
Compression of the dictionary and posting lists 
Summary of class discussions 2/13/11 thru 3/2/11 

 
 
Remarks on Zipf’s law (covered in Section 5.1.2 of Introduction to Information 
Retrieval): 
 
General law: f i = frequency of the ith most frequent item = i-θ f1 
 
for some constant θ.  For our application, items are terms that appear in the documents of 
a collection.  One study gives θ of 1.5-2.0 for this application.  The law is observed to 
hold for other applications with varying values of θ.  The text  Introduction to 
Information Retrieval focuses on θ = 1.  (The text also uses a general constant c rather 
than f1.) 
 
Taking logs, we have a linear relationship between log(fi )and log(i): 

log (fi ) = log(f1) – θ log(i) 
 
f i could refer to either the fraction of the total number of occurrences or an actual count 
of occurrences.  If f i is the actual count of occurrences, M is the number of distinct terms 
and T is the total count of occurrences of all items, then 
 
 

       f i  =    ———  i-θ   . 
 
 

 
 
    (               is a well-known mathematical quantity: the order θ harmonic number of M.) 
 
 
 
Heap’s Law: 
The material covered in class is identical to Section 5.1.1 of Introduction to Information 
Retrieval. 
 
Dictionary compression: 
The dictionary compression we considered in class is covered in Section 5.2 of 
Introduction to Information Retrieval.   
 
I did a “back of the envelope” calculation in class to estimate the size of a modern 
Google dictionary from the size of the dictionary of the early Google in 1998: 

Early Google:  n = 24×106  documents contain 14×106  unique terms. 
Heaps law:  dictionary size = knβ = k(24×106 )β = 14×106  
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2010 Google:  Google has reported that its new index structure is 100PB.  
Guessing that documents average 10KB of text gives us an estimate of 10 trillion 
documents. 
For this n = 10×1012 documents,  I used the rough expansion factor of 106 in 
document size from 1998 to 2010.  Then: 
new dictionary size = k(24×106 ×106)β = k(24×106) β × (106)β  = (14×106) × (106)β 
Empirically, β≈ 0.5, which gives dictionary size ≈ (14×106) × (106).5 ≈ 14 ×109 

Thus we estimate a dictionary of 14 billion terms.   
 
Using this estimate of dictionary size and using these values: 

1 byte per character 
8 characters on average per term 
5-byte pointers into the character string of terms 
8-byte pointers to the postings lists 

compressing the dictionary using one long string of terms and pointers into the string 
requires approximately  (14×109) × (5 + 8 + 8) =   294 GB.  Compare this to the  
(14 ×109) × (20 +8 ) =  392  GB of an array of term entries with 20 bytes allocated per 
term or to the (14 ×109) × (30 + 8 ) =  532 GB of an array with 30 bytes allocated per 
term.  (Note that in class I ignored the space required for pointers to the postings lists 
since it is always the same.) 
 
 
Posting-list compression: 
We departed from the treatment in Section  5.3 of Introduction to Information Retrieval 
when we discussed bit-level variable-length codes for positive integers.   
 
Notation: 

1. string1 ◦ string2  denotes the concatenation of string1 and string2; 
2. For any real number v, v (read floor of v)  denotes the largest integer less 

than or equal to v;  for non-negative v, this is the same as the integer part of v.  
3. For any real number v, v (read ceiling of v)  denotes the smallest integer 

greater than or equal to v. 
 
Let x be a positive integer. 
 
Unary representation of x:    11….10   with x 1’s  (same as in Section 5.3). 
 
Elias γ-code for x:   

 unary rep. of log x   ◦   log x-bit binary rep. of ( x-2log x )   
(Section 5.3 defines the same code from an alternate point of view, which you might find 
clearer.  The alternate view does not illuminate the similarity to Golomb’s  code.) 
 
In class, we did not explore what the encoding looks like specifically for powers of 2.  
We do that now: 
 



x=1;  log 1 = 0. 
We need the unary for 0 followed by the 0-bit binary representation of 1-20:         0 
x=2;  log 2 = 1. 
We need the unary for 1 followed by the 1-bit binary representation of 2-21:     100 
 
x=2k;  log x = k. 
We need the unary for k followed by the k-bit binary representation of 2k -2k:      
1…1 0 0…0 
 
  k           k 
 
 
Elias δ-code for x: 

Elias γ-code for log x   ◦   log x-bit binary rep. of ( x-2log x ) 
 
The Elias γ-code for x is of length  2*log x +1, essentially twice the optimal length.  
The Elias δ-code for x is of length  2*log (log x)   +1 + log x, which has an 
overhead in additional bits of essentially 2 times the log of the optimal length (i.e. 
2loglogx) – a relatively small quantity for large x. 
 
Example:  1110010000010001011010100101 
1110 010 000010001011010100101 
Unary 3 give 23; add following 3-bit binary number 010 = 8+2 = 10 = log x 
111 0 010 0000100010 11010100101 
210 +10-bit binary number 0000100010 = 1024 + 34 = 1058 = x 
The rest of the bits must represent a second number 
110 10 100101 
Unary 2 give 22; add following 2-bit binary number = 4+2 = 6 = log y 
110 10 100101 
26 +6-bit binary number  100101 = 64 + 37 = 101 = y 
 
 
I did a “back of the envelope” calculation in class to estimate the compression for the 
postings list of a term in a billion document collection if the fraction of the documents 
containing the term was 2-10 of the documents in the collection, or equivalently,   
230*2-10=220 documents were on the postings list for the term.  Making assumptions about 
the uniform distribution of the term among the documents, we expect gaps of average 
size 210 between the IDs of consecutive documents in the postings list.  We need 30 bits 
to represent all the document IDs, yielding 30*220=30Mbits to list the document IDs in 
the postings list without compression. The Elias δ-code to represent gaps of size 210 
would take 2*log (log 210)   +1 + log 210 = 2*3+1+10 = 17 bits.  Therefore 
representing 220 gaps would take 17Mbits.  (The extra bits to represent the full ID of the 
first document on the list are negligible.) This gives a 30:17 or almost 2:1 compression.  
Note that the smaller the gaps, the more we can save over the use of full 30-bit IDs for all 
the documents on the postings list. 



 
 
Golomb code for x: 

unary rep. of (x/b)  ◦   log b-bit binary rep. of  (x - (x/b)*b) 
 

The Golomb code for x is of length (x/b) +1 + log b.    This is a slightly simplified 
version of the Golomb code; the full version is one bit shorter in some instances. 
Quantity b is a parameter that must be chosen for each application.    In the textbook 
Modern Information Retrieval, authors Baeza-Yates and Ribeiro-Neto claim that for 
compressing a sequence of gaps representing the postings list of documents for a term j,  
b = 0.69(N/nj) works well.  N is the total number of documents, and nj is the document 
frequency for term j (as used in tf-idf weighting for the vector model).   The quantity N/nj 
is an estimate of gap size.  Note that b changes for each term in the lexicon,  and all the 
documents must be processed to determine nj before compressing the postings lists. 
 
Compression numbers we looked at in class: 
 
TREC-3 collection as compressed by Moffat and Zobel †: 
2 GB of document data 
Inverted index size without compression :  1.1 GB 

Entries of the posting list for a term contain only (docID, term frequency in doc) 
pairs, not a list of occurrences within the document. 

Compressed:  184 MB, a 6:1 compression  
Gaps between document IDs in the posting lists are compressed used the Golomb 
code.  (For this application, the Golomb code was shown to be slightly better than 
the Elias δ-code, which is better than the Elias γ-code.)  The term frequency 
values are compressed using the Elias γ-code. 
 

Reuters RCV1collection (more detailed numbers in Section 5.3.2 of Introduction to 
Information Retrieval.)  

400MB postings lists uncompressed 
116MB compressed by variable byte encoding. 
101 MB compressed with Elias γ-code. 
 
 

Skip pointers: 
The basic idea of skip pointers can be found in Section 2.3 of Introduction to Information 
Retrieval. Our discussion added the use of gaps to represent documents in the chain of 
skip pointers.  The original reference for all these ideas is the paper by Moffat and 
Zobel†. 
 
 

 
† A. Moffat and J. Zobel, Self-indexing inverted files for fast text retrieval, ACM Transactions on 
Information Systems, Vol. 14, No. 4 (Oct. 1996), pgs 349-379. Link provided on “Schedule and 
Assignments” Web page. 


