
1

1

Crawling the Web

2

Web Crawling

 Retrieve (for indexing, storage, …) Web
pages by using the links found on a
page to locate more pages.

Must have some starting point

3

Type of crawl

•  Web crawl versus
crawl of more limited network – web
–  cs.princeton.edu
–  internal co. network

•  complete crawl versus
focused crawl by some criteria
–  pages on one topic

•  Type of crawl will affect necessity/usability of
various techniques

4

Main Issues I

•  starting set of pages?
– a.k.a “seed” URLs

•  can visit whole of Web (or web)?
•  how determine order to visit links?

– graph model:
 breadth first vs depth first

•  what are pros and cons of each?
•  “black holes”

– other aspects /considerations
•  how deep want to go?
•  associate priority with links

5

•  Breadth-first:

•  Depth-first:

1st
6

“Black holes” and other “baddies”

•  “Black hole”: Infinite chain of pages
–  dynamically generated
–  not always malicious

•  link to “next month”, which uses perpetual calendar
generator

•  Other bad pages
–  other behavior damaging to crawler?

•  servers
–  spam content

•  use URLs from?

   Robust crawlers must deal with black holes
and other damaging behavior

2

7

Main Issues II

•  Web is dynamic
–  time to crawl “once”
– how mix crawl and re-crawl

•  priority of pages

•  Social behavior
– crawl only pages allowed by owner

•  robot exclusion protocol: robots.txt
– not flood servers

•  expect many pages to visit on one server

8

Basic crawl architecture

WWW

DNS

Parse

Content
seen?

Doc
FP’s

Dup
URL
elim

URL
set

URL Frontier

URL
filter

robots
filters

Fetch

from slides for Intro to IR, Sec. 20.2.1

9

Technical issues
•  maintain one or more queues of URLs

to be visited: URL frontier
– order of URLs in queues?

•  FIFO = breadth first
•  LIFO = depth first
•  priority queues

•  resolve hostname in URLs to get actual
IP addresses – Domain Name Service
servers (DNS lookup)
– bottleneck:

•  servers distributed
•  can have high lookup latency

10

Technical issues continues

•  To do large crawls must have multiple
crawlers with multiple network connections
(sockets) open and probably multiple queues

•  large crawls generate large amount data
– need fast access => main memory
– cache: hold items most likely to use in main

memory instead of
• on disk
•  request from server

11

DNS lookup
•  cache DNS map

–  large, local, in memory
–  hold most recently used mappings

•  don’t want temporal locality of reference
–  be nice to servers (or else)

•  prefetch DNS resolution for URLs on page
when it parsed?
–  batch requests
–  put in cache
–  use when URL gets to head of queue
–  resolution stale?

•  How “large” cache?
–  Problems? 12

(Near?) Duplicate pages

Has page been indexed already?
•  mirror sites – different URLs, same page

–  bad: duplicate page in search results
–  worse?: add links from duplicate pages to queues

•  also mirrors?
–  mirrored pages may have slight differences

•  e.g. indicate which mirror they on

•  other sources duplicates & near duplicates
–  eg …/spr10/cos435/ps1.html
 …/spr09/cos435/ps1.html

3

13

(Near?) Duplicate page removal

•  table of fingerprints or sketches of pages
–  fit in main memory?
–  if not, costs disk access per page crawler retrieves

•  cache?
–  less likely to hit sketch in cache than, say, URL?

14

When apply duplicate removal?

•  while crawling versus for search results
– crawling larger problem
– search results demand faster results

•  duplicates versus near duplicates
– same policy?

15

Duplicate URL removal
IS URL in URL frontier?
Has URL already been visited? if not recrawling

⇒ Has URL ever been in URL frontier?

•  Use:
–  canonical, fully specified URLs
–  canonical hostname provided by DNS

•  Visited? hash table
–  hash canonical URL to entry

•  Visited? table may be too large for MM

16

Caching Visited? table

•  not temporal but “popularity” locality:
–  most popular URLs
–  most popular sites

•  some temporal locality within
•  to exploit site-level locality need hash that

brings pages on same site together:
–  two-level hash:

•  hash hostname and port
•  hash path

•  can use B+ tree, sorted on i then ii
–  if no entry for URL in tree, not visited

17

Re-crawling

•  When re-crawl what pages?
–  finish crawl and start over

•  finish = have enough?
–  re-crawl high priority pages in middle of

crawl
– how determine priority?

•  How integrate re-crawl of high priority
pages?
– One choice – separate cycle for crawl of

high priority pages
18

Back queue selector

B back queues
Single host on each

Crawl thread requesting URL

Another choice: Mercator scheme

Biased front queue selector
Back queue router

Prioritizer

K front queues

URLs

from slides for Intro to IR, Sec. 20.2.3

4

19

Mercator prioritizing

•  Assigning priority
– properties of page from previous visits

•  e.g. how often page change
– class of pages

•  news, blogs, … high priority for recrawl
–  focused crawling

•  Front queue for each priority: FIFO
•  “Biased front queue selector”

implements policy by choosing which
queue next

20

Mercator politeness enforcement:
 Back queues

•  at any point each queue contains only URLs
from one host

•  additional information
–  table mapping host to queue
–  heap containing entry for each queue/host: earliest

time can next request from host
•  heap min gives next queue to use for URL to

fetch
–  wait until earliest allowed time to fetch

21

Maintaining back queues

•  When a back queue emptied, remove
URLs from front queues - putting in
appropriate back queues until remove
URL from new host

•  put URL from new host in empty back
queue
– update host- back queue table
– determine “earliest request time”
–  insert in heap

22

Crawling large number pages

•  indexing is not* dynamic and continuous
  Google in fall 2010 announced now has dynamic

index
–  Index all pages collected at certain time (end

of crawl?)
– Provide search half of engine with new index

•  crawling is continuous
– some choices:

•  reinsert seed URLs in queue when fetch
•  also reinsert high-priority URLs when fetch
•  reinsert all URLs with varying priority when fetch

23

Focused Web Crawling

24

How change crawling strategy if only want
pages that
– on a particular topic
– match particular query
– satisfy a particular predicate

– example: crawling for 3D models

Question

5

25

Issues

•  Are issues:
–  Depth v.s. Breadth

•  desired pages may be “deep” in Web
– 100% coverage of relevant pages

•  Are not issues:
–  recrawl (?)
– 100% coverage of web

26

How Prune Search?

One method (Chakrabarti et. al.):
•  have desired topic + classifier
•  each time acquire page, use classifier to

ask if it on topic
•  harvest links of page only if on topic

27

Alternative:
Intelligent Crawling on the World Wide Web

with Arbitrary Predicates

•  Do not assume, build statistical evidence:
–  parent interesting => page interesting
–  siblings interesting => page interesting

•  crawler learns importance of different features
of pages as indicators of relevance of other
pages yet to visit

•  learns how prioritize pages for visiting
•  Start as random crawler and adjust as learn

28

Calculating priority of pages
in queue for visiting

•  Features considered
– content of parent web pages
– % of parents satisfying predicate
– % of siblings satisfying predicate
–  “tokens” in URL of page

•  e.g. “edu”, “princeton”

•  Use a numerical interest ratio to
prioritize

29

Missing features?

•  Keep in mind analysis before page is
visited, i.e. read and processed

•  Anchor text
•  Others?

30

Summary

•  focused crawling for specialized
applications

•  have been many proposed methods
•  need

– more analysis per page
–  less throughput

