

- Build a minimum spanning tree (MST) – graph algorithm
 - edge weights are pair-wise similarities
 - since in terms of similarities, not distances, really want maximum spanning tree
- + For some threshold $\tau,$ remove all edges of similarity < τ
- Tree falls into pieces => clusters
- Not hierarchical, but get hierarchy for sequence of τ

Hierarchical Divisive: Template

- 1. Put all objects in one cluster
- 2. Repeat until all clusters are singletons
 - a) choose a cluster to splitwhat criterion?
 - b) replace the chosen cluster with the sub-clusters
 - split into how many?
 - how split?
 - "reversing" agglomerative => split in two
- cutting operation: cut-based measures seem to be a natural choice.
 - focus on similarity across cut lost similarity
- not necessary to use a cut-based measure

- heuristic
- · uses randomness
- convergence usually improvement < some chosen threshold between outer loop iterations
- vertex "locking" insures that all vertices are examined before examining any vertex twice
- there are many variations of algorithm
- can use at each division of hierarchical divisive algorithm with k=2
- more computation than an agglomerative merge

22

24

Compare to k-means

- Similarities:
 - number of clusters, k, is chosen in advance
 - an initial clustering is chosen (possibly at random)
 - iterative improvement is used to improve clustering
- Important difference:
 - divisive algorithm can minimize a cut-based cost
 total relative cut cost uses external and internal measures
 - k-means maximizes only similarity within a cluster
 ignores cost of cuts

23

Eigenvalues and clustering

General class of techniques for clustering a graph using eigenvectors of adjacency matrix (or similar matrix) called

Spectral clustering

First described in 1973

One measure: motivated by F-score in IR Given: a set of classes S₁, ... S_k of the objects use to define relevance a computed clustering C₁, ... C_k of the objects use to define retrieval Consider pairs of objects pair in same classes = irrelevant pair in same clusters = retrieved pair in different clusters = not retrieved

29

Use to define precision and recall

Clustering f-score precision of the clustering w.r.t the gold standard = # similar pairs in the same cluster # pairs in the same cluster # similar pairs in the same cluster # similar pairs f-score of the clustering w.r.t the gold standard = <u>2*precision*recall</u> precision + recall

Properties of cluster F-score

- always ≤ 1
- Perfect match computed clusters to classes gives F-score = 1
- Symmetric
 - Two clusterings {C_i} and {K_j}, neither "gold standard"
 - treat {C_i} as if are classes and compute F-score of {K_i} w.r.t. {C_i} = F-score_{{Ci}({K_i})
 - treat {K_i} as if are classes and compute F-score of {C_i} w.r.t. {K_j} = F-score_{{Kj}}({C_i})

31

 \Rightarrow F-score_{Ci}({K_j}) = F-score_{{Kj}}({C_i})

Clustering: wrap-up

- many applications
 - application determines similarity between objects
- menu of
 - cost functions to optimizes
 - similarity measures between clusters
 - types of algorithmsflat/hierarchical
 - constructive/iterative
 - algorithms within a type