Refining and
Personalizing
Searches

Targets

* collection
»query

« satisfying documents
—increase set?

»ranking

Themes

» Explicit feedback versus search history

* Personalized history versus group
history

Refine initially: query
» Help user get better query

« Commonly, query expansion
— add synonyms
« Improve recall
* Hurt precision?
» Sometimes done automatically — with care
— Modify based on prior searches
» Not automatic

« All prior searches - eg. suggested search terms
vs

« your prior searches

Refining after search

» Use user feedback
or

» Approximate feedback with first results
— Pseudo-feedback
— Example: “Yahoo assist” (7?still)

» change ranking of current results
or

» search again with modified query

Explicit user feedback

» User must participate

» User marks (some) relevant results
or

+ User changes order of results
— Can be more nuanced than relevant or not
— Can be less accurate than relevant or not
« Example: User moves 10th item to first
—says 10th better than first 9
—Does not say which, if any, of first 9 relevanfa




User feedback in
classic vector model

» User marks top p documents for
relevance
p =10 to 20 “typical”
 Construct new weights for terms in
query vector
— Modifies query
— Could use just on initial results to re-rank

Deriving new query
for vector model

For collection C of n doc.s
» Let C,denote set all relevant docs in collection,

Perfect knowledge Goal:

Vector g, =

1/|C,| * (sum of all vectors d;in C,) -

1/(n- |C,]) * (sum of all vectors d, notin C,)
centroids

Deriving new query for vector model:
Rocchio algorithm

Give query q and relevance judgments for a
subset of retrieved docs

» Let D, denote set of docs judged relevant

+ Let D, denote set of docs judged not relevant

Modified query:

Vector q,,.,, = aq +

B/ID,| * (sum of all vectors d; in D) -
Y/(ID, ) * (sum of all vectors d, in D,,,)

For tunable weights a, 3, y

Remarks on new query

* a: importance original query
« B: importance effect of terms in relevant docs
« y:importance effect of terms in docs not relevant

Usually terms of docs not relevant are least
important

— Reasonable values o=1, p=.75, y=.15

* Reweighting terms leads to long queries

— Many more non-zero elements in query vector g,
— Can reweight only most important (frequent?) terms
Most useful to improve recall

» Users don't like: work + wait for new results
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Simple example
user feedback in vector model

« qg=(1,1,0,0)
* Relevant: d1=(1,0,1,1)
d2 =(1,1,1,1)
* Not relevant: d3=(0,1,1,0)
ca,By=1
* Oy = (1,1,0,0) + (1, 1/2, 1, 1) - (0,1,1,0)
=(2,1/2,0,1)
Term weights change New term
Observe: Can get negative weights

Re-ranking
using explicit feedback

Algorithms usually based on machine learning

— Learn ranking function that best matches partial
ranking given

Simple example

— 2007ish: Google experiment; only affects repeat of
same search

— 2008: became SearchWiki feature for Google
accounts

— 2010: functionality reduced to “starred” results list




Implicit user feedback

* Click-throughs
— Use as relevance judgment
— Use as reranking:

When click result, moves it ahead of all results
didn’t click that come before it

— Problems?

 Better implicit feedback signals?

Behavior History

» Going beyond behavior on same query.
» Personal history versus Group history

Group history
— Primarily search history
» Google’s claim Bing copies
Personal history
— Searches
— Other behavior — browsing, mail?, ...
— Characterize interests: topics

Collaborative history

Group history + personal history =>
History of people “like” you

How characterize?
» Shared behaviors
» Shared topics

Example: Recommender Systems

» Look at classic model and techniques
— Items
— Users
— Recommend Items to Users
* Recommend new items based on:
— similarity to items user liked in past: individual history
“Content-based”

— Liked by other users similar to this user: collaborative
history

“Collaborative Filtering”
— Liked by other users: group history
* easier case

Recommender System attributes

Need explicit or implicit ratings by user

— Purchase is 0/1 rating
* Movie tickets
* Books

Have focused category

— examples: music, courses, restaurants

— hard to cross categories with content-based

— easier to cross categories with collaborative-based
« users share tastes across categories?

Content-based recommendation

ltems must have characteristics
user values item

= values characteristics of item

model each item as vector of weights of
characteristics
— much like vector-based IR

« user can give explicit preferences for
certain characteristics




Content-based example

user bought book 1 and book 2

— what if actually rated?

Average books bought = (0, 1, 0.5, 0)

Score new books

— dot product gives: score(A) = 0.5; score (B)= 1
decide threshold for recommendation

1stperson | romance | mystery | sci-fi
book 1 0 1 1 0
book 2 0 1 0 0
new book A 1 5 0 0
new book B 0 1 0 2 19

Example with explicit user preferences

How use scores of books bought?
Try: preference vector p where component k =
user pref for characteristic k if # 0
avg. comp. k of books bought when user pref =0
0 pref for user = “don’t care”

1stper | rom | mys | sci-fi

p=(0,1,0.5,-5) | yser pref 0 1 0 -5
New scores?

book 1 0 1 1 0
prA=05 o0
p*B=0 book 2 0 1 0
new A 1 5 0 0
new B 0 1 0 22

Content-based: issues

Vector-based one alternative
Major alternatives based on machine-learning
For vector based
— how build a preference vector

* how combined vectors for items rated by user

—our example only 0/1 rating

* how include explicit user preferences

— what metric use for similarity between new items
and preference vector
— normalization
— threshold?
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Limitations of Content-based

» Can only recommend items similar to
those user rated highly

* New users
— Insufficient number of rated items

* Only consider features explicitly
associated with items
— Do not include attributes of user
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Collaborative Filtering

Recommend new items liked by other

users similar to this user

need items already rated by user and

other users

don’t need characteristics of items

— each rating by individual user becomes
characteristic

Can combine with item characteristics

— hybrid content/collaborative
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Method types

(see Adomavicius and Tuzhilin paper)

* Memory-Based

— Similar to vector model

— Use (user x item) matrix

— Use similarity function

— Prediction based on previously rated items
+ Model-Based

— Machine-learning methods

— Model of probabilities of (users x items)
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Memory-Based: Preliminaries

* Notation
— r(u,i) = rating of i item by user u
— 1, = set of items rated by user u
- I, = set of items rated by both users u and v
— U;; = set of users that rated items i and j
« Adjust scales for user differences
— Use average rating by user u:
rE = (L) * ¥ )
— Adjusted ratings: rm;(u.,i) =r(u,i) - r,2ve
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One Memory-Based method:
User Similarities

* similarity between users u and v
— Pearson correlation coefficient

z (radj(uai)*radj(v’ 1) )

iinl,,

sim(u,v) =
( Zrygi(wi))? * Xryg(v, 1)) )*
iinl iinl,

uv v
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Predicting User’s rating of new item:
User-based

For item i not rated by user u

3. (SIm(uv)*r,g (v, i)

vin$S

rprcd(u,i) = ruavg +
2 [sim(u,v)|
vin$S
S can be all users or just users most similar to u
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Collaborative filtering example

user book 1 | book 2 | book 3 |book 4

ratings| user 1 5 1 2 0
user 2 X 5 2 5
user 3 3 1 X 2
user 4 0 2 ?

book 1 book 2 | book 3 |book 4

adj. user 1 3 -1 0 -2
usslar user 2 X 1 -2 1
ratings
user 3 1 -1 X 0
user 4 2 -2 0

Collaborative filtering example

« sim(u1,ud) = (6+2)/(10*8)""2 = .894
. sim(u2,ud) = (-2)/(5*4)12 = - 447
. sim(u3,ud) = (2+2)/(2*8)"2 = 1

(-2)*.894 +1*(-.447) + 0*1

. ict r(u4, kd) =2+
predict r(u4, book4) 894+ 447 + 1

=2-.955 =1
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One Memory-Based Method:
Item Similarities

* similarity between items i and j
— vector of ratings of users in U,
— cosine measure using adjusted ratings

Z (raxi_i(uai)*radj(u: .]) )

uin Uy

sim(i.j) =
( X (rag(wi))* Xrgg(u, ))* )*
uin U uinUj;
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Predicting User’s rating of new item:
Item-based

For item i not rated by user u

2 (sim(i,j)*r(u, j))

jinT

rilcm—prcd(u i) =
5
2 [sim(i,j)]
jinT

T can be all items or just items most similar to i

» Prediction uses only u’s ratings, but similarity
uses other users’ ratings

Limitations

* May not have enough ratings for new
users

* New items may not be rated by enough
users

* Need “critical mass” of users
— All similarities based on user ratings
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Applying concepts to search

* Individual histories
— Characterize individual by topic interest
* Properties of objects interact with

— Characterize query by related topics
* Role of terms of query in topic

— Modify query to bias to shared topics
— Modify ranking to prefer shared topics

Applying concepts to search

+ Collaborative histories
— How determine user similarity?
+ Behavior on identical searches?
* Overlap of general topic interests?
— From overlapping behaviors
—Hybrid content-based and behavior-based
» Computational expense?
— Argues for general topic-interest characterizations
— How apply similarity?
» Same search? Bias ranking?

» Same topic of search? Bias topics of results? 4,

Refining PageRank

pr=(a/n, a/n, ... a/n)T+(1- a) LT pr

letv=(1/n,1/n, ... 1/n)

rewrite  pr= (a)v’ +(1- a) LT pr
Refinement choices

—change v

—change L

“Topic Senstive” PageRank

Haveliwala

Use pre-defined topics
— Open Directory Project

« “the largest, most comprehensive human-edited
directory of the Web.”

* 16 top-level topics

» Each page has PageRank for each topic
+ Calculate similarity of query to each topic

— Use linear combination of topic PageRanks
based on similarity values query to topic
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Personalized PageRank

Kamvar et. al.

Random leaps are biased by personal interests —
change v

Combined with use of block structure to make
more efficient:
— Divide Web graph into blocks (clusters)
« Use high-level domains (e.g. princeton.edu)
— Calc. local PageRank within each block
— Collapse each block into 1 node — new graph
» Weighted edges between nodes
— Calc. PageRank with biased leaps for block structure

— Weight local PageRanks with block PageRank
* Use to initialize power calcuation

Summary

Looked at several techniques for
modifying search
— Explicit User feedback
* revise query
— Implicit User feedback — behavior history
* Individual history
« Group history
« Collaborative history
— Recommender systems
— Modifying PageRank
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