
1

1

Using and storing
the index

2

Review: Model
•  Document: sequence of {terms + attributes}

–  equivalently, set of (term, attributes) pairs
•  positions of a term are attributes

•  Query: sequence of terms
–  Can make more complicated: Advanced search

•  Satisfying: most common now: AND model
–  for Web, terms “contained” in doc. includes:

•  in anchor text of pointers to this doc from other docs
•  in URL

•  Ranking: wide open function of document
and terms

3

Review: Inverted Index

•  For each term, keep list of document
entries, one for each document in which
it appears: a postings list
– Document entry is list of positions at which

term occurs and attributes for each
occurrence: a posting

•  Keep summary term information
•  Keep summary document information

meta-data 4

Consider “advanced search” queries
To know if satisfied need:

Content
•  Phrases
•  OR
•  NOT
•  Numeric range
•  Where in page

Meta-data
• Language
• Geographic region
• File format
• Date published
• From specific domain
• Specific licensing rights
• Filtered by “safe search”

5

Retrieval of satisfying documents

•  Inverted index will allow retrieval for
content queries

•  Keep meta-data on docs for meta-data
queries

•  Issue of efficient retrieval

6

Basic retrieval algorithms
•  One term:

–  look up posting list in (inverted) index
•  AND of several terms:

–  Intersect posting lists of the terms: a list merge
•  OR of several terms:

–  Union posting lists of the terms
–  eliminate duplicates: a list merge

•  NOT term
–  If terms AND NOT(other terms), take a difference
–  a list merge (similar to AND)

•  Proximity
–  a list merge (similar to AND)

2

7

Merging posting lists

•  Have two lists must coordinate
– Find shared entries and do “something”
–  “something” changes for different set

operations
•  UNION? INTERSECTION? DIFFERENCE? …

•  Algorithms?

8

Algorithms: unsorted lists
•  Read 2nd list over and over - once for each

entry on 1st list
–  computationally expensive

time O(|L1|*|L2|) where |L| length list L

•  Build hash table on entry values;
 insert entries of one list, then other;
 look for collisions

–  must have good hash table
–  unwanted collisions expensive

•  Sort lists; use algorithm for sorted lists
–  often lists on disk: external sort
–  can sort in O(|L| log |L|) operations

X

9

Algorithms: sorted lists
•  Lists sorted by some entry ID
•  Read both lists in “parallel”

–  Classic list merge:
 (sorted list1 , sorted list2) ⇒ sorted set union
–  General merge: if no duplicates, get time |L1|+|L2|

•  Build lists so sorted
–  pay cost at most once
–  maybe get sorted order “naturally”

•  If only one list sorted, can do binary search of
sorted list for entries of other list
–  Must be able to binary search! - rare!

•  can’t binary search disk
10

Keys for documents
For posting lists, entries are documents
What value is used to sort?

•  Unique document IDs
–  can still be duplicate documents
–  consider for Web when consider crawling

•  document scoring function that is
independent of query
–  PageRank, HITS authority
–  sort on document IDs as secondary key
–  allows for approximate “highest k” retrieval

•  approx. k highest ranking doc.s for a query

11

Keys within document list

Processing within document posting

•  Proximity of terms
–  merge lists of terms occurrences within 1 doc.

•  Sort on term position

12

Computing document score

•  “On fly”- as find each satisfying
document

•  Separate phase after build list of
satisfying documents

•  For either, must sort doc.s by score

3

13

Web query processing: limiting size
•  For Web-scale collections, may not process

complete posting list for each term in query
–  at least not initially

•  Need docs sorted first on global (static) quantity
–  why not by term frequency for doc?

•  Only take first k doc.s on each term list
–  k depends on query - how?
–  k depends on how many want to be able to return

– Google: 1000 max returns
–  Flaws w/ partial retrieval from each list?

–  Other limits? query size
– Google: 32 words max query size

14

Limiting size with term-based sorting
•  Can sort doc.s on postings list by score of term

–  term frequency + …
•  Lose linear merge - salvage any?
•  Tiered index:

–  tier 1: docs with highest term-based scores, sorted
by ID or global quantity

–  tier 2: docs in next bracket of score quality, sorted
–  etc.
–  need to decide size or range of brackets

•  If give up AND of query terms, can use idf too
–  only consider terms with high idf = rarer terms

15

Data structure for inverted index?
•  Sorted array:

–  binary search IF can keep in memory
–  High overhead for additions

•  Hashing
–  Fast look-up
–  Collisions

•  Search trees: B+-trees
–  Maintain balance - always log look-up time
–  Can insert and delete

16 List for “ace”
adapted from slide for Database Management Systems

by authors R. Ramakrishnan and J. Gehrke

Example B+ Tree
order = 2: 2 to 4 search keys per interior node

ace ad

Root

dog

dye egg

cad call dog … dye … … … …. … …

cab bill

bit

pig heart soap

bat bee bill boy brie cat cell

…

dune eel

…

List for “ad”
List for “bat”

… … …
List for “eel”

…
…

…

leaves

…

…

17

B+- trees
•  All index entries are at leaves
•  Order m B+ tree has m to 2m children for each

interior node
•  Look up: follow root to leaf by keys in interior

nodes
•  Insert:

–  find leaf in which belongs
–  If leaf full, split
–  Split can propagate up tree

•  Delete:
–  Merge or redistribute from too-empty leaf
–  Merge can propagate up tree 18

•  Each leaf is file page (block) on disk
•  Each interior node is file page on disk
•  Keep top of tree in buffer (RAM)
•  Typical sizes:

– m ~ 200;
– average fanout ~ 267

• Height 4 gives ~ 5 billion entries

Disk-based B+ trees for large data sets

4

19

•  Save space

•  Each interior node key is shortest prefix
of word needed to distinguish which
child pointer to follow

• Allows more keys per interior node
• higher fanout

– fanout determined by what can fit
– keep at least 1/2 full

prefix key B+ trees

20

Another tree structure: tries

•  Strictly for character strings
•  Each edge out of node labeled with one

character
•  Follow path root to leaf to spell word
•  Leaf contain data for word

– Usually pointer

21

Example

c
uo

b t l t p

s d e

cup
cab cat

cats cold

cut

cute

a

22

Tries: remarks

•  Large height
– slow look-up
– can contract strings without fanout

•  More useful for lexicon construction

