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Abstract

Cloud Computing is emerging today as a commercial infrastructure that eliminates the need for main-
taining expensive computing hardware. Through the use of virtualization, clouds promise to address with
the same shared set of physical resources a large user base with different needs. Thus, clouds promise to
be for scientists an alternative to clusters, grids, and supercomputers. However, virtualization may induce
significant performance penalties for the demanding scientific computing workloads. In this work we present
an evaluation of the usefulness of the current cloud computing services for scientific computing. We analyze
the performance of the Amazon EC2 platform using micro-benchmarks, kernels, and e-Science workloads.
We also compare using long-term traces the performance characteristics and cost models of clouds with
those of other platforms accessible to scientists. While clouds are still changing, our results indicate that the
current cloud services need an order of magnitude in performance improvement to be useful to the scientific
community.
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1 Introduction

Scientific computing requires an ever-increasing number of resources to deliver results for growing problem sizes
in a reasonable time frame. In the last decade, while the largest research projects were able to afford expensive
supercomputers, other projects were forced to opt for cheaper resources such as commodity clusters and grids.
Cloud computing proposes an alternative in which resources are no longer hosted by the researcher’s compu-
tational facilities, but leased from big data centers only when needed. Despite the existence of several cloud
computing vendors, such as Amazon [5] and GoGrid [15], the potential of clouds remains largely unexplored.
To address this issue, in this paper we present a performance analysis of cloud computing services for scientific
computing.

The cloud computing paradigm holds good promise for the performance-hungry scientific community. Clouds
promise to be a cheap alternative to supercomputers and specialized clusters, a much more reliable platform than
grids, and a much more scalable platform than the largest of commodity clusters or resource pool. Clouds also
promise to “scale by credit card,” that is, scale up immediately and temporarily with the only limits imposed
by financial reasons, as opposed to the physical limits of adding nodes to cluster or even supercomputers or to
the financial burden of over-provisioning resources. Moreover, clouds promise good support for bags-of-tasks,
currently the dominant grid application type [23]. However, clouds also raise important challenges in many
areas connected to scientific computing, including performance, which is the focus of this work.

There are two main differences between the scientific computing workloads and the initial target workload
of clouds, one in size and the other in performance demand. Top scientific computing facilities are very large
systems, with the top ten entries in the Top500 Supercomputers List totaling together about one million cores.
In contrast, cloud computing services were designed to replace the small-to-medium size enterprise data centers
with 10-20% utilization. Also, scientific computing is traditionally a high-utilization workload, with production
grids often running at over 80% utilization [17] and parallel production infrastructures (PPIs) averaging over
60% utilization [26]. Scientific workloads usually require top performance and HPC capabilities. In contrast,
most clouds use virtualization to abstract away from actual hardware, increasing the user base but potentially
lowering the attainable performance. Thus, an important research question arises: Is the performance of clouds
sufficient for scientific computing? Though early attempts to characterize clouds and other virtualized services
exist [42, 11, 34, 38], this question remains largely unexplored. Our main contribution towards answering it is
threefold:

1. We evaluate the performance of the Amazon Elastic Compute Cloud (EC2), the largest commercial com-
puting cloud in production (Section 3);

2. We compare clouds with other scientific computing alternatives using trace-based simulation and the
results of our performance evaluation (Section 4);

3. We assess avenues for improving the current clouds for scientific computing; this allows us to propose two
cloud-related research topics for the high performance distributed computing community (Section 5).

2 Amazon EC2

We identify three categories of cloud computing services: Infrastructure-as-a-Service (IaaS), that is, raw infras-
tructure and associated middleware, Platform-as-a-Service (PaaS), that is, APIs for developing applications on
an abstract platform, and Software-as-a-Service (SaaS), that is, support for running software services remotely.
The scientific community has not yet started to adopt PaaS or SaaS solutions, mainly to avoid porting legacy
applications and for lack of the needed scientific computing services, respectively. Thus, in this study we are
focusing on IaaS providers.

Unlike traditional data centers, which lease physical resources, most clouds lease virtualized resources which
are mapped and run transparently to the user by the cloud’s virtualization middleware on the cloud’s physical

Wp 4 http://www.pds.ewi.tudelft.nl/∼iosup/
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Table 1: A selection of cloud service providers. VM stands for virtual machine, S for storage.
Service type Examples

VM,S Amazon (EC2 and S3), Mosso (+CloudFS), ...

VM GoGrid, Joyent, infrastructures based on Condor
Glide-in [37]/Globus VWS [14]/Eucalyptus [33], ...

S Nirvanix, Akamai, Mozy, ...

non-IaaS 3Tera, Google AppEngine, Sun Network, ...

Table 2: The Amazon EC2 instance types. The ECU is the CPU performance unit defined by Amazon.
Name ECUs RAM Archi I/O Disk Cost

(Cores) [GB] [bit] Perf. [GB] [$/h]

m1.small 1 (1) 1.7 32 Med 160 0.1
m1.large 4 (2) 7.5 64 High 850 0.4
m1.xlarge 8 (4) 15.0 64 High 1690 0.8
c1.medium 5 (2) 1.7 32 Med 350 0.2
c1.xlarge 20 (8) 7.0 64 High 1690 0.8

resources. For example, Amazon EC2 runs instances on its physical infrastructure using the open-source vir-
tualization middleware Xen [8]. By using virtualized resources a cloud can serve with the same set of physical
resources a much broader user base; configuration reuse is another reason for the use of virtualization. Sci-
entific software, compared to commercial mainstream products, is often hard to install and use [9]. Pre- and
incrementally-built virtual machine (VM) images can be run on physical machines to greatly reduce deployment
time for scientific software [31].

Many clouds already exist, but not all provide virtualization, or even computing services. Table 1 summarizes
the characteristics of several clouds currently in production; of these, Amazon is the only commercial IaaS
provider with an infrastructure size that can accommodate entire grids and PPI workloads.

EC2 is an IaaS cloud computing service that opens Amazon’s large computing infrastructure to its users.
The service is elastic in the sense that it enables the user to extend or shrink its infrastructure by launching or
terminating new virtual machines (instances). The user can use any of the five instance types currently available
on offer, the characteristics of which are summarized in Table 2. An ECU is the equivalent CPU power of a
1.0-1.2 GHz 2007 Opteron or Xeon processor. The theoretical peak performance can be computed for different
instances from the ECU definition: a 1.1 GHz 2007 Opteron can perform 4 flops per cycle at full pipeline, which
means at peak performance one ECU equals 4.4 gigaflops per second (GFLOPS).

To create an infrastructure from EC2 resources, the user first requires the launch of one or several instances,
for which it specifies the instance type and the VM image; the user can specify any VM image previously
registered with Amazon, including Amazon’s or the user’s own. Once the VM image has been transparently
deployed on a physical machine (the resource status is running), the instance is booted; at the end of the boot
process the resource status becomes installed. The installed resource can be used as a regular computing node
immediately after the booting process has finished, via an ssh connection. A maximum of 20 instances can
be used concurrently by regular users; an application can be made to increase this limit. The Amazon EC2
does not provide job execution or resource management services; a cloud resource management system can act
as middleware between the user and Amazon EC2 to reduce resource complexity. Amazon EC2 abides by a
Service Level Agreement in which the user is compensated if the resources are not available for acquisition at least
99.95% of the time, 365 days/year. The security of the Amazon services has been investigated elsewhere [34].

Wp 5 http://www.pds.ewi.tudelft.nl/∼iosup/
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Table 3: The benchmarks used for cloud performance evaluation. B, FLOP, U, MS, and PS stand for bytes,
floating point operations, updates, makespan, and per second, respectively.

Type Suite/Benchmark Resource Unit

SJSI lmbench/all Many Many
SJSI Bonnie/all Disk MBps
SJSI CacheBench/all Memory MBps

SJMI HPCC/HPL CPU, float GFLOPS
SJMI HPCC/DGEMM CPU, double GFLOPS
SJMI HPCC/STREAM Memory GBps
SJMI HPCC/RandomAccess Network MUPS
SJMI HPCC/beff Memory µs, GBps

MJMI -/Trace Workload MS

3 Cloud Performance Evaluation

In this section we present a performance evaluation of cloud computing services for scientific computing.

3.1 Method

We design a performance evaluation method that allows an assessment of clouds, and a comparison of clouds
with other scientific computing infrastructures such as grids and PPIs. To this end, we divide the evaluation
procedure into two parts, the first cloud-specific, the second infrastructure-agnostic.

Cloud-specific evaluation An attractive promise of clouds is that there are always unused resources, so
that they can be obtained at any time without additional waiting time. However, the load of other large-scale
systems varies over time due to submission patterns; we want to investigate if large clouds can indeed bypass
this problem. Thus, we test the duration of resource acquisition and release over short and long periods of time.
For the short-time periods one or more instances of the same instance type are repeatedly acquired and released
during a few minutes; the resource acquisition requests follow a Poisson process with arrival rate λ = 1s. For
the long periods an instance is acquired then released every 2 minutes over a period of one week, then hourly
averages are aggregated from the 2-minute samples taken over a period of at least one month.

Infrastructure-agnostic evaluation There currently is no single accepted benchmark for scientific com-
puting at large-scale [19]. In particular, there is no such benchmark for the common scientific computing scenario
in which an infrastructure is shared by several independent jobs, despite the large performance losses that such
a scenario can incur [6]. To address this issue, our method both uses traditional benchmarks comprising suites
of job to be run in isolation and replays workload traces taken from real scientific computing environments.

We design three types of test workloads: SJSI/MJSI–run one or more single-process jobs on a single instance
(possibly with multiple cores), SJMI–run a single multi-process jobs on multiple instances, and MJMI–run
multiple jobs on multiple instances. The SJSI, MJSI, and SJMI workloads all involve executing one or more from
a list of four open-source benchmarks: LMbench [28], Bonnie [10], CacheBench [29], and the HPC Challenge
Benchmark (HPCC) [27]. The characteristics of the used benchmarks and the mapping to the test workloads
are summarized in Table 3; we refer to the benchmarks’ references for more details.

MJMI workloads are workload traces taken from real scientific computing environments [17]. A workload
trace comprises a number of jobs. For each job the trace records an abstract description of the job that includes
at least the job size, and the job’s submission, start, and end time. The Grid Workloads Archive (GWA) [22] and
the Parallel Workloads Archive (PWA) [3] are two large online trace repositories for grids and PPIs, respectively.

3.2 Experimental Setup

We now describe the experimental setup in which we use the performance evaluation method presented earlier.

Wp 6 http://www.pds.ewi.tudelft.nl/∼iosup/
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Table 4: The EC2 VM images. FC6 stands for Fedore Core 6 OS (Linux 2.6 kernel).
EC2 VM image Software Archi Benchmarks

ami-2bb65342 FC6 32bit Bonnie & LMbench
ami-36ff1a5f FC6 64bit Bonnie & LMbench
ami-3e836657 FC6 & MPI 32bit HPCC
ami-e813f681 FC6 & MPI 64bit HPCC

Performance Analysis Tool We have extended the GrenchMark [18] large-scale distributed testing frame-
work with new features which allow it to test cloud computing infrastructures. The framework was already able
to generate and submit both real and synthetic workloads to grids, clusters, and other large-scale distributed
environments. For this work we have added to GrenchMark the ability to measure cloud-specific metrics such
as resource acquisition time and experiment cost.

Cloud resource management We have also added to the framework basic cloud resource management
functionalities, since currently no resource management components and no middleware exist for accessing and
managing cloud resources. We have identified four alternatives for managing these virtual resources, based on
whether there is a queue between the submission host and the cloud computing environment and whether the
resources are acquired and released for each submitted job. We discuss the two alternatives that were used in
this work in Section 5.

Performance metrics We use the performance metrics defined by the benchmarks used in this work. We
also define and use the HPL efficiency for a real virtual cluster based on instance type T as the ratio between
the HPL benchmark performance of the cluster and the performance of another real environment formed with
only one instance, expressed as a percentage.

Environment We perform all our measurements on the Amazon EC2 environment. However, this does not
limit our results, as there are sufficient reports of performance values for all the Single-Job benchmarks, and in
particular for the HPCC [2]. For our experiments we build homogeneous environments with 1 to 32 cores based
on the five EC2 instance types.

Amazon EC2 offers a wide range of ready-made machine images. In our experiments, we used the images
listed in Table 4 for the 32 and 64 bit instances; all VM images are based on a Fedora Core 6 OS with Linux
2.6 kernel. The VM images used for the HPCC benchmarks also have a working pre-configured MPI based on
the mpich2-1.0.5 [40] implementation.

Optimizations, tuning The benchmarks were compiled using GNU C/C++ 4.1 with the -O3 -funroll-loops

command-line arguments. We did not use any additional architecture- or instance-dependent optimizations. For
the HPL benchmark, the performance results depend on two main factors: the the Basic Linear Algebra Sub-
program (BLAS) [12] library, and the problem size. We used in our experiments the GotoBLAS [39] library,
which is one of the best portable solutions freely available to scientists. Searching for the problem size that
can deliver peak performance is an extensive (and costly); instead, we used a free mathematical problem size
analyzer [4] to find the problem sizes that can deliver results close to the peak performance: five problem sizes
ranging from 13,000 to 55,000.

3.3 Experimental Results

The experimental results of the Amazon EC2 performance evaluation are presented in the following.

3.3.1 Resource Acquisition and Release

We study three resource acquisition and release scenarios: for single instances over a short period, for multiple
instances over a short period, and for single instances over a long period of time.

Wp 7 http://www.pds.ewi.tudelft.nl/∼iosup/
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Figure 1: Resource acquisition and release overheads for acquiring single instances.
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Figure 2: Single-instance resource acquisition and release overheads when acquiring multiple c1.xlarge in-
stances at the same time.

Single instances We first repeat 20 times for each of the five instance types a resource acquisition followed
by a release as soon as the resource status becomes installed (see Section 2). Figure 1 shows the overheads
associated with resource acquisition and release in EC2. The total resource acquisition time (Total) is the sum
of the Install and Boot times. The Release time is the time taken to release the resource back to EC2; after
it is released the resource stops being charged by Amazon. The c1.* instances are surprisingly easy to obtain;
in contrast, the m1.* instances have for the resource acquisition time higher expectation (63-90s compared to
around 63s) and variability (much larger boxes). With the exception of the occasional outlier, both the VM
Boot and Release times are stable and represent about a quarter of Total each.

Multiple instances We investigate next the performance of requesting the acquisition of multiple resources
(2,4,8,16, and 20) at the same time; this corresponds to the real-life scenario where a user would create a
homogeneous cluster from Amazon EC2 resources. When resources are requested in bulk, we record acquisition
and release times for each resource in the request, separately. Figure 2 shows the basic statistical properties of
the times recorded for c1.xlarge instances. The expectation and the variability are both higher for multiple
instances than for a single instance.
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Figure 3: Evolution of the VM Install time in EC2 over long periods of time. (top) Hourly average over a period
of three months. (bottom) Two-minutes average over a period of one week

Long-term investigation Last, we discuss the Install time measurements published online by the inde-
pendent CloudStatus team [1]. We have written web crawlers and parsing tools and taken samples every two
minutes between Aug 2008 and Nov 2008 (two months). We find that the time values fluctuate within the
expected range (expected value plus or minus the expected variability, see Figure 3). We conclude that in
Amazon EC2 resources can indeed be provisioned without additional waiting time due to system overload.

3.3.2 Performance of Single-Job-Single-Machine Workloads

In this set of experiments we measure the raw performance of the CPU, I/O, and memory hierarchy using the
Single-Instance benchmarks listed in Section 3.1.

Compute performance We assess the computational performance of each instance type using the entire
LMbench suite. The performance of int and int64 operations, and of the float and double float operations
is depicted in Figure 4 top and bottom, respectively. The GOPS recorded for the floating point and double
operations is 6−8× lower than the theoretical maximum of ECU (4.4 GOPS). Also, the double float performance
of the c1.* instances, arguably the most important for scientific computing, is mixed: excellent addition but
poor multiplication capabilities. Thus, as many scientific computing applications use heavily both of these
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Figure 4: LMbench results. The Performance of 32- and 64-bit integer operations in giga-operations per second
(GOPS) (top), and of floating operations with single and double precision (bottom).

Table 5: The I/O performance of the Amazon EC2 instance types and of 2002 [25] and 2007 [7] systems.
Seq. Output Seq. Input Rand.

Instance Char Block Rewrite Char Block Input
Type [MB/s] [MB/s] [MB/s] [MB/s] [MB/s] [Seek/s]

m1.small 22.37 60.18 33.27 25.94 73.46 74.4
m1.large 50.88 64.28 24.40 35.92 63.20 124.3
m1.xlarge 56.98 87.84 33.35 41.18 74.51 387.9
c1.medium 49.15 58.67 32.80 47.43 74.95 72.4
c1.xlarge 64.85 87.82 29.96 44.98 74.46 373.9

’02 Ext3 12.24 38.75 25.66 12.67 173.68 -
’02 RAID5 14.45 14.32 12.19 13.50 73.03 -
’07 RAID5 30.88 40.63 29.03 41.91 112.69 192.9

operations, the user is faced with the difficult problem of selecting between two wrong choices. Finally, several
floating and double point operations take longer on c1.medium than on m1.small.
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Figure 5: The results of the Bonnie Rewrite benchmark. The performance drop indicates the capacity of the
memory-based disk cache.
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Figure 6: Bonnie benchmark results. (left) Average sequential block-read. (right) Average sequential block-
write.

I/O performance We assess the I/O performance of each instance type with the Bonnie benchmarking
suite, in two steps. The first step is to determine the smallest file size that invalidates the memory-based
I/O cache, by running the Bonnie suite for thirteen file sizes in the range 1024 Kilo-binary byte (KiB) to 40
GiB. Figure 5 depicts the results of the rewrite with sequential output benchmark, which involves sequences of
read-seek-write operations of data blocks that are dirtied before writing. For all instance types, a performance
drop begins with the 100MiB test file and ends at 2GiB, indicating a capacity of the memory-based disk cache
of 4-5GiB (twice 2GiB). Thus, the results obtained for the file sizes above 5GiB correspond to the real I/O
performance of the system; lower file sizes would be served by the system with a combination of memory and
disk operations. We analyze the I/O performance obtained for files sizes above 5GiB in the second step; Table 5
summarizes the results. We find that the I/O performance indicated by Amazon EC2 (see Table 2) corresponds
to the achieved performance for random I/O operations (column ’Rand. Input’ in Table 5). The *.xlarge

instance types have the best I/O performance from all instance types. For the sequential operations more typical
to scientific computing all Amazon EC2 instance types have in general better performance when compared with
similar modern commodity systems, such as the systems described in the last three rows in Table 5.

Other I/O tests We also conduct a full baterry of tests involving nine file sizes in the range 1024 Kilo-
binary byte (KiB) to 1000 MiB. Figure 6 (left) depicts the results of average sequential block-read benchmark.
The c1.xlarge instance performs best in this test, with 3632.65 MBps for the 1024 KiB test file and 1901.25
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Figure 7: Bonnie benchmark results: average sequential per-char output.

MBps for the 1000 MiB test file, almost 4 times faster then m1.small, the lowest performer. The performance
of the other three instance types is in the bandwidth range from 1200 to 1800 MBps. The performance of the
sequential character-by-character reads benchmark (not shown) is much worse, always below 85 Mbps. The
results of the random seek benchmark (not shown) lead to similar findings, with maximum values of up to
140,000 (37,000) seeks/second for c1.xlarge (m1.small), the best (worst) performer. Figure 6 (right) depicts
the results of average sequential block-write benchmark. The fastest instance type is again c1.xlarge, with
values of 722.07 MBps for 1024KiB and 449.79MBps for 1000 MiB file sizes, this is up to 40! times faster than
m1.small, again the lowest performer. Unexpectedly, the c1.medium instance has a significant performance
drops for file sizes beyond 100 MiB, down to a throughput minimum of 45.2 MBps for the maximum test file
size.

Figure 7 shows the results for the throughput achieved by sequential read of characters in the test file. The
results do not differ much until the file size reaches 5 GiB. The m1.small instances showing a performance of
around 21 MBps, while the fastest one c1.xlarge achieves an average value of 80MBps (3.8 times faster). The
m1.large results were really good for 1024 KiB file size with the highest value of 83.15MBps which drops for the
2 MiB size to more reasonable value of 59.05 MBps and stabilises afterwards.

Memory hierarchy performance We test the performance of the memory hierarchy using CacheBench
on each instance type. Figure 8 depicts the performance of the memory hierarchy when performing the Rd-
Mod-Wr benchmark with 1 benchmark process per instance. The c1.* instances perform very similar, almost
twice as good as the next performance group formed by m1.xlarge and m1.large; the m1.small instance is last
with a big performance gap for working sets of 217–219B. We find the memory hierarchy sizes by extracting the
major performance drop-offs. The visible L1/L2 memory sizes are 64KB/1MB for the m1.* instances; the c1.*

instances have only one performance drop point around 2MB (L2). Looking at the other results (not shown),
we find that L1 c1.* is only 32KB. For the Rd and Wr unoptimized benchmarks we have obtained similar
results up to the L2 cache boundary, after which the performance of m1.xlarge drops rapidly and the system
performs worse than m1.large. We speculate on the existence of a throttling mechanism installed by Amazon
to limit resource consumption. If this speculation is true, the performance of scientific computing applications
would be severely limited when the working set is near or past the L2 boundary.

Performance stability The results obtained from single machine benchmarks are consistent for each
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Figure 8: CacheBench Rd-Mod-Wr benchmark results, one benchmark process per instance.

Table 6: HPL performance and cost comparison for various EC2 instance types.
Peak GFLOPS GFLOPS

Name Perf. GFLOPS /ECU /$1

m1.small 4.4 1.96 1.96 19.6
m1.large 17.6 7.15 1.79 17.9
m1.xlarge 35.2 11.38 1.42 14.2
c1.medium 22.0 3.91 0.78 19.6
c1.xlarge 88.0 51.58 2.58 64.5

instance type. To get a better picture of the side effects caused by the sharing with other users the same
physical resource, a long-term evaluation would be required. A recent analysis of the load sharing mechanisms
offered by Xen [16] shows that there exist mechanisms to handle well CPU-sharing. Hoewever, as the end-users
do not control the mapping of VM instances to real resources, there is no deterministic and repeatable test
setup for this situation.

Reliability We have encountered several system problems during the SJSI experiments. When running
the LMbench benchmark on a c1.medium instance using the default VM image provided by Amazon for this
architecture, the test did not complete and the instance became partially responsive; the problem was repro-
ducible on another instance of the same type. For one whole day we were no longer able to start instances–any
attempt to acquire resources was terminated instantly without a reason. Via the Amazon forums we have found
a solution to the second problem (the user has to perform manually several account/setup actions); we assume
it will be fixed by Amazon in the near future.

3.3.3 Performance of Single-Job-Multi-Machine Workloads

In this set of experiments we measure the performance delivered by homogeneous clusters formed with Amazon
EC2 instances when running the Single-Job-Multi-Machine benchmarks. For these tests we execute the HPCC
benchmark on homogeneous clusters of size 1–16 instances.

HPL performance The performance achieved for the HPL benchmark on various virtual clusters based
on the m1.small instance is depicted in Figure 9. The cluster with one node was able to achieve a performance
of 1.96 GFLOPS, which is 44.54% from the peak performance advertised by Amazon. For 16 instances we
have obtained 27.8 GFLOPS, or 39.4% from the theoretical peak and 89% efficiency. We further investigate
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Figure 9: The HPL (LINPACK) performance of m1.small-based virtual clusters.

Table 7: The HPCC performance for various platforms. HPCC-x is the system with the HPCC ID x [2]. The
machines HPCC-227 and HPCC-228, HPCC-237, and HPCC-286 are of brand TopSpin/Cisco, Intel Atlantis,
and Intel Endeavor, respectively.

Peak Perf. HPL DGEMM STREAM RandomAccess Latency Bandwidth
Provider, System [GFLOPS] [GFLOPS] [GFLOPS] [GBps] [MUPs] [µs] [GBps]

EC2, m1.small 4.40 1.96 2.62 3.49 11.60 - -
EC2, m1.large 17.60 7.15 6.83 2.38 54.35 20.48 0.70
EC2, m1.xlarge 35.20 11.38 8.52 3.47 168.64 17.87 0.92
EC2, c1.medium 22.00 - 11.85 3.84 46.73 13.92 2.07
EC2, c1.xlarge 88.00 51.58 44.05 15.65 249.66 14.19 1.49
EC2, 16 x m1.small 70.40 27.80 4.36 11.95 77.83 68.24 0.10
EC2, 2 x c1.xlarge 176.00 - - 15.77 280.10 24.18 1.49
HPCC-228, 8 cores 51.20 27.78 4.88 2.95 10.29 5.81 0.66
HPCC-227, 16 cores 102.40 55.23 4.88 2.95 10.25 6.81 0.66
HPCC-237, 16 cores 170.24 134.19 9.67 3.99 58.45 2.27 1.51
HPCC-286, 16 cores 179.20 153.25 10.50 5.18 87.61 1.23 1.96

the performance of the HPL benchmark for different instance types; Table 6 summarizes the results. The
c1.xlarge instance achieves good performance (51.58 out of a theoretical performance of 88 GFLOPS, or
58.6%), but the other instance types do not reach even 50% of their theoretical peak performance. The low
performance of c1.medium is due to the reliability problems discussed later in this section. Cost-wise, the
c1.xlarge instance can achieve up to 64.5 GFLOPS/$ (assuming an already installed instance is present),
which is the best measured value in our test. This instance type also has in our tests the best ratio between its
Amazon ECU rating (column “ECUs” in Table 2) and achieved performance (2.58 GFLOPS/ECU).

HPCC performance To obtain the performance of virtual EC2 clusters we run the HPCC benchmarks
on unit clusters comprising one instance, and on 16-core clusters comprising at least two instances. Table 7
summarizes the obtained results and, for comparison, results published by HPCC for four modern and similarly-
sized HPC clusters [2]. For HPL, only the performance of the c1.xlarge is comparable to that of an HPC system.
However, for DGEMM, STREAM, and RandomAccess the performance of the EC2 clusters is similar or better
than the performance of the HPC clusters. We attribute this mixed behavior to the network characteristics: the
EC2 platform has much higher latency, which has an important negative impact on the performance of the HPL
benchmark. In particular, this relatively low network performance means that the ratio between the theoretical
peak performance and achieved HPL performance increases with the number of instances, making the virtual
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Figure 10: The CDF of the job response times for the m1.xlarge and c1.xlarge instance types.

EC2 clusters poorly scalable. Thus, for scientific computing applications similar to HPL the virtual EC2 clusters
can lead to an order of magnitude lower performance for large system sizes (1024 cores and higher), while for
other types of scientific computing the virtual EC2 clusters are already suitable execution environments.

Reliability We have encountered several reliability problems during these experiments; the two most im-
portant were related to HPL and are reproducible. First, the m1.large instances hang for an HPL problem size
of 27,776 (one process blocks). Second, on the c1.medium instance HPL cannot complete problem sizes above
12,288 even if these should still fit in the available memory; as a result, the achieved performance on c1.medium

was much lower than expected.

3.3.4 Performance of Multi-Job Workloads

We use a trace from a real system to assess the performance overheads due to executing complete workloads
instead of single jobs in a virtual Amazon EC2 cluster. To this end, we replay on EC2 a part of the trace
of our multi-cluster DAS3 grid system, which trace contains the jobs submitted to one of the DAS3 clusters.
The trace is dominated by an independent set of jobs submitted together (a bag-of-tasks [21, 23]). As the
DAS3 cluster consists of 32 processors, in our experiments we use either 8 m1.xlarge instances or 4 c1.xlarge

instances. A space sharing policy is emulated for the virtual clusters in these experiments. We submit the same
workload repeatedly for each instance type, and follow two main performance characteristics: (i) the stability
of the workload makespan, that is, the basic statistical properties of the measured workload makespan values,
and (ii) the overhead associated with resource acquisition and release, and with job execution.

Stable results and low overhead for the execution of concurrent jobs For each instance type,
we have found the individual makespan values obtained from repeated workload replays to be less than 1%
different from the median workload makespan. Figure 10 depicts the CDFs of the job response times during
one submission for each of the two instance types. There is little difference between the individual job response
times, and thus also between the workload makespans. We have also observed a low and stable job overhead,
similar to the overhead measured in Section 3.3.1 (not shown). We conclude that there is no visible overhead
due to the execution of concurrent jobs on EC2 resources. Thus, we can use the performance results obtained
from single-job benchmarks to assess the performance of workloads comprising concurrent job execution.
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Table 8: The characteristics of the workload traces used in our clouds vs. grids and PPIs comparison.
Trace System

Length No.of Size Load
ID, Source Mo. Jobs Users Sites Cpus [%]

Grid Workloads Archive traces [22]

DAS-2, GWA-1 18 1.1M 333 5 0.4K 15+
RAL, GWA-6 12 0.2M 208 1 0.8K 85+
GLOW, GWA-7 3 0.2M 18 1 1.6K 60+
Grid3, GWA-8 18 1.3M 19 29 3.5K -
SharcNet, GWA-10 13 1.1M 412 10 6.8K -
LCG, GWA-11 1 0.2M 216 200+ 24.4K -

Parallel Workloads Archive traces [3]

CTC SP2, PWA-6 11 0.1M 679 1 430 66
SDSC SP2, PWA-21 24 0.1M 437 1 128 83
LANL O2K, PWA-22 5 0.1M 337 1 2048 64
SDSC DS, PWA-26 13 0.1M 460 1 1664 63

4 Clouds vs. Other Scientific Computing Infrastructures

In this section we present a comparison between clouds and other scientific computing infrastructures.

4.1 Method

We use trace-based simulation to compare clouds with scientific computing infrastructures. To this end, we first
extract the performance characteristics from long-term workload traces of scientific computing infrastructures;
we call these infrastructures source environments. Then, we compare these characteristics with those of a cloud
execution. We assume an exclusive resource use per job: for each job in the trace, the necessary resources are
acquired from the cloud, then released after the job has been executed.

We define two performance models of clouds, which differ in the way they define the job runtime. The cloud
with source-like performance is a theoretical cloud environment that comprises the same resources as the source
environment. In this cloud model, the runtimes of jobs executed in the cloud are equal to those recorded in the
source environment’s workload traces. This model is useful for assessing the theoretical performance of future
and more mature clouds, but not the real clouds whose performance is below its theoretical peak, as we have
shown in Section 3. Thus, we introduce the clouds with real performance mode, in which the runtimes of jobs
in the cloud are extended by a factor measured in Section 3. Specifically, single-processor jobs are slowed-down
by a factor of 7, which is the average performance ratio between theoretical and achieved performance analyzed
in Section 3.3.2, and parallel jobs are slowed-down by a factor up to 10 depending on the job size, due to the
HPL performance degradation with job size described in Section 3.3.3.

4.2 Experimental Setup

Performance Analysis Tools We use the Grid Workloads Archive [22] tools to extract the performance
characteristics of grids and PPIs from the workload traces. We use the DGSim simulator [24] to analyze the
performance of cloud environments. We have extended DGSim with the models of clouds with real and source-
like performance, and used the extended DGSim to simulate the execution of real scientific computing workloads
on cloud computing infrastructures.

Performance and cost metrics The performance of all environments is measured with three traditional
metrics [13]: wait time (WT), response time (ReT), and bounded slowdown (BSD))–the ratio between the job
response time in the real vs. an exclusively-used environment, with a bound that eliminates the bias towards
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Table 9: The results of the comparison between workload execution in source environments (grids, PPIs, etc.)
and in clouds. The “-” sign denotes missing data in the original traces.

Source env. (Grid/PPI) Cloud (real performance) Cloud (source performance)
AWT AReT ABSD AWT AReT ABSD Total Cost AWT AReT ABSD Total Cost

Trace ID [s] [s] (10s) [s] [s] (10s) [EC2-h, M] [s] [s] (10s) [EC2-h, M]
DAS-2 432 802 11.24 80 2,292 2.39 1.66 80 450 2.03 1.19
RAL 13,214 27,807 67.95 80 131,380 1.27 40.29 80 18,837 1.16 6.39
GLOW 9,162 17,643 54.51 80 59,448 1.22 3.44 80 8,561 1.15 0.60
Grid3 - 7,199 - 80 50,470 3.44 18.90 80 7,279 3.33 3.60
SharcNet 31,017 61,682 242.27 80 219,212 1.23 73.46 80 31,711 1.11 11.34
LCG - 9,011 - 80 63,158 1.11 3.39 80 9,091 1.04 0.62
CTC SP2 25,748 37,019 78.16 80 75,706 1.11 1.65 80 11,351 1.03 0.30
SDSC SP2 26,705 33,388 389.32 80 46,818 1.77 0.81 80 6,763 1.70 0.16
LANL O2K 4,658 9,594 60.82 80 37,786 1.76 1.35 80 5,016 1.55 0.26
SDSC DataStar 32,271 33,807 515.89 80 57,065 1.81 1.57 80 6,790 1.80 0.25

short jobs. The BSD is expressed as BSD = max(1, ReT/max(10, ReT − WT )), where the value 10 is the
bound and eliminates the bias of all jobs with runtime at most 10 seconds. We report the average values for
these metrics, AWT, AReT, and ABSD, respectively. We also report for clouds the total cost of workload
execution as the number of EC2 instance hours used to complete all the jobs.

Source Infrastructures We use ten workload traces taken from real scientific computing infrastructures;
Table 8 summarizes their characteristics. The ID of the trace indicates the system from which it was taken;
see [22, 3] for details about each trace. The traces Grid3 and LCG come without information about job waiting
time; we make the assumption that in these large environments there are always free resources, leading to zero
waiting time and favoring grids in their comparison with clouds (clouds have non-zero resource acquisition and
release overheads).

4.3 Comparison Results

We compare the execution in source environments (grids, PPIs, etc.) and in clouds of the ten workload traces
described in Table 8. The AWT of the cloud environments is obtained from real measurements (see Sec-
tion 3.3.1). Table 9 summarizes the results of this comparison; we comment below on two main conclusions of
these experiments.

An order of magnitude better performance is needed for clouds to be useful for daily scientific
computing. The performance of the cloud with real performance model is insufficient to make a strong case
for clouds replacing grids and PPIs as a scientific computing infrastructure. The response time of these clouds
is higher than that of the source environment by a factor of 4-10. In contrast, the response time of the clouds
with source-like performance is much better, leading in general to significant gains (up to 80% faster average
job response time) and at worst to 1% higher AWT (for traces of Grid3 and LCG, which are assumed to
always have zero waiting time). We conclude that if clouds would offer their advertised performance, an order
of magnitude higher than the performance observed in practice, they would form an attractive alternative for
scientific computing, not considering costs. Looking at costs, one million EC-hours equate at current Amazon
EC2 prices to $100,000; the total costs for the cloud with source performance are reasonable, considering in
contrast that costs of the source environment must include among others energy, software licenses, and human
resources costs (which in turn depend on the number of sites, number of resources).

Clouds are now a viable alternative for short deadlines. A low and steady job wait time leads to
much lower (bounded) slow-down for any cloud model, when compared to the source environment. High and
often unpredictable queue wait time is one of the major concerns in adopting shared infrastructures such as
grids [17, 32]. Indeed, the ABSD observed in real grids and PPIs is for our traces between 11 and over 500!,
but the ABSD values obtained for both cloud models are all below 3.5 and often below 1.5, both for systems
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Figure 11: CacheBench Wr hand-tuned benchmark results on the c1.xlarge instance type with 1–8 processes
per instance.

with low and with high utilization. Thus, when a scientific computing project wants to be fair towards its users
or has a tight deadline, and can disregard the price, running jobs in a cloud is already a viable alternative.

5 How to Improve Clouds for Scientific Computing?

In this section we present two main research directions in improving the cloud computing sevices for scientific
computing.

Tuning applications for virtualized resources We have shown throughout Section 3.3 that there is
no “best”-performing instance type in clouds–each instance type has preferred instruction mixes and types of
applications for which it behaves better than the others. Moreover, a real scientific application may exhibit
unstable behavior when run on virtualized resources. Thus, the user is faced with the complex task of choosing
a virtualized infrastructure and then tuning the application for it. But is it worth tuning an application for
a cloud? To answer this question, we use from CacheBench the hand-tuned benchmarks to test the effect of
simple, portable code optimizations such as loop unrolling etc. We use the experimental setup described in
Section 3.2. Figure 11 depicts the performance of the memory hierarchy when performing the Wr hand-tuned
then compiler-optimized benchmark of CacheBench on the c1.xlarge instance types, with 1 up to 8 benchmark
processes per instance. Up to the L1 cache size, the compiler optimizations to the unoptimized CacheBench
benchmarks leads to less than 60% of the peak performance achieved when the compiler optimizes the hand-
tuned benchmarks. This indicates a big performance loss when running applications on EC2, unless time is
spent to optimize the applications (high roll-in costs). When the working set of the application falls between
the L1 and L2 cache sizes, the performance of the hand-tuned benchmarks is still better, but with a lower
margin. Finally, when the working set of the application is bigger than the L2 cache size, the performance
of the hand-tuned benchmarks is lower than that of the unoptimized applications. Given the performance
difference between unoptimized and hand tuned versions of the same applications, and that tuning for a virtual
environment holds promise for stable performance across many physical systems, we raise as a future research
problem the tuning of applications for cloud platforms.

Performance and security vs. cost Today’s clouds offer resources, but they do not offer a resource
management architecture that can use these resources. Thus, the cloud adopter may use any of the resource
management middleware from grids and PPIs; for a review of grid middleware we refer to our recent work [20].
We have already introduced the basic concepts of cloud resource management in Section 3.2, and explored the
potential of a cloud resource management strategy (strategy S1 ) for which resources are acquired and released
for each submitted job in Section 4. This strategy has good security and resource setup flexibility, but may incur

Wp 18 http://www.pds.ewi.tudelft.nl/∼iosup/



S. Ostermann et al. Wp

Early Cloud Computing EvaluationWp

PDS

Wp

Wp6. Related work

Table 10: The performance of the resource bulk allocation strategy (S2) relative to the resource acquisition and
release per job strategy (S1).

Relative Cost
Trace ID S2−S1

S1
× 100 [%]

DAS-2 -30.2
RAL +1.2
GLOW +2.0
Grid3 -11.5
SharcNet +1.8
LCG -9.3

CTC SP2 -0.5
SDSC SP2 -0.9
LANL O2K -9.1
SDSC DataStar -4.4

high time and cost overheads, as resources that could be reused to run other jobs on them are immediately
discarded. As an alternative, we investigate now the potential of a cloud resource management strategy in
which resources are allocated in bulk for all users, and released only when there is no job to be served (strategy
S2 ). To compare these two cloud resource management strategies we use the experimental setup described in
Section 4.2; Table 10 shows the obtained results. The maximum relative cost difference between strategies is
for these traces around 30% (the DAS-2 trace); in three cases around 10% of the total cost is to be gained.
Given these cost differences, we raise as a future research problem optimizing the application execution as a
cost-performance-security trade-off.

6 Related work

There has been a spur of research activity in assessing the performance of virtualized resources, in cloud
computing environments and in general [42, 11, 34, 38, 33, 30, 41, 35, 36]. In contrast to these studies, ours
targets computational cloud resources for scientific computing, and is much broader in size and scope: it performs
much more in-depth measurements, compares clouds with other environments based on real long-term scientific
computing traces, and explores avenues for improving the current clouds for scientific computing.

Close to our work is the study of performance and cost of executing the Montage workflow on clouds [11].
The applications used in our study are closer to the mainstream HPC scientific community. Also close to our
work is the seminal study of Amazon S3 [34], which also includes an evaluation of file transfer between Amazon
EC2 and S3. Our work complements this study by analyzing the performance of Amazon EC2, the other major
Amazon cloud service; we also use more scientific workloads, and a realistic analysis of several cost models and
job execution models for the cloud. Several small-scale performance studies of Amazon EC2 have been recently
conducted: the study of Amazon EC2 performance using the NPB benchmark suite [38], the early comparative
study of Eucalyptus and EC2 performance [33], etc. Our performance evaluation results extend and complement
these previous findings, and give more insights into the loss of performance exhibited by Amazon EC2 resources.

7 Conclusions and future work

With the emergence of cloud computing as the paradigm in which scientific computing is done exclusively on
resources leased only when needed from big data centers, e-scientists are faced with a new platform option.
However, the initial target workload of the cloud computing paradigm does not match the characteristics of
the scientific computing workloads. Thus, in this paper we seek to answer an important question research
question: Is the performance of today’s cloud computing services sufficient for scientific computing? To this
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end, we have first performed a comprehensive performance evaluation of a large computing cloud that is already
in production. Then, we have compared the performance and cost of clouds with those of scientific computing
alternatives such as grids and parallel production infrastructures. Our main finding is that the performance
and the reliability of the tested cloud are low. Thus, the tested cloud is insufficient for scientific computing at
large, though it still appeals to the scientists that need resources immediately and temporarily. Motivated by
this finding, we have analyzed how to improve the current clouds for scientific computing, and identified two
research directions which hold each good potential.

We will extend this work with additional analysis of the other services offered by Amazon: Storage (S3),
database (SimpleDB), queue service (SQS), and their inter-connection. We will also extend the performance
evaluation results by running similar experiments on other clouds and also on other real large-scale platforms,
such as grids and commodity clusters. In the long term, we intend to explore the two new research topics that
we have raised in our assessment of needed cloud improvements.

Tool and Data Availability

The tools and data used in this work will be available at:

http://grenchmark.st.ewi.tudelft.nl/
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