BNOINGErIND Internel Sollware............................

Internet Systems

This article explores
the desion principles
guiding the creation
of scalable systems.
Each principle is

34 IEEE SOFTWARE

Golleen Roe and Sergio Gonik, GeniStone Systems

n today’s Internet systems, nothing is constant but change. If you build

a successful site they will come—and boy, will they come. Consequently,

designers today are faced with building systems to serve an unknown

number of concurrent users with an unknown hit rate and transactions-

per-second requirement. The key to designing and maintaining such systems

is to build in scalability features from the start, to create Internet systems

whose capacity we can incrementally increase to satisfy ramping demand.

Any application can essentially be char-
acterized by its consumption of four pri-
mary system resources: CPU, memory, file
system bandwidth, and network band-
width. Scalability is achieved by simultane-
ously optimizing the consumption of these
resources and designing an architecture that
can grow modularly by adding more re-
sources. This article looks at the underlying
principles needed to achieve such designs
and discusses some specific strategies that
exploit these principles.

The principles of scalable
architecture

Relatively few design principles are re-
quired to design scalable systems. The list is
limited to

B divide and conquer (D&C)
B asynchrony

March/April 2002

B encapsulation
B concurrency
B parsimony

We have used these principles in system de-
sign over several years with good success.
As is evident in the discussion that follows,
there is some degree of overlap in the prin-
ciples. Despite this, each presents a concept
that is important in its own right when de-
signing scalable systems. There are also ten-
sions between these principles; one might
sometimes be applied at the cost of another.
The crux of good system design is to strike
the right balance.

Divide and conquer

D&C means that the system should be
partitioned into relatively small subsystems,
each carrying out some well-focused func-
tion. This permits deployments that can

0740-7459/02/$17.00 © 2002 IEEE




leverage multiple hardware platforms or
simply separate processes or threads,
thereby dispersing the load in the system
and enabling various forms of load balanc-
ing and tuning.

D&C varies slightly from the concept of
modularization in that it addresses the parti-
tioning of both code and data and could ap-
proach the problem from either side. One
example is replicated systems. Many appli-
cations can, in fact, be broken into repli-
cated instances of a system. Consider an in-
surance application that is deployed as five
separate but identical systems, each serving
some specific geography. If load increases,
more instances are deployed, and all running
instances now service a smaller geography.

Another example is functional-physical
partitioning. A system that processes orders
is broken into two components: an order-
taking component and an order-satisfaction
component. The order-taking component
acquires order information and places it in a
queue that is fed into the order-satisfaction
component. If system load increases, the
components might run on two or more sep-
arate machines.

Asynchrony

Asynchrony means that work can be car-
ried out in the system on a resource-avail-
able basis. Synchronization constrains a
system under load because application com-
ponents cannot process work in random or-
der, even if resources exist to do so. Asyn-
chrony decouples functions and lets the
system schedule resources more freely and
thus potentially more completely. This lets
us implement strategies that effectively deal
with stress conditions such as peak load.

Asynchrony comes at a price. Asynchro-
nous communications are generally more dif-
ficult to design, debug, and manage. “Don’t
block” is probably the most important ad-
vice a scalable-system designer can receive.
Blocking = bottlenecks. Designing asynchro-
nous communications between systems or
even between objects is always preferable.

Moreover, use background processing
where feasible. Always question the need to
do work online in real time. A little lateral
thinking can sometimes result in a solution
that moves some work into background
processing. For example, order satisfaction
can include a background process that

emails an appropriate notification to the
user on completion.

Encapsulation

Encapsulation results in system compo-
nents that are loosely coupled; ideally, there
is little or no dependence among compo-
nents. This principle often (but not always)
correlates strongly with asynchrony. Highly
asynchronous systems tend to have well-en-
capsulated components and vice versa. Loose
coupling means that components can pursue
work without waiting on work from others.

Layers and partitions are an example of
the application of encapsulation. Layers and
partitions within layers are the original prin-
ciples that drive software architecture. The
concepts might be old, but they are still legit-
imate. Layers provide well-insulated bound-
aries between system parts, and they permit
reimplementation of layers without perturba-
tion to surrounding layers. Work can be car-
ried out independently within layers.

Concurrency

Concurrency means that there are many
moving parts in a system. Activities are split
across hardware, processes, and threads and
can exploit the physical concurrency of
modern symmetric multiprocessors. Con-
currency aids scalability by ensuring that
the maximum possible work is active at all
times and addresses system load by spawn-
ing new resources on demand (within pre-
defined limits). One example is to exploit
multithreading. Question the need to carry
out work serially. Look for opportunities to
spawn threads to carry out tasks asynchro-
nously and concurrently. You can also ac-
commodate expansion by adding more
physical platforms. Concurrency also maps
directly to the ability to scale by rolling in
new hardware. The more concurrency an
application exploits, the better the possibil-
ities to expand by adding more hardware.

Parsimony

Parsimony means that a designer must be
economical in what he or she designs. Each
line of code and each piece of state infor-
mation has a cost, and, collectively, the
costs can increase exponentially. A devel-
oper must ensure that the implementation is
as efficient and lightweight as possible. Pay-
ing attention to thousands of microdetails in

March/April 2002

The more

concurrency an

application
exploits, the
better the
possibilities t
expand by
adding more
hardware.

IEEE SOFTWARE

35



Application stack

Figure 1. Layers and their responsibilities in a service-based architecture.

36

IEEE SOFTWARE

a design and implementation can eventually
pay off at the macrolevel with improved sys-
tem throughput.

Parsimony also means that designers
must carefully use scarce or expensive re-
sources. Such resources might be cached or
pooled and multiplexed whenever possible.
This principle basically pervades all the oth-
ers. No matter what design principle a de-
veloper applies, a parsimonious implementa-
tion is appropriate. Some examples include

m Algorithms. Ensure that algorithms are
optimal to the task at hand. Everyone
knows that O(n) algorithms are prefer-
able to, say, O(n?), but sometimes this is
overlooked. Several small inefficiencies
can add up and kill performance.

B Object models. Pare object models to the
bone. Most large object models with
many object-to-object relationships are
expensive to instantiate, traverse, process,
or distribute. We sometimes have to com-
promise a model’s purity for a simpler
and more tractable model to aid system
performance.

B [/O. Performing I/O, whether disk or
network, is typically the most expensive
operation in a system. Pare down I/O
activities to the bare minimum. Con-
sider buffering schemes that collect data
and do a single I/O operation as op-
posed to many.

B Transactions. Transactions use costly re-
sources. Applications should work out-
side of transactions whenever feasible
and go into and out of each transaction
in the shortest time possible.

Strategies for achieving scalability

Strategies are high-level applications of
one or more design principles. They are not
design patterns but rather entities that en-
compass a class of patterns. Given a strat-

March/April 2002

egy, we can articulate multiple patterns that
embody its semantics.

Careful system partitioning

A scalable system’s most notable charac-
teristic is its ability to balance load. As the
system scales up to meet demand, it should do
so by optimally distributing resource utiliza-
tion. For Java-based Internet systems, load
balancing maps to a well-distributed virtual
machine (VM) workload from Web client
hits. For other systems, the workload is dis-
tributed among operating system processes.

Partitioning breaks system software into
domain components with well-bounded
functionality and a clear interface. In object
terms, a domain component is “a set of
classes that collaborate among themselves to
support a cohesive set of contracts that you
can consider black boxes.”! Each compo-
nent defines part of the architectural concep-
tual model and a group of functional blocks
and connectors.? Ultimately, the goal is to
partition the solution space into appropriate
domain components that map onto the sys-
tem topology in a scalable manner. Princi-
ples to apply in this strategy include D&C,
asynchrony, encapsulation, and concurrency.

Service-based layered architecture

During design, a service-oriented perspec-
tive facilitates the definition of appropriate
components and data-sharing strategies. A
service encapsulates a subset of the applica-
tion domain into a domain component and
provides clients contractual access to it. By
making services available to a client’s appli-
cation layer, service-based architectures (see
Figure 1) offer an opportunity to share a sin-
gle component across many different sys-
tems. Having a services front end lets a com-
ponent offer different access rights and
visibility to different clients.

In a sense, services do for components
what interfaces do for objects. Domain



components are shared by different remote
systems, each having its own contractual
view of the component. This paradigm is
helpful in Web-enabled enterprise applica-
tion integration (EAI) solutions.3

A service-based architecture not only aids
scalability by statically assisting in proper
component design; it also offers dynamic
benefits. For example, Enterprise JavaBeans’
stateless session beans help implement a serv-
ice layer that supports dynamic scalability by
enabling multiplexed access from different
clients—through bean implementation shar-
ing (see http://java.sun.com/products/ejb/
docs.html). We would gain further benefits if
we pooled stateless session bean interfaces in
the Web server tier. Each interface would be
associated with a preactivated bean imple-
mentation living in a middle-tier VM. We
could then use these interfaces to load balance
across the VMs. Principles to apply in this
strategy include D&C and encapsulation.

Just-enough data distribution

The primary principle for object distribu-
tion is parsimony: distribute out as little
data as possible. For an object to be distrib-
uted outward, it must be serialized and
passed through memory or over a network.
This involves three system resources:

B CPU utilization and memory in the
server to serialize the object and possi-
bly packetize it for travel across the net-
work

m Network bandwidth or interprocess com-
munication activity to actually transmit
to the receiver

B CPU utilization and memory in the re-
ceiver to (possibly) unpacketize, deseri-
alize, and reconstruct the object graph

Hence, an object’s movement from server to
receiver comes at a fairly high cost.

There are two benefits of just-enough data
distribution: it diminishes the bandwidth
needed to flow data through the system, and
it lessens the amount of data a process con-
tains at any particular point in time.

Let’s step back and look at the big pic-
ture. Suppose a large e-commerce applica-
tion services 10,000 concurrent users. Each
user must receive data. Now suppose the
amount of information sent to a client in-
creases by 10 Kbytes per hit. The total

amount of additional information the sys-
tem would thus have to send to service all
its clients would increase by 100 Mbytes.
Because large-scale systems serve many
users, relatively small increases in the
amount of data sent to an individual client
are magnified thousands of times. Seem-
ingly small increases can have a significant
impact on total system throughput.

There are quite a few guidelines for keep-
ing just the right amount of data in the right
place at the right time. The next several
paragraphs describe some techniques.

Use lazy initialization strategies to fetch
only the frequently used fields when an object
is first instantiated and initialized. Lazy ini-
tialization schemes can save significant data-
base querying, but a designer must under-
stand what fields are most commonly used in
a class to devise a good scheme. Be fore-
warned that too much lazy initialization is a
bad thing. A design must balance the costs of
bringing more data over at object initializa-
tion time against the need to go back to the
database again and again to fetch more fields.

Use state holders to pass requested data
from the back end to the presentation layer.
State holders represent a flattening of the
object graph into one object containing all
the pertinent data for a particular business
case. A service-based layered architecture
supports this concept well because services
tend to be associated with subsets of data
from domain model graphs.

In C and C++, data is commonly passed
around by reference because having a
shared memory view is easy. VMs have pri-
vate memory, and Java does not offer
pointer functionality directly, so application
data tends to be passed by value. Current
Java technologies offer a shared memory
view across VMs, and some offer transac-
tional access to shared data and even per-
sistence in native object format. This kind of
technology can help optimize performance.

If direct reference is not possible, use a key
system for passing data identity. Keys can, for
example, define catalog data associated with
a Web page. Instead of sending the whole cat-
alog to the user’s browser, an initial view is
sent and follow-up views are populated as
necessary based on returned request keys.

Sharing read-only data can significantly
improve scalability by cutting down on data-
base queries and subsequent I/O. In a Java 2

March/April 2002

A service-
based
architecture
not only aids

scalabilitv by

statically
assisting in
proper
component

design: it also

offers dynami
benefits.

IEEE SOFTWARE

37



The world Is
moving in the
direction of
alerting and
notification,
which are
push-based
paradigms.
Gonsequently,
even
transactional
requests are
Increasingly
handled
asynchronousiy.

38 IEEE SOFTWARE

Enterprise Edition application, many users
might execute in the same VM. Each user
can avoid acquiring its own copy of data by
sharing read-only copies across all users.

Do not underestimate the impact of ob-
ject distribution. In our experience, it is of-
ten the primary determinant of system via-
bility in distributed systems. Principles that
apply in this strategy include parsimony and
D&C.

Pooling and multiplexing

Pooling is an effective way to share and
reuse resources, which can be expensive in
terms of memory usage (for example, large
object graphs) or overhead (such as object
instantiation, remote object activation, and
relational database [RDB] connections).
Initialization for remotely accessed re-
sources is especially expensive because var-
ious protocols at different layers come into

lay. Furthermore, these resources have

hard limits (such as the availability of
ports) and scalability constraints on the re-
mote server software itself. Pooling in gen-
eral and multiplexing connections in partic-
ular are solutions that optimize resource
sharing and reuse. Some examples of re-
sources that might be pooled include Java
database connectivity (JDBC) connections,
RDB connections, buffers, EJBs, and ports.

Multiplexing lets many actors share one
resource. The paradigm is especially valu-
able when accessing back-end systems using
JDBC connections or the like.

Here are some approaches to pooling:

B Manage pool resources dynamically,
creating resources on an as-needed basis
and letting resources be reaped after a
set time. One option is to use a back-
ground process to wake up at preset
epochs and remove unused resources.
The pool can then dynamically meet
changing system load requirements
throughout the day.

B Always test for resource validity before
use when managing resources whose life
cycle you do not fully control.

The main principle that applies in pooling is
parsimony.

Queuing work for background processes
Queuing lets a foreground resource serv-

March/April 2002

ing an interactive user delegate work to a
background process, which makes the fore-
ground resource more responsive to the
user. Queuing can also permit work prioriti-
zation. Data warehouse searches, object
cache synchronization with a back-end
RDB, and message-broker-based EAI inte-
gration are all examples of candidates for
asynchronous decoupled interaction.

If a designer uses a priority scheme, he or
she can map it to various queues to increase
throughput by using concurrent dispatch-
ing. Careful management of the number of
queues and their relative priority can en-
hance scalability. Queue content dispatched
to domain components in other processes,
perhaps using a messaging subsystem, af-
fords an opportunity for load balancing.
Designers can accomplish load balancing by

B Replicating functionality into various
processes and apportioning the number
of queued requests sent to each process,
possibly with a weighting factor for
each request based on its memory, 1/0,
and computational resource usage

m Partitioning functionality into various
processes and apportioning according
to type the queued requests sent to each
process, again possibly with a weighting
factor

m Combining these schemes to apportion
requests according to type and number

The key here is to always try to tease
apart a design issue so that it can be handled
asynchronously. Resist the trap of assuming
everything must be synchronous. Consider
that even customer access from a Web
browser does not necessarily require syn-
chronous response (response at the applica-
tion level, not the HTTP level). For exam-
ple, an online customer need not necessarily
wait for credit card approval. A designer
could set up a merchandise payment use
case so that an email message is sent with
the purchase confirmation sometime after
the purchase. The world is moving in the di-
rection of alerting and notification, which
are push-based paradigms. Consequently,
even transactional requests are increasingly
handled asynchronously.

Often it makes sense to run queued jobs
on a scheduled basis. In this kind of queue-
based batching, a background process is



scheduled to wake up during nonpeak pro-
duction system hours and service all out-
standing requests. This enhances scalability
by spreading system usage across time. Prin-
ciples to apply in this strategy include
D&C, asynchrony, and concurrency.

Near real-time synchronization of data

It is common for designers to assume that
in Web applications transactional changes
must be instantly reflected in all federated
databases of record. The problem is that
synchronous distributed transactions are
costly. Solutions such as two-phase commits
increase network load, create multiple
points of failure, and generate multiple wait
states where the transaction time is bounded
by the slowest system.

Transactions rarely have to be synchro-
nously distributed across all involved sys-
tems. For example, a data warehouse
update can typically withstand some transac-
tional delay, because it is not part of a real-
time business process. In this case, the delay
could be on the order of a few seconds (or
more), but even critical systems might be able
to handle synchronization latencies of a few
hundred milliseconds. Near real-time syn-
chronization assists scalability by spreading
the system’s transactional load across time.

In converting real-time synchronous dis-
tributed transactions into near real-time
asynchronous ones, the best recourse is to
choose a single database as the primary
database of record. This primary database
serves as the synchronization resource for all
others.* Principles that apply in this strategy
include D&C, asynchrony, and concurrency.

Distributed session tracking

Generally, session tracking is maintained
on a Web server either through cookies or
by server-specific internal mechanisms. This
limits load balancing across servers because
clients must always be routed back through
the same server so that their session state is
available. Routing users to any Web server
on a request-by-request basis is preferable
because HTTP is designed to optimize this
kind of resource usage. One architectural
solution, called distributed session tracking,
places the shared view of session state in a
persistent store visible to all Web servers. A
client can be routed to any server, and the
session state will still be available. Typically,

the persistent store is an RDB.

Distributed session tracking results in bet-
ter load balancing, but it comes at a cost. If
a designer uses the same RDB system for ses-
sion tracking and business-related transac-
tions, the load on the RDB increases consid-
erably. There is also the overhead of having
to object-to-relational map session state. A
better solution for implementing distributed
session tracking is to use a secondary light-
weight RDB, an object database (ODB), or,
better yet, an object cache with shared visi-
bility across VMs. Principles that apply in
this strategy include D&C and concurrency.

Intelligent Web site load distribution

Perhaps the prime characterization of an
Internet application is the requirement to
transport files of all kinds around the net-
work in an efficient manner. End-user satis-
faction with a site is highly correlated with
the speed at which information is rendered.
However, rendering covers a whole plethora
of possibilities—simple HTML pages, pic-
tures, streaming audio or video, and so on.

A well-designed Web site can handle
many concurrent requests for simple HTML
files, but entities such as streaming video in-
volve much larger demands. For a busy Web
site, it could be literally impossible to han-
dle peak loads in a reasonable manner. The
solution is to replicate these static, high-
bandwidth resources to better manage the
load. Incoming HTTP requests redirect to
the mirrored facilities based on some com-
bination of available server and network ca-
pacity. This can be accomplished internally
or by subscribing to one of the commercial
providers who specialize in this type of serv-
ice. Principles that apply in this strategy in-
clude D&C, asynchrony, and concurrency.

Keep it simple

Donald A. Norman warns in the preface
to The Design of Everyday Things, “Rule
of thumb: if you think something is clever
and sophisticated, beware—it is probably
self-indulgence.”’

The software development cycle’s elabo-
ration phase is an iterative endeavor, and
customer requirements need constant
reevaluation. Complicated solutions make
refactoring harder. In accordance with Oc-
cam’s Razor, when faced with two design
approaches, choose the simpler one. If the

March/April 2002

End-user
satisfaction

correlated with

the speed at
which

information is

rendered.

IEEE SOFTWARE

39



<<synchronize>>

<<redesign>>

<<redefine>>

J

Figure 2. The scalability design process. To simplify the
diagram, we chose stereotypes instead of branches. The
stereotypes <<redesign>> and <<redefine>> should be clear
from the main text. The <<synchronize-> stereotype
guarantees that new domain component functionality
translates back to the conceptual view.

simpler solution proves inadequate to the
purpose, consider the more complicated
counterpart in the project’s later stages.

Putting it all together

Although the complete mapping of a
problem domain into a solution space is be-
yond this article’s scope, this section offers
up a process for system partitioning. Each
step in the process uses strategies presented
in the previous sections.

The nature of design is decidedly nonlin-

40 |EEE SOFTWARE March/April 2002

ear: it is iterative, recursive, and sometimes
anticipatory. Consequently, design does not
progress through the following steps in a
linear fashion. Rather it loops and cycles
through them (see Figure 2).

Design conceptual view

Create a conceptual view of the architec-
ture, defining appropriate domain-specific
functional blocks and connectors that fol-
low good responsibility-driven design prin-
ciples.® This breaks down a solution space
into functional components with an encap-
sulated set of responsibilities, appropriate
communications protocols, and connectors
to manage those protocols.

Map basic topology

Map the conceptual view into an initial
system topology. This exposes all system
stakeholders in the architecture—legacy sys-
tems, data sources, server hardware, mid-
dleware, and so on. Identify the role each
system plays in the overall design and its re-
sponsibilities, needs, and constraints. For
legacy systems, identify usage patterns. In
keeping with the KISS principle, start with a
minimal setup, such as one VM or process
per tier, one Web server, and so on. Identify
systems that are candidates for using repli-
cation, pooling, data-partitioning schemes,
and so forth.

Define domain components

For each system in your topology, group
functional blocks into domain components.
It is at this stage that a designer should con-
sider existing layering paradigms to assist in
the grouping. In particular, consider a serv-
ice-based layered architecture.” Also, at this
point, third-party software components
should be considered because they present
previously defined interfaces and usage con-
straints. Domain components should also be
designed to best use available standards, so
match a domain component with a stan-
dard’s APIs. In terms of initial scalability con-
cerns, group the functional blocks initially to
minimize communication bandwidth and
coupling. Check created domain component
candidates for possible queued background
processing or, possibly, batched processing.
Identify transaction flow between domain
components and, whenever possible, avoid
distributed transactions.



Scale domain components

Now relax the single VM or process per
tier constraint. Refactor the domain compo-
nents to optimize for data distribution and re-
source use. This might mean redefining func-
tional blocks or their grouping into new
domain components, placing different do-
main components in different processes, or
replicating domain components into two or
more processes. Load-balance work among
the processes, and benchmark and measure
process memory, CPU usage, and I/O band-
width to identify well-balanced configura-
tions. Analyze where some I/O-bound or
computationally intensive domain compo-
nents should have their own processes.
Balance refactoring metrics against communi-
cation bandwidth between processes. Inter-
process communication should not cause a
huge performance hit compared to the single
process phase (at some point, the price of
communication outweighs the advantages of
domain component distribution). Identify
candidates for multiplexed resources. Keep an
eye on the back end and see how it plays
transactionally across your processes. Are
transactional deadlines being met? Are re-
sources across processes participating cor-
rectly in each transactional use case?

Scale topology

Now move back to your initial system
topology definition and double the number of
systems that you qualified as good candidates
in mapping a basic topology. At this point, it
might be necessary to incorporate some hard-
ware routing scheme or some new component
such as a Java messaging system queue. Repli-
cating systems such as those contained in Web
servers most likely will lead to replication of
associated processes. For Web server replica-
tion in particular, consider distributed session
tracking as an option for load balancing.

Tune system

Finally, based on previous refactoring ob-
servations, increase the number of qualified
systems (domain servers, content servers,
Web servers, databases of record, and so
forth) and domain components to meet
your production load demand. Ask how the
current system and domain component dis-
tribution should be refactored to handle fu-
ture load demand increases. At this point,
the application space is partitioned in a scal-

About the Authors

Colleen Roe is chief architect at GemStone Systems and has been designing and develop-
ing software systems since kindergarten (or af least that's how it feels). She has experience in
several indusiry sectors including telecommunications, oil, manufacturing, software, and phar-
maceuticals, and has developed everything from embedded systems to expert systems. Her
current research focus is scalable architectures for large e-commerce J2EE-based systems. Con-
tact her af GemStone Systems, 1260 NW Waterhouse Ave., Ste. 200, Beaverton, OR 97006;
colleenroe@earthlink.net.

Sergio Gonik is a lead architect at GemStone Systems, where he currently focuses on
next-generation large-scale e-business distributed systems. He has 13 years of experience in
the field and has designed diverse software architectures for scientific, embedded, medical,
music, and J2EE e-commerce systems. He is also a professional composer and performer who
has written and executed musical pieces for theater, dance, and film. Contact him at GemStone
Systems, 1260 NW Waterhouse Ave., Ste. 200, Beaverton, OR 97006; sergiog@gemstone.com.

able manner, so there should be a clear path
to handling load increases. If no such clear
path exists, restart the process by redefining
the architectural functional blocks or their
grouping into domain components.

his article addresses many strategies
that are important when designing
scalable architectures, but our list is
not exhaustive. Rather, it represents what
we believe to be the most critical strategies
for server-side scalability. Unfortunately,
space limitations made it impossible to in-
clude an actual example of a well-designed
scalable system built on these principles.
The principles are important guidelines,
but they are not a substitute for measure-
ment. Throughout a system’s design and im-
plementation, testing and benchmarking
what you’re building to ensure that desired
scalability is achieved is important. Software
projects should always follow a motto—
“benchmark early and benchmark often.” @

Acknowledgments

We thank Anita Osterhaug and John Cribbs for
their insightful comments and suggestions. We never
would have made it without them.

References

1. S.W. Ambler, “Distributed Object Design,” The Unified
Process: Elaboration Phase, R&D Books, Lawrence,
Kan., 2000.

2. C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture, Addison-Wesley, Reading, Mass., 2000.

3. D.S. Linthicum, Enterprise Application Integration, Ad-
dison-Wesley, Reading, Mass., 2000.

4. C. Britton, IT Architectures and Middleware: Strategies
for Building Large Integrated Systems, Addison-Wesley,
Reading, Mass., 2001.

5. D. Norman, The Design of Everyday Things, Double-
day, New York, 1988.

6. R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing
Object-Oriented Software, Prentice Hall, Englewood
Cliffs, N.J., 1990.

7. GemStone A3Team, “I-Commerce Design Issues and
Solutions,” GemStone Developer Guide, GemStone Sys-
tems, Beaverton, Ore., 2000.

March/April 2002 1EEE SOFTWARE 41



