encryption algorithms are private-key
 - Dual use: confidentiality or authentication/integrity
 - Encryption vs. msg authentication code (MAC)
- Was only type of encryption prior to invention of public-key in 1970's
 - Most widely used
 - More computationally efficient than "public key"

Symmetric Cipher Model

Use and Requirements

- Two requirements
 - Strong encryption algorithm
 - Secret key known only to sender / receiver
- Goal: Given key, generate 1-to-1 mapping to ciphertext that looks random if key unknown
 - Assume algorithm is known (no security by obscurity)
 - Implies secure channel to distribute key

Confidentiality (Encryption)

Sender:

- Compute $C = AES_{\kappa}(M)$
- Send C

Receiver:

• Recover $M = AES'_{K}(C)$

Auth/Integrity (MAC)

Sender:

- Compute $H = AES_{\kappa}(SHA1 (M))$
- Send <M, H>

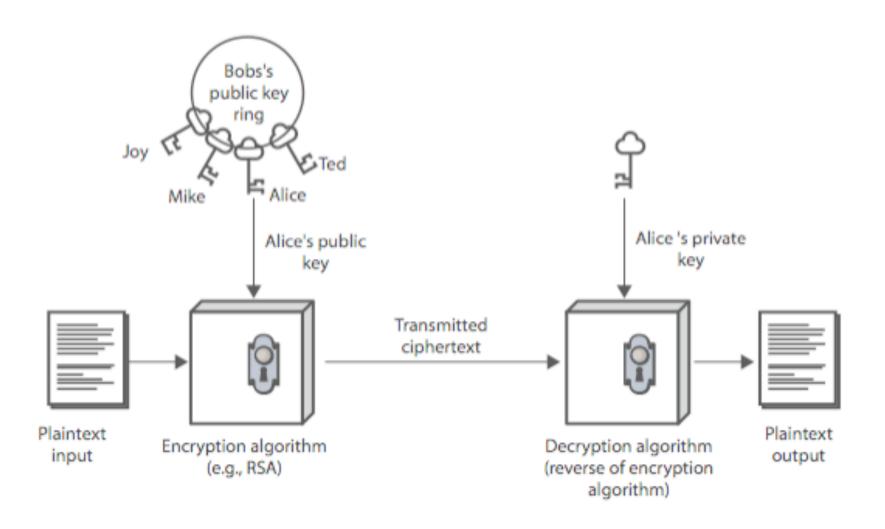
Receiver:

- Computer H' = AES_K(SHA1 (M))
- Check H' == H

Public-Key Cryptography

Why Public-Key Cryptography?

- Developed to address two key issues:
 - Key distribution: Secure communication w/o having to trust a key distribution center with your key
 - Digital signatures: Verify msg comes intact from claimed sender (w/o prior establishment)
- Public invention due to Whitfield Diffie & Martin Hellman in 1976
 - Known earlier in classified community


Public-Key Cryptography

- Public-key/asymmetric crypto involves use of two keys
 - Public-key: Known by anybody, and can be used to encrypt messages and verify signatures
 - Private-key: Known only to recipient, used to decrypt messages and sign (create) signatures

Asymmetric because

- Can encrypt messages or verify signatures w/o ability to decrypt messages or create signatures
- If "one-way function" goes c ← F(m), then public-key encryption is a "trap-door" function:
 - Easy to compute $c \leftarrow F(m)$
 - Hard to compute $m \leftarrow F^{-1}(m)$ without knowing k
 - Easy to compute $m \leftarrow F^{-1}(m,k)$ by knowing k

Public-Key Cryptography

Security of Public Key Schemes

- Like private key schemes, brute force search possible
 - But keys used are too large (e.g., >= 1024bits)
- Security relies on a difference in computational difficulty b/w easy and hard problems
 - RSA: exponentiation in composite group vs. factoring
 - ElGamal/DH: exponentiation vs. discrete logarithm in prime group
 - Hard problem is known, but computationally expensive
- Requires use of very large numbers
 - Hence is slow compared to private key schemes
 - RSA-1024: 80 us / encryption; 1460 us / decryption [cryptopp.com]
 - AES-128: 109 MB / sec = 1.2us / 1024 bits

(Simple) RSA Algorithm

- Security due to cost of factoring large numbers
 - Factorization takes O(e log n log log n) operations (hard)
 - Exponentiation takes O((log n)³) operations (easy)
- To encrypt a message M the sender:
 - Obtain public key $\{e, n\}$; compute $C = M^e \mod n$
- To decrypt the ciphertext C the owner:
 - Use private key $\{d, n\}$; computes $M = C^d \mod n$
- Note that msg M must be smaller than the modulus n
 - Otherwise, hybrid encryption:
 - Generate random symmetric key r
 - Use public key encryption to encrypt r
 - Use symmetric key encryption under r to encrypt M

Summary

- Network security and definitions
- Introduction to cryptography
 - Cryptographic hash functions
 - Zero keys, hard to invert, hard to find collisions
 - Symmetric-key crypto
 - One key, hard to invert, requires key distribution
 - Public-key crypto
 - Two keys, hard to invert, more expensive

Wed: IPSec, HTTPS, DNSSEC, other security problems