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Refining and 
Personalizing 

Searches 

Targets 

•  collection 

 query 

•  satisfying documents 
–  increase set? 

 ranking 
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Themes 

•  Explicit feedback versus search history 

•  Personalized history versus group 
history 
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Refine initially: query 

•  Help user get better query 

•  Commonly, query expansion 
–   add synonyms 

•  Improve recall 
•  Hurt precision? 
•  Sometimes done automatically − with care 

– Modify based on prior searches  
•  Not automatic 
•  All prior searches  - eg. suggested search terms 
    vs  
•  your prior searches 
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Refining after search 
•  Use user feedback 
    or 
•  Approximate feedback with first results 

– Pseudo-feedback 
– Example: “Yahoo assist”  (?still) 

•  change ranking of current results  
    or 
•  search again with modified query 
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Explicit user feedback 

•  User must participate 

•  User marks (some) relevant results 
    or 
•  User changes order of results 

– Can be more nuanced than relevant or not 
– Can be less accurate than relevant or not 

•  Example: User moves 10th item to first 
– says 10th better than first 9 
– Does not say which, if any, of first 9 relevant 
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User feedback in  
classic vector model 

•  User marks top p documents for 
relevance 

p = 10 to 20 “typical” 

•  Construct new weights for terms in 
query vector 
– Modifies query 
– Could use just on initial results to re-rank 
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Deriving new query  
for vector model 

For collection C of n doc.s 
•  Let Cr denote set all relevant docs in collection,  

Perfect knowledge Goal:  
Vector qopt =  
1/|Cr| * (sum of all vectors dj in Cr) - 
1/(n- |Cr|) * (sum of all vectors dk not in Cr) 
           centroids 
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Deriving new query for vector model: 
Rocchio algorithm 

Give query q and relevance judgments for a 
subset of retrieved docs 

•  Let Dr denote set of docs judged relevant  
•  Let Dnr denote set of docs judged not relevant 

Modified query:  
Vector qnew =  αq + 
β/|Dr| * (sum of all vectors dj in Dr) - 
γ/(|Dnr|) * (sum of all vectors dk in Dnr) 

For tunable weights α, β, γ 
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Remarks on new query 
•  α: importance original query 
•  β: importance effect of terms in relevant docs 
•  γ: importance effect of terms in docs not relevant 

•  Usually terms of docs not relevant are least 
important 
–  Reasonable values α=1, β=.75, γ=.15 

•  Reweighting terms leads to long queries 
–  Many more non-zero elements in query vector qnew 
–  Can reweight only most important (frequent?) terms  

•  Most useful to improve recall 
•  Users don’t like: work + wait for new results 
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Simple example  
user feedback in vector model 

•  q = (1,1,0,0) 
•  Relevant:   d1 = (1,0,1,1) 
                      d2 = (1,1,1,1) 
•  Not relevant:  d3=(0,1,1,0) 
•  α, β, γ = 1 
•  qnew = (1,1,0,0) + (1, 1/2, 1, 1) - (0,1,1,0) 
          = (2, 1/2, 0, 1) 
Term weights change            New term 
Observe: Can get negative weights 
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Re-ranking  
using explicit feedback 

•  Algorithms usually based on machine learning 
–  Learn ranking function that best matches partial 

ranking given 

•  Simple example 
–  2007ish: Google experiment; only affects repeat of 

same search 
–  2008: became SearchWiki feature for Google 

accounts 
–  2010: functionality reduced to “starred” results list   
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Implicit user feedback 

•  Click-throughs 
– Use as relevance judgment 
– Use as reranking: 

When click result, moves it ahead of all results 
didn’t click that come before it 

– Problems? 

•  Better implicit feedback signals? 

Behavior History 
•  Going beyond behavior on same query. 

•  Personal history versus Group history 

•  Group history 
– Primarily search history 

•  Google’s claim Bing copies 

•  Personal history 
–  Searches 
–  Other behavior – browsing, mail?, … 
–  Characterize interests:  topics 14 

Collaborative history 

Group history + personal history => 
History of people “like” you 

How characterize? 
•  Shared behaviors 
•  Shared topics  
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Example: Recommender Systems 
•  Look at classic model and techniques 

–  Items 
–  Users 
–  Recommend Items to Users 

•  Recommend new items based on: 
–  similarity to items user liked in past:  individual history 

“Content-based”   
–  Liked by other users similar to this user: collaborative 

history 
“Collaborative Filtering” 

–  Liked by other users: group history 
•  easier case 
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Recommender System attributes 

•  Need explicit or implicit ratings by user 
–  Purchase is 0/1 rating 

•  Movie tickets 
•  Books  

•  Have focused category 
–  examples: music, courses, restaurants 
–  hard to cross categories with content-based 
–  easier to cross categories with collaborative-based 

•  users share tastes across categories? 
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Content-based recommendation 
•  Items must have characteristics 
•  user values item  

⇒  values characteristics of item 
•  model each item as vector of weights of 

characteristics 
– much like vector-based IR 

•  user can give explicit preferences for 
certain characteristics 
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Content-based example 
•  user bought book 1 and book 2 

–  what if actually rated? 
•  Average books bought = (0, 1, 0.5, 0) 
•  Score new books 

–  dot product gives:  score(A) = 0.5; score (B)= 1 
•  decide threshold for recommendation 

1st person romance mystery sci-fi 

book 1 0 1 1 0 

book 2 0 1 0 0 

new book A 1 .5 0 0 

new book B 0 1 0 .2 20 

Example with explicit user preferences 
How use scores of books bought?  

Try: preference vector p where component k = 
user pref for characteristic k if ≠ 0 
avg. comp. k of books bought when user pref =0 

 0 pref for user = “don’t care” 

p=(0, 1, 0.5, -5)  
New scores? 

p•A = 0.5 
p•B = 0 

1st per rom mys sci-fi 

user pref 0 1 0 -5 

book 1 0 1 1 0 

book 2 0 1 0 0 

new A 1 .5 0 0 

new B 0 1 0 .2 

21 

Content-based: issues  
•  Vector-based one alternative 
•  Major alternatives based on machine-learning 
•  For vector based 

–  how build a preference vector 
•  how combined vectors for items rated by user 

– our example only 0/1 rating 
•  how include explicit user preferences 

–  what metric use for similarity between new items 
and preference vector 

–  normalization 
–  threshold? 
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Limitations of Content-based 

•  Can only recommend items similar to 
those user rated highly 

•  New users 
–  Insufficient number of rated items 

•  Only consider features explicitly 
associated with items 
– Do not include attributes of user 
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Collaborative Filtering 
•  Recommend new items liked by other 

users similar to this user 
•  need items already rated by user and 

other users 
•  don’t need characteristics of items 

– each rating by individual user becomes 
characteristic 

•  Can combine with item characteristics 
–  hybrid content/collaborative 
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Method types 
 (see Adomavicius and Tuzhilin paper) 

•  Memory-Based 
– Similar to vector model 
– Use (user × item) matrix 
– Use similarity function 
– Prediction based on previously rated items 

•   Model-Based 
– Machine-learning methods 
– Model of probabilities of (users × items) 
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Memory-Based: Preliminaries 
•  Notation 

–  r(u,i) = rating of ith item by user u 
–  I u = set of items rated by user u 
–  Iu,v = set of items rated by both users u and v 
– Ui,j = set of users that rated items i and j 

•  Adjust scales for user differences 
– Use average rating by user u: 
       ru

avg  = (1/|Iu| ) * ∑ r(u,i)  

– Adjusted ratings:   radj(u,i)  = r(u,i) - ru
avg 

i in Iu 
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One Memory-Based method:  
User Similarities 

•  similarity between users u and v 
–   Pearson correlation coefficient 

                     ∑ (radj(u,i)*radj(v, i) ) 
                            i in Iu,v                                           
sim(u,v) = 
                 (  ∑(radj(u,i))2 * ∑(radj(v, i))2  )½    
                            i in Iu,v                                              i in Iu,v 
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Predicting User’s rating of new item: 
User-based 

For item i not rated by user u 

                                 ∑ (sim(u,v)*radj(v, i))  
                                            v in S                                           
rpred(u,i) = ru

avg  + 
                                 ∑ |sim(u,v)| 
                                             v in S 

S can be all users or just users most similar to u 
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Collaborative filtering example 
user  
ratings 

adj. 
user 
ratings 

book 1 book 2 book 3 book 4 

user 1 5 1 2 0 

user 2 x 5 2 5 

user 3 3 1 x 2 
user 4 4 0 2 ? 

book 1 book 2 book 3 book 4 

user 1 3 -1 0 -2 

user 2 x 1 -2 1 

user 3 1 -1 x 0 

user 4 2 -2 0 ? 
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Collaborative filtering example 

•  sim(u1,u4) = (6+2)/(10*8)1/2 = .894 
•  sim(u2,u4) = (-2)/(5*4)1/2 = -.447 
•  sim(u3,u4) = (2+2)/(2*8)1/2 = 1 

•  predict  r(u4, book4) = 2 + 

                                      =  2 - .955  ≈  1 

(-2)*.894 +1*(-.447) + 0*1 
.894 + .447 + 1 
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One Memory-Based Method:  
Item Similarities 

•  similarity between items i and j 
–  vector of ratings of users in Ui,j 
–  cosine measure using adjusted ratings 

                            ∑ (radj(u,i)*radj(u, j) )  
                                    u in Ui,j                                           
sim(i,j) = 
                     (  ∑ (radj(u,i))2  ∑(radj(u, j))2  )½    
                                u in Ui,j                                 u in Ui,j 
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Predicting User’s rating of new item: 
Item-based 

For item i not rated by user u 

                                      ∑ (sim(i,j)*r(u, j))  
                                                   j in T                                           
ritem-pred(u,i) = 
                                    ∑ |sim(i,j)| 
                                                j in T 

T can be all items or just items most similar to i 

  Prediction uses only u’s ratings, but similarity 
uses other users’ ratings 
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Limitations 

•  May not have enough ratings for new 
users 

•  New items may not be rated by enough 
users 

•  Need “critical mass” of users 
– All similarities based on user ratings 

Applying concepts to search 

•  Individual histories 
– Characterize individual by topic interest 

•  Properties of objects interact with 
– Characterize query by related topics 

•  Role of terms of query in topic 
– Modify query to bias to shared topics 
– Modify ranking to prefer shared topics 
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Applying concepts to search 

•  Collaborative histories 
– How determine user similarity? 

•  Behavior on identical searches? 
•  Overlap of general topic interests? 

– From overlapping behaviors 
– Hybrid content-based and behavior-based 

•  Computational expense? 
– Argues for general topic-interest characterizations 

– How apply similarity? 
•  Same search?   Bias ranking? 
•  Same topic of search?  Bias topics of results? 34 

Refining PageRank 

pr = (α/n, α/n, … α/n)T +(1- α) LT pr 

•  let v = (1/n, 1/n, … 1/n)  
•  rewrite    pr = (α)vT +(1- α) LT pr  
•  Refinement choices 

– change v 
– change L 
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“Topic Senstive” PageRank 
Haveliwala 

•  Use pre-defined topics 
– Open Directory Project  

•  “the largest, most comprehensive human-edited 
directory of the Web.” 

•  16 top-level topics 

•  Each page has PageRank for each topic 
•  Calculate similarity of query to each topic 

– Use linear combination of topic PageRanks 
based on similarity values query to topic 
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Personalized PageRank 
Kamvar et. al. 

•  Random leaps are biased by personal interests – 
change v 

•  Combined with use of block structure to make 
more efficient: 
–  Divide Web graph into blocks (clusters) 

•  Use high-level domains (e.g. princeton.edu) 
–  Calc. local PageRank within each block 
–  Collapse each block into 1 node – new graph 

•  Weighted edges between nodes 
–  Calc. PageRank with biased leaps for block structure 
–  Weight local PageRanks with block PageRank 

•  Use to initialize power calcuation 37 

Summary 
•  Looked at several techniques for 

modifying search 
– Explicit User feedback 

•  revise query 

–  Implicit User feedback – behavior history 
•  Individual history  
•  Group history 
•  Collaborative history 

– Recommender systems 
– Modifying PageRank 38 


