Clustering Algorithms

for general similarity measures

Types of general clustering methods

» agglomerative versus divisive algorithms
— agglomerative = bottom-up
* build up clusters from single objects
— divisive = top-down
* break up cluster containing all objects into
smaller clusters
— both agglom’tive and divisive give hierarchies
— hierarchy can be trivial:

Similarity between clusters

Possible definitions:

I.  similarity between most similar pair of
objects with one in each cluster
— called single link
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Il.  similarity between least similar pair objects,
one from each cluster
— called complete linkage

A A

Similarity between clusters, cont.

Possible definitions:

Ill. average of pairwise similarity between all pairs
of objects, one from each
—  more computation

*  Generally no representative point for a cluster;
— compare K-means

+ If using Euclidean distance as metric
—  centroid
—  bounding box

General Agglomerative

 Uses any computable cluster similarity
measure sim(C;, C;)
+ For nobjects v, ..., v,, assign each to a
singleton cluster C, = {v;}.
* repeat {
— identify two most similar clusters C;and C, (could
be ties — chose one pair)

— delete C; and C, and add (C; U C) to the set of
clusters

} until only one cluster

» Dendrograms diagram the sequence of
cluster merges.

Agglomerative: remarks

* Intro. to IR discusses in great detail for cluster similarity:
— single-link, complete-link, avg. of all pairs, centroid

+ Uses priority queues to get time complexity
O((n2logn)*(time to compute cluster similarity))
—one f)riority queue for each cluster: contains similarities
to all other clusters plus bookkeeping info
— time complexity more precisely:
0O((n?) *(time to compute object-object similarity) +
(nZlogn)*
(time to compute sim(cluster,, cluster; U cluster,)

if know sim(cluster,, cluster; )
and sim(cluster,, cluster,)))

» Problem with priority queue? 6




Single pass agglomerative-like

Given arbitrary order of objects to cluster: v, ... v,
and threshold ©
Put v, in cluster C, by itself
Fori=2ton {
for all existing clusters C;
calculate sim(v;, Cj);
record most similar cluster to v; as C,,,;
if SIM(V;, Crnaxy) > T @dd v, to Cppy)
else create new cluster {v}

ISSUES?

Alternate perspective
for single-link algorithm

Build a minimum spanning tree (MST)
— graph algorithm
« edge weights are pair-wise similarities
« since in terms of similarities, not distances, really
want maximum spanning tree

For some threshold t, remove all edges of
similarity <t
Tree falls into pieces => clusters

Not hierarchical, but get hierarchy for sequence

Hierarchical Divisive: Template

1. Put all objects in one cluster
2. Repeat until all clusters are singletons
a) choose a cluster to split
* what criterion?
b) replace the chosen cluster with the sub-clusters
split into how many?
how split?
+ ‘“reversing” agglomerative => split in two
»  cutting operation: cut-based measures
seem to be a natural choice.
— focus on similarity across cut - lost similarity

. not necessary to use a cut-based measure
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An Example: 15t cut

An Example: result of 15t cut




An Example: 2" cut

An Example: stop at 3 clusters

Compare k-means result

Cut-based optimization

» weaken the connection between objects
in different clusters rather than
strengthening connection between
objects within a cluster

» Are many cut-based measures
We will look at one
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Inter / Intra cluster costs
Given:
* V={v,, ..., v,}, the set of all objects
» A partitioning clustering C;, C,, ... C, of the objects:
V=U. G
Define:
* cutcost (C,) = ¥ sim(v;, v).
N

* intracost(C,) = 3 sim(v; v)).
v, v;in G, 17

Cost of a clustering

total relative cut cost (C,, ..., C) =

& cutcost (Cy)
P=1 intracost (C,)

« contribution each cluster:
ratio external similarity to internal similarity

Optimization

Find clustering C,, ..., C, that minimizes
total relative cut cost(C,, ..., C,) 18




Simple example

* six objects
similarity 1 if edge shown
similarity O otherwise

-choice1:. PP PSP

cost UNDEFINED + 1/4

+ choice 2:

cost 1/1 + 1/3=4/3
 choice 3:

oo oo oo

cost 1/2 + 1/2=1 *prefer balance
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Hierarchical divisive revisited

can use one of cut-based algorithms to
split a cluster

how choose cluster to split next?
— if building entire tree, doesn’t matter

— if stopping a certain point, choose next
cluster based on measure optimizing

« e.g. for total relative cut cost, choose C; with
largest cutcost(C;) / intracost(C;)
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Divisive Algorithm:
Iterative Improvement; no hierarchy

1. Choose initial partition C, ..., Cy
2. repeat
unlock all vertices
repeat {
choose some C; at random
choose an unlocked vertex v; in C;

move v, to that cluster, if any, such that move
gives maximum decrease in cost

lock vertex v;
} until all vertices locked

}until converge 21

Observations on algorithm

* heuristic
* uses randomness
» convergence usually improvement < some

chosen threshold between outer loop
iterations
« vertex “locking” insures that all vertices are
examined before examining any vertex twice
« there are many variations of algorithm
» can use at each division of hierarchical
divisive algorithm with k=2
— more computation than an agglomerative merge
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Compare to k-means

 Similarities:
— number of clusters, k, is chosen in advance
— an initial clustering is chosen (possibly at random)

— iterative improvement is used to improve
clustering

« Important difference:
— divisive algorithm can minimize a cut-based cost
« total relative cut cost uses external and internal
measures
— k-means maximizes only similarity within a cluster
« ignores cost of cuts
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Eigenvalues and clustering

General class of techniques for clustering a
graph using eigenvectors of adjacency matrix
(or similar matrix) called

Spectral clustering

First described in 1973
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Spectral clustering: brief overview

Given: k: number of clusters
nxn object-object sim. matrix S of non-neg. val.s

Compute:
1. Derive matrix L from S (straightforward computation)

— e.g. Laplacian: are variations in def.
2. find eigenvectors corresp. to k smallest eigenval.s of L
3. use eigenvectors to define clusters

— variety of ways to do this

— all involve another, simpler, clustering

* e.g. points on aline

Spectral clustering optimizes a cut measure
similar to total relative cut cost 2

HITS and clustering
Recall HITS matrix formulation:

a=ETh a=ETEa

h=Ea h=EETh

for adjacency matrix E, authority vector a, hub vector h

« ais the eigenvector corresponding to the
eigenvalue 1 for ETE
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HITS and clustering

« Non-principal eigenvectors of EET and ETE
have positive and negative component values
— Denote  agy, ag3, .-
matching hg,, heg, ...
— E is adjacency matrix

+ For a matched pair of eigenvectors a,; and hy

— Denote k' component of j" pair: a,(k) and h,(k)
— Make a “community” of size ¢ (chosen constant):

+ Choose c pages with most positive hg(k) - hubs

+ Choose c pages with most positive a(k) - authorities
— Make another “community” of size c:

+ Choose c pages with most negative h(k) - hubs

+ Choose c pages with most negative a,(k) - authorities

Comparing clusterings

» Define external measure to
— comparing two clusterings as to similarity

— if one clustering “correct”, one clustering by an
algorithm, measures how well algorithm doing

« refer to “correct” clusters as classes
— “gold standard”

« refer to computed clusters as clusters

« External measure independent of cost
function optimized by algorithm
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One measure: motivated by F-score in IR

+ Given:
— asetof classes Sy, ... S, of the objects
use to define relevance
— a computed clustering Cy, ... C, of the objects
use to define retrieval

» Consider pairs of objects
— pair in same class, call similar pair = relevant
— pair in different classes = irrelevant
— pair in same clusters = retrieved
— pair in different clusters = not retrieved

» Use to define precision and recall 2

Clustering f-score

precision of the clustering w.r.t the gold standard =
# similar pairs in the same cluster
# pairs in the same cluster

recall of the clustering w.r.t the gold standard =
# similar pairs in the same cluster
# similar pairs

f-score of the clustering w.r.t the gold standard =
2*precision*recall
precision + recall
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Properties of cluster F-score

+ always < 1

+ Perfect match computed clusters to
classes gives F-score = 1

+ Symmetric

— Two clusterings {C} and {K}, neither “gold standard”

— treat {C} as if are classes and compute F-score of
{Ki} w.r.t. {C} = F-score;({K}})

— treat {Kj} as if are classes and compute F-score of
{C} w.rt. {K} = F-score;,({C})

= F-scoreq;({Kj}) = F-scorey,({C})

Clustering: wrap-up

many applications

— application determines similarity between
objects

menu of
— cost functions to optimizes
— similarity measures between clusters
— types of algorithms
« flat/hierarchical
« constructive/iterative
— algorithms within a type
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