
1

1

Refining and
Personalizing

Searches

Targets

•  collection

 query

•  satisfying documents
–  increase set?

 ranking
2

Themes

•  Explicit feedback versus search history

•  Personalized history versus group
history

3 4

Refine initially: query

•  Help user get better query

•  Commonly, query expansion
–  add synonyms

•  Improve recall
•  Hurt precision?
•  Sometimes done automatically − with care

– Modify based on prior searches
•  Not automatic
•  All prior searches - eg. suggested search terms
 vs
•  your prior searches

5

Refining after search
•  Use user feedback
 or
•  Approximate feedback with first results

– Pseudo-feedback
– Example: “Yahoo assist” (?still)

•  change ranking of current results
 or
•  search again with modified query

6

Explicit user feedback

•  User must participate

•  User marks (some) relevant results
 or
•  User changes order of results

– Can be more nuanced than relevant or not
– Can be less accurate than relevant or not

•  Example: User moves 10th item to first
– says 10th better than first 9
– Does not say which, if any, of first 9 relevant

2

7

User feedback in
classic vector model

•  User marks top p documents for
relevance

p = 10 to 20 “typical”

•  Construct new weights for terms in
query vector
– Modifies query
– Could use just on initial results to re-rank

8

Deriving new query
for vector model

For collection C of n doc.s
•  Let Cr denote set all relevant docs in collection,

Perfect knowledge Goal:
Vector qopt =
1/|Cr| * (sum of all vectors dj in Cr) -
1/(n- |Cr|) * (sum of all vectors dk not in Cr)
 centroids

9

Deriving new query for vector model:
Rocchio algorithm

Give query q and relevance judgments for a
subset of retrieved docs

•  Let Dr denote set of docs judged relevant
•  Let Dnr denote set of docs judged not relevant

Modified query:
Vector qnew = αq +
β/|Dr| * (sum of all vectors dj in Dr) -
γ/(|Dnr|) * (sum of all vectors dk in Dnr)

For tunable weights α, β, γ
10

Remarks on new query
•  α: importance original query
•  β: importance effect of terms in relevant docs
•  γ: importance effect of terms in docs not relevant

•  Usually terms of docs not relevant are least
important
–  Reasonable values α=1, β=.75, γ=.15

•  Reweighting terms leads to long queries
–  Many more non-zero elements in query vector qnew
–  Can reweight only most important (frequent?) terms

•  Most useful to improve recall
•  Users don’t like: work + wait for new results

11

Simple example
user feedback in vector model

•  q = (1,1,0,0)
•  Relevant: d1 = (1,0,1,1)
 d2 = (1,1,1,1)
•  Not relevant: d3=(0,1,1,0)
•  α, β, γ = 1
•  qnew = (1,1,0,0) + (1, 1/2, 1, 1) - (0,1,1,0)
 = (2, 1/2, 0, 1)
Term weights change New term
Observe: Can get negative weights

12

Re-ranking
using explicit feedback

•  Algorithms usually based on machine learning
–  Learn ranking function that best matches partial

ranking given

•  Simple example
–  2007ish: Google experiment; only affects repeat of

same search
–  2008: became SearchWiki feature for Google

accounts
–  2010: functionality reduced to “starred” results list

3

13

Implicit user feedback

•  Click-throughs
– Use as relevance judgment
– Use as reranking:

When click result, moves it ahead of all results
didn’t click that come before it

– Problems?

•  Better implicit feedback signals?

Behavior History
•  Going beyond behavior on same query.

•  Personal history versus Group history

•  Group history
– Primarily search history

•  Google’s claim Bing copies

•  Personal history
–  Searches
–  Other behavior – browsing, mail?, …
–  Characterize interests: topics 14

Collaborative history

Group history + personal history =>
History of people “like” you

How characterize?
•  Shared behaviors
•  Shared topics

15 16

Example: Recommender Systems
•  Look at classic model and techniques

–  Items
–  Users
–  Recommend Items to Users

•  Recommend new items based on:
–  similarity to items user liked in past: individual history

“Content-based”
–  Liked by other users similar to this user: collaborative

history
“Collaborative Filtering”

–  Liked by other users: group history
•  easier case

17

Recommender System attributes

•  Need explicit or implicit ratings by user
–  Purchase is 0/1 rating

•  Movie tickets
•  Books

•  Have focused category
–  examples: music, courses, restaurants
–  hard to cross categories with content-based
–  easier to cross categories with collaborative-based

•  users share tastes across categories?
18

Content-based recommendation
•  Items must have characteristics
•  user values item

⇒  values characteristics of item
•  model each item as vector of weights of

characteristics
– much like vector-based IR

•  user can give explicit preferences for
certain characteristics

4

19

Content-based example
•  user bought book 1 and book 2

–  what if actually rated?
•  Average books bought = (0, 1, 0.5, 0)
•  Score new books

–  dot product gives: score(A) = 0.5; score (B)= 1
•  decide threshold for recommendation

1st person romance mystery sci-fi

book 1 0 1 1 0

book 2 0 1 0 0

new book A 1 .5 0 0

new book B 0 1 0 .2 20

Example with explicit user preferences
How use scores of books bought?

Try: preference vector p where component k =
user pref for characteristic k if ≠ 0
avg. comp. k of books bought when user pref =0

 0 pref for user = “don’t care”

p=(0, 1, 0.5, -5)
New scores?

p•A = 0.5
p•B = 0

1st per rom mys sci-fi

user pref 0 1 0 -5

book 1 0 1 1 0

book 2 0 1 0 0

new A 1 .5 0 0

new B 0 1 0 .2

21

Content-based: issues
•  Vector-based one alternative
•  Major alternatives based on machine-learning
•  For vector based

–  how build a preference vector
•  how combined vectors for items rated by user

– our example only 0/1 rating
•  how include explicit user preferences

–  what metric use for similarity between new items
and preference vector

–  normalization
–  threshold?

22

Limitations of Content-based

•  Can only recommend items similar to
those user rated highly

•  New users
–  Insufficient number of rated items

•  Only consider features explicitly
associated with items
– Do not include attributes of user

23

Collaborative Filtering
•  Recommend new items liked by other

users similar to this user
•  need items already rated by user and

other users
•  don’t need characteristics of items

– each rating by individual user becomes
characteristic

•  Can combine with item characteristics
–  hybrid content/collaborative

24

Method types
 (see Adomavicius and Tuzhilin paper)

•  Memory-Based
– Similar to vector model
– Use (user × item) matrix
– Use similarity function
– Prediction based on previously rated items

•  Model-Based
– Machine-learning methods
– Model of probabilities of (users × items)

5

25

Memory-Based: Preliminaries
•  Notation

–  r(u,i) = rating of ith item by user u
–  I u = set of items rated by user u
–  Iu,v = set of items rated by both users u and v
– Ui,j = set of users that rated items i and j

•  Adjust scales for user differences
– Use average rating by user u:
 ru

avg = (1/|Iu|) * ∑ r(u,i)

– Adjusted ratings: radj(u,i) = r(u,i) - ru
avg

i in Iu

26

One Memory-Based method:
User Similarities

•  similarity between users u and v
–  Pearson correlation coefficient

 ∑ (radj(u,i)*radj(v, i))
 i in Iu,v
sim(u,v) =
 (∑(radj(u,i))2 * ∑(radj(v, i))2)½
 i in Iu,v i in Iu,v

27

Predicting User’s rating of new item:
User-based

For item i not rated by user u

 ∑ (sim(u,v)*radj(v, i))
 v in S
rpred(u,i) = ru

avg +
 ∑ |sim(u,v)|
 v in S

S can be all users or just users most similar to u
28

Collaborative filtering example
user
ratings

adj.
user
ratings

book 1 book 2 book 3 book 4

user 1 5 1 2 0

user 2 x 5 2 5

user 3 3 1 x 2
user 4 4 0 2 ?

book 1 book 2 book 3 book 4

user 1 3 -1 0 -2

user 2 x 1 -2 1

user 3 1 -1 x 0

user 4 2 -2 0 ?

29

Collaborative filtering example

•  sim(u1,u4) = (6+2)/(10*8)1/2 = .894
•  sim(u2,u4) = (-2)/(5*4)1/2 = -.447
•  sim(u3,u4) = (2+2)/(2*8)1/2 = 1

•  predict r(u4, book4) = 2 +

 = 2 - .955 ≈ 1

(-2)*.894 +1*(-.447) + 0*1
.894 + .447 + 1

30

One Memory-Based Method:
Item Similarities

•  similarity between items i and j
–  vector of ratings of users in Ui,j
–  cosine measure using adjusted ratings

 ∑ (radj(u,i)*radj(u, j))
 u in Ui,j
sim(i,j) =
 (∑ (radj(u,i))2 ∑(radj(u, j))2)½
 u in Ui,j u in Ui,j

6

31

Predicting User’s rating of new item:
Item-based

For item i not rated by user u

 ∑ (sim(i,j)*r(u, j))
 j in T
ritem-pred(u,i) =
 ∑ |sim(i,j)|
 j in T

T can be all items or just items most similar to i

  Prediction uses only u’s ratings, but similarity
uses other users’ ratings

32

Limitations

•  May not have enough ratings for new
users

•  New items may not be rated by enough
users

•  Need “critical mass” of users
– All similarities based on user ratings

Applying concepts to search

•  Individual histories
– Characterize individual by topic interest

•  Properties of objects interact with
– Characterize query by related topics

•  Role of terms of query in topic
– Modify query to bias to shared topics
– Modify ranking to prefer shared topics

33

Applying concepts to search

•  Collaborative histories
– How determine user similarity?

•  Behavior on identical searches?
•  Overlap of general topic interests?

– From overlapping behaviors
– Hybrid content-based and behavior-based

•  Computational expense?
– Argues for general topic-interest characterizations

– How apply similarity?
•  Same search? Bias ranking?
•  Same topic of search? Bias topics of results? 34

Refining PageRank

pr = (α/n, α/n, … α/n)T +(1- α) LT pr

•  let v = (1/n, 1/n, … 1/n)
•  rewrite pr = (α)vT +(1- α) LT pr
•  Refinement choices

– change v
– change L

35

“Topic Senstive” PageRank
Haveliwala

•  Use pre-defined topics
– Open Directory Project

•  “the largest, most comprehensive human-edited
directory of the Web.”

•  16 top-level topics

•  Each page has PageRank for each topic
•  Calculate similarity of query to each topic

– Use linear combination of topic PageRanks
based on similarity values query to topic

36

7

Personalized PageRank
Kamvar et. al.

•  Random leaps are biased by personal interests –
change v

•  Combined with use of block structure to make
more efficient:
–  Divide Web graph into blocks (clusters)

•  Use high-level domains (e.g. princeton.edu)
–  Calc. local PageRank within each block
–  Collapse each block into 1 node – new graph

•  Weighted edges between nodes
–  Calc. PageRank with biased leaps for block structure
–  Weight local PageRanks with block PageRank

•  Use to initialize power calcuation 37

Summary
•  Looked at several techniques for

modifying search
– Explicit User feedback

•  revise query

–  Implicit User feedback – behavior history
•  Individual history
•  Group history
•  Collaborative history

– Recommender systems
– Modifying PageRank 38

