Clustering: Overview and K-means algorithm

K-Means illustrations thanks to 2006 student Martin Makowiecki

Informal goal

- Given set of objects and measure of similarity between them, group similar objects together
- · What mean by "similar"?
- · What is good grouping?
- · Computation time / quality tradeoff

2

General types of clustering

- · "Soft" versus "hard" clustering
 - Hard: partition the objects
 - · each object in exactly one partition
 - Soft: assign degree to which object in cluster
 - · view as probability or score
- · flat versus hierarchical clustering
 - hierarchical = clusters within clusters

3

Applications:

Many

- biology
- astronomy
- computer aided design of circuits
- information organization
- marketing
- **–** ...

4

Clustering in information search and analysis

- · Group information objects
 - ⇒ discover topics
 - ? other groupings desirable
- · Clustering versus classifying
 - classifying: have pre-determined classes with example members
 - clustering:
 - get groups of similar objects
 - added problem of labeling clusters by topic
 - e.g. common terms within cluster of docs.

Example applications in search

- Query evaluation: cluster pruning (§7.1.6)
 - cluster all documents
 - choose representative for each cluster
 - evaluate query w.r.t. cluster reps.
 - evaluate query for docs in cluster(s) having most similar cluster rep.(s)
- Results presentation: labeled clusters
 - cluster only query results
 - e.g. Yippy.com (metasearch)

hard / soft? flat / hier?

Issues

- What attributes represent items for clustering purposes?
- · What is measure of similarity between items?
 - · General objects and matrix of pairwise similarities
 - Objects with specific properties that allow other specifications of measure
 - Most common:

Objects are d-dimensional vectors

- » Euclidean distance
- » cosine similarity
- · What is measure of similarity between clusters?

7

Issues continued

- · Cluster goals?
 - Number of clusters?
 - flat or hierarchical clustering?
 - cohesiveness of clusters?
- How evaluate cluster results?
 - relates to measure of closeness between clusters
- Efficiency of clustering algorithms
 - large data sets => external storage
- Maintain clusters in dynamic setting?
- Clustering methods? MANY!

8

Quality of clustering

- In applications, quality of clustering depends on how well solves problem at hand
- Algorithm uses measure of quality that can be optimized, but that may or may not do a good job of capturing application needs.
- Underlying graph-theoretic problems usually NP-complete
 - e.g. graph partitioning
- · Usually algorithm not finding optimal clustering

9

General types of clustering methods

- · constructive versus iterative improvement
 - constructive: decide in what cluster each object belongs and don't change
 - often faster
 - iterative improvement: start with a clustering and move objects around to see if can improve clustering
 - · often slower but better

10

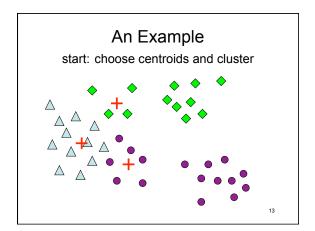
Vector model: K- means algorithm

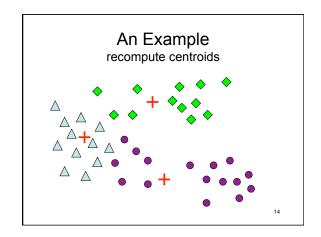
- · Well known, well used
- · Flat clustering
- · Number of clusters picked ahead of time
- · Iterative improvement
- · Uses notion of centroid
- Typically uses Euclidean distance

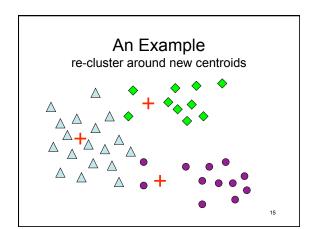
11

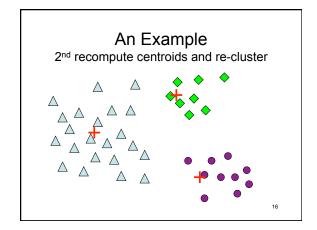
K-means overview

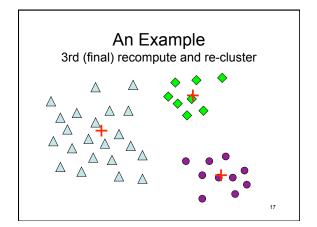
- Choose k points among set to cluster
- Call them k centroids
- For each point not selected, assign it to its closest centroid
 - All assignment give initial clustering
- · Until "happy" do:
 - Recompute centroids of clusters
 - · New centroids may not be points of original set
 - Reassign all points to closest centroid
 - Updates clusters











Details for K-means

- Need definition of centroid $c_i = 1/|C_i| \sum_{x \in C_i} x$ for ith cluster C_i containing objects x notion of sum of objects?
- Need definition of distance to (similarity to) centroid
- Typically vector model with Euclidean distance
- minimizing sum of squared distances of each point to its centroid = Residual Sum of Squares

$$RSS = \sum_{i=1}^{K} \sum_{x \in C_i} dist(c_i, x)^2$$

K-means performance

- Can prove RSS decreases with each iteration, so converge
- · Can achieve local optimum
 - No change in centroids
- Running time depends on how demanding stopping criteria
- · Works well in practice
 - speed
 - quality

19

Time Complexity of K-means

- Let t_{dist} be the time to calculate the distance between two objects
- Each iteration time complexity:

 $O(K^*n^*t_{dist})$ n = number of objects

- Bound number of iterations I giving O(I*K*n*t_{dist})
- for m-dimensional vectors:
 O(I*K*n*m)

m large and centroids not sparse

20

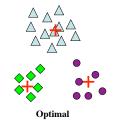
Space Complexity of K-means

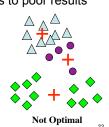
- · Store points and centroids
 - vector model: O((n + K)m)
- · External algorithm versus internal?
 - store k centroids in memory
 - run through points each iteration

21

Choosing Initial Centroids

· Bad initialization leads to poor results





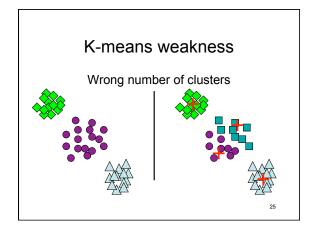
Choosing Initial Centroids

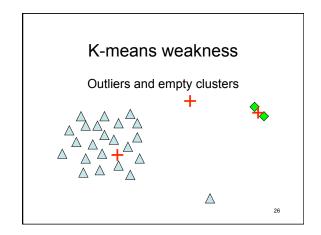
Many people spent much time examining how to choose seeds

- Random
 - · Fast and easy, but often poor results
- · Run random multiple times, take best
 - Slower, and still no guarantee of results
- Pre-conditioning
 - remove outliers
- · Choose seeds algorithmically
 - run hierarchical clustering on sample points and use resulting centroids
 - Works well on small samples and for few initial centroids

23

K-means weakness Non-globular clusters





Real cases tend to be harder

- Different attributes of the feature vector have vastly different sizes
 - size of star versus color
- Can weight different features
 - how weight greatly affects outcome
- Difficulties can be overcome