
1

1

Distributed computing:
index building and use

2

Goals

•  Do one computation faster
•  Do more computations in given

time
•  Tolerate failure of 1+ machines

3

Distributing computations

Ideas?

⇒  Finding results for a query?
•  Building index?

4

Distributed Query Evaluation
•  Assign different queries to different machines
•  Break up lexicon: assign different index terms

to different machines?
–  good/bad consequences?

•  Break up postings lists: Assign different
documents to different machines?
–  good/bad consequences?

•  Goals
–  Keep all machines busy
–  Be able to replace badly-behaved machines

seamlessly!

5

Google query evaluation
circa 2002

•  Parallelize computation
– distribute documents randomly to pieces of

index
•  Pool of machines for each - choose one
•  Why random?

•  Load balancing and reliability
– Scheduler machines

•  assign tasks to pools of machines
•  monitor performance

6

Google Query Evaluation: Details
circa 2002

•  Enter query -> DNS-based directed to one of
geographically distributed clusters
–  Load balance & fault tolerance
–  Round-trip time

•  w/in cluster, query directed to 1 Google Web
Server (GWS)
–  Load balance & fault tolerance

•  GWS distributes query to pools of machines
–  Load sharing

•  Query directed to 1 machine w/in each pool
–  Load balance & fault tolerance

2

7

Distributing computations

Ideas?

  Finding results for a query?
⇒  Building index?

8

Distributed Index Building

•  Can easily assign different documents
to different machines

•  Efficient?
•  Goals

– Keep all machines busy
– Be able to replace badly-behaved

machines seamlessly!

9

Google Index Building
circa 2003

•  MapReduce
– programming model
–  implementation for large clusters

“for processing and generating large data sets”

•  Example applications
 inverted index
•  graph structure of Web docs.
•  statistics on queries in given time period

10

MapReduce Programming Model
•  input set: {(input keyi, valuei)| 0 ≤ i ≤ input size}
•  output set: {(output keyi, valuei)| 0 ≤ i ≤ output size}
•  Map: (input key, value) →

{(intermediate keyj, valuej)| 0 ≤ j ≤ Map result size}
–  written by user

•  system groups all Map output pairs for input set
by intermediate key

•  gathers by intermediate key value
–  supply to Reduce by iterator

•  Reduce: (intermediate key, list of values) →
(intermediate key, {result values})

–  written by user to process intermediate values

11

MapReduce for
building inverted index

•  Input pair: (docID, contents of doc)
•  Map: produce {(term, docID)} for each

term appearing in docID
•  Input to Reduce: list of all (term, docID)

pairs for one term
•  Output of Reduce: (term, sorted list of

docIDs containing that term)
– postings list!

keys 12

Diagram of
computation distribution

See Figure 1 in

MapReduce:
Simplified Data Processing on Large Clusters
J. Dean and S. Ghemawat,

Comm. of the ACM,vol. 51, no. 1 (2008), pp. 107-113.

3

13

Hadoop

“The Apache Hadoop project
develops open-source software for
reliable, scalable, distributed
computing. “

Includes MapReduce

http://hadoop.apache.org/index.html

14

Remarks

•  Google built on large collections of inexpensive
“commodity PCs”
–  always some not functioning

•  Solve fault-tolerance problem in software
–  redundancy & flexibility NOT special-purpose hardware

•  Keep machines relative generalists
– machine becomes free ⇒

assign to any one of set of tasks

June 2010 New Google index building:
Caffeine

•  daily crawl “several billion” documents
•  Before:

–  Rebuild index: new + existing
–  series of 100 MapReduces to build index
–  “each doc. spent 2-3 days being indexed”

•  After:
–  Each document fed through Percolator:

incremental update of index
–  Document indexed 100 times faster (median)
–  Avg. age doc. in search result decr. “nearly 50%” 15

Percolator

•  Built on top of Bigtable distributed storage
–  “tens of petabytes” in indexing system

•  Provides random access
–  Requires extra resources over MapReduce

•  Provides transaction semantics
–  Repository transformation highly concurrent
–  Requires consistency guarantees for data

•  “Observers” do tasks; write to table
•  Writing to table creates work for other observers
•  “around 50” Bigtable op.s to process 1 doc.

16

Bigtable Overview
•  Multidimensional sorted map

–  Sparse
–  Distributed

•  indexed by row key, column key, timestamp
–  Sorted by row key

•  Data “uninterpreted strings”
–  User provide interpretation
–  Supports semi-structured data

•  Atomic read-modify-write by row
Percolator add:

Multi-row transactions; “observer” framework 17

Caffeine versus MapReduce

•  Caffeine uses “roughly twice as many
resources”

•  New document collection “currently 3x
larger than previous systems”
– Only limit available disk space

•  Document indexed 100 times faster
(median)

18

