Refining and
Personalizing
Searches

Targets

* collection
»query

« satisfying documents
—increase set?

»ranking

Themes

» Explicit feedback versus search history

* Personalized history versus group
history

Refine initially: query
» Help user get better query

« Commonly, query expansion
— add synonyms
« Improve recall
* Hurt precision?
» Sometimes done automatically — with care
— Modify based on prior searches
» Not automatic

« All prior searches - eg. suggested search terms
vs

« your prior searches

Refining after search

» Use user feedback
or

» Approximate feedback with first results
— Pseudo-feedback
— Example: “Yahoo assist” (7?still)

» change ranking of current results
or

» search again with modified query

Explicit user feedback

» User must participate

» User marks (some) relevant results
or

+ User changes order of results
— Can be more nuanced than relevant or not
— Can be less accurate than relevant or not
« Example: User moves 10th item to first
—says 10th better than first 9
—Does not say which, if any, of first 9 relevanfa

User feedback in
classic vector model

» User marks top p documents for
relevance
p =10 to 20 “typical”
 Construct new weights for terms in
query vector
— Modifies query
— Could use just on initial results to re-rank

Deriving new query
for vector model

For collection C of n doc.s
» Let C,denote set all relevant docs in collection,

Perfect knowledge Goal:

Vector g, =

1/|C,| * (sum of all vectors d;in C,) -

1/(n- |C,]) * (sum of all vectors d, notin C,)
centroids

Deriving new query for vector model:
Rocchio algorithm

Give query q and relevance judgments for a
subset of retrieved docs

» Let D, denote set of docs judged relevant

+ Let D, denote set of docs judged not relevant

Modified query:

Vector q,,.,, = aq +

B/ID,| * (sum of all vectors d; in D) -
Y/(ID,) * (sum of all vectors d, in D,,,)

For tunable weights a, 3, y

Remarks on new query

* a: importance original query
« B: importance effect of terms in relevant docs
« y:importance effect of terms in docs not relevant

Usually terms of docs not relevant are least
important

— Reasonable values o=1, p=.75, y=.15

* Reweighting terms leads to long queries

— Many more non-zero elements in query vector g,
— Can reweight only most important (frequent?) terms
Most useful to improve recall

» Users don't like: work + wait for new results

10

Simple example
user feedback in vector model

« qg=(1,1,0,0)
* Relevant: d1=(1,0,1,1)
d2 =(1,1,1,1)
* Not relevant: d3=(0,1,1,0)
ca,By=1
* Oy = (1,1,0,0) + (1, 1/2, 1, 1) - (0,1,1,0)
=(2,1/2,0,1)
Term weights change New term
Observe: Can get negative weights

Re-ranking
using explicit feedback

Algorithms usually based on machine learning

— Learn ranking function that best matches partial
ranking given

Simple example

— 2007ish: Google experiment; only affects repeat of
same search

— 2008: became SearchWiki feature for Google
accounts

— 2010: functionality reduced to “starred” results list

Implicit user feedback

* Click-throughs
— Use as relevance judgment
— Use as reranking:

When click result, moves it ahead of all results
didn’t click that come before it

— Problems?

 Better implicit feedback signals?

Behavior History

» Going beyond behavior on same query.
» Personal history versus Group history

Group history
— Primarily search history
» Google’s claim Bing copies
Personal history
— Searches
— Other behavior — browsing, mail?, ...
— Characterize interests: topics

Collaborative history

Group history + personal history =>
History of people “like” you

How characterize?
» Shared behaviors
» Shared topics

Example: Recommender Systems

» Look at classic model and techniques
— Items
— Users
— Recommend Items to Users
* Recommend new items based on:
— similarity to items user liked in past: individual history
“Content-based”

— Liked by other users similar to this user: collaborative
history

“Collaborative Filtering”
— Liked by other users: group history
* easier case

Recommender System attributes

Need explicit or implicit ratings by user

— Purchase is 0/1 rating
* Movie tickets
* Books

Have focused category

— examples: music, courses, restaurants

— hard to cross categories with content-based

— easier to cross categories with collaborative-based
« users share tastes across categories?

Content-based recommendation

ltems must have characteristics
user values item

= values characteristics of item

model each item as vector of weights of
characteristics
— much like vector-based IR

« user can give explicit preferences for
certain characteristics

Content-based example

user bought book 1 and book 2

— what if actually rated?

Average books bought = (0, 1, 0.5, 0)

Score new books

— dot product gives: score(A) = 0.5; score (B)= 1
decide threshold for recommendation

1stperson | romance | mystery | sci-fi
book 1 0 1 1 0
book 2 0 1 0 0
new book A 1 5 0 0
new book B 0 1 0 2 19

Example with explicit user preferences

How use scores of books bought?
Try: preference vector p where component k =
user pref for characteristic k if # 0
avg. comp. k of books bought when user pref =0
0 pref for user = “don’t care”

1stper | rom | mys | sci-fi

p=(0,1,0.5,-5) | yser pref 0 1 0 -5
New scores?

book 1 0 1 1 0
prA=05 o0
p*B=0 book 2 0 1 0
new A 1 5 0 0
new B 0 1 0 22

Content-based: issues

Vector-based one alternative
Major alternatives based on machine-learning
For vector based
— how build a preference vector

* how combined vectors for items rated by user

—our example only 0/1 rating

* how include explicit user preferences

— what metric use for similarity between new items
and preference vector
— normalization
— threshold?
21

Limitations of Content-based

» Can only recommend items similar to
those user rated highly

* New users
— Insufficient number of rated items

* Only consider features explicitly
associated with items
— Do not include attributes of user

22

Collaborative Filtering

Recommend new items liked by other

users similar to this user

need items already rated by user and

other users

don’t need characteristics of items

— each rating by individual user becomes
characteristic

Can combine with item characteristics

— hybrid content/collaborative

23

Method types

(see Adomavicius and Tuzhilin paper)

* Memory-Based

— Similar to vector model

— Use (user x item) matrix

— Use similarity function

— Prediction based on previously rated items
+ Model-Based

— Machine-learning methods

— Model of probabilities of (users x items)

24

Memory-Based: Preliminaries

* Notation
— r(u,i) = rating of i item by user u
— 1, = set of items rated by user u
- I, = set of items rated by both users u and v
— U;; = set of users that rated items i and j
« Adjust scales for user differences
— Use average rating by user u:
rE = (L) * ¥)
— Adjusted ratings: rm;(u.,i) =r(u,i) - r,2ve

25

One Memory-Based method:
User Similarities

* similarity between users u and v
— Pearson correlation coefficient

z (radj(uai)*radj(v’ 1))

iinl,,

sim(u,v) =
(Zrygi(wi))? * Xryg(v, 1)))*
iinl iinl,

uv v

26

Predicting User’s rating of new item:
User-based

For item i not rated by user u

3. (SIm(uv)*r,g (v, i)

vin$S

rprcd(u,i) = ruavg +
2 [sim(u,v)|
vin$S
S can be all users or just users most similar to u

27

Collaborative filtering example

user book 1 | book 2 | book 3 |book 4

ratings| user 1 5 1 2 0
user 2 X 5 2 5
user 3 3 1 X 2
user 4 0 2 ?

book 1 book 2 | book 3 |book 4

adj. user 1 3 -1 0 -2
usslar user 2 X 1 -2 1
ratings
user 3 1 -1 X 0
user 4 2 -2 0

Collaborative filtering example

« sim(u1,ud) = (6+2)/(10*8)""2 = .894
. sim(u2,ud) = (-2)/(5*4)12 = - 447
. sim(u3,ud) = (2+2)/(2*8)"2 = 1

(-2)*.894 +1*(-.447) + 0*1

. ict r(u4, kd) =2+
predict r(u4, book4) 894+ 447 + 1

=2-.955 =1

29

One Memory-Based Method:
Item Similarities

* similarity between items i and j
— vector of ratings of users in U,
— cosine measure using adjusted ratings

Z (raxi_i(uai)*radj(u: .]))

uin Uy

sim(i.j) =
(X (rag(wi))* Xrgg(u,))*)*
uin U uinUj;

30

Predicting User’s rating of new item:
Item-based

For item i not rated by user u

2 (sim(i,j)*r(u, j))

jinT

rilcm—prcd(u i) =
5
2 [sim(i,j)]
jinT

T can be all items or just items most similar to i

» Prediction uses only u’s ratings, but similarity
uses other users’ ratings

Limitations

* May not have enough ratings for new
users

* New items may not be rated by enough
users

* Need “critical mass” of users
— All similarities based on user ratings

32

Applying concepts to search

* Individual histories
— Characterize individual by topic interest
* Properties of objects interact with

— Characterize query by related topics
* Role of terms of query in topic

— Modify query to bias to shared topics
— Modify ranking to prefer shared topics

Applying concepts to search

+ Collaborative histories
— How determine user similarity?
+ Behavior on identical searches?
* Overlap of general topic interests?
— From overlapping behaviors
—Hybrid content-based and behavior-based
» Computational expense?
— Argues for general topic-interest characterizations
— How apply similarity?
» Same search? Bias ranking?

» Same topic of search? Bias topics of results? 4,

Refining PageRank

pr=(a/n, a/n, ... a/n)T+(1- a) LT pr

letv=(1/n,1/n, ... 1/n)

rewrite pr= (a)v’ +(1- a) LT pr
Refinement choices

—change v

—change L

“Topic Senstive” PageRank

Haveliwala

Use pre-defined topics
— Open Directory Project

« “the largest, most comprehensive human-edited
directory of the Web.”

* 16 top-level topics

» Each page has PageRank for each topic
+ Calculate similarity of query to each topic

— Use linear combination of topic PageRanks
based on similarity values query to topic

36

Personalized PageRank

Kamvar et. al.

Random leaps are biased by personal interests —
change v

Combined with use of block structure to make
more efficient:
— Divide Web graph into blocks (clusters)
« Use high-level domains (e.g. princeton.edu)
— Calc. local PageRank within each block
— Collapse each block into 1 node — new graph
» Weighted edges between nodes
— Calc. PageRank with biased leaps for block structure

— Weight local PageRanks with block PageRank
* Use to initialize power calcuation

Summary

Looked at several techniques for
modifying search
— Explicit User feedback
* revise query
— Implicit User feedback — behavior history
* Individual history
« Group history
« Collaborative history
— Recommender systems
— Modifying PageRank

38

