
 1

COS 435, Spring 2011 - Problem Set 3
Due at 3:00pm, Wednesday, March 2, 2011.

Collaboration and Reference Policy

You may discuss the general methods of solving the problems with other students in the
class. However, each student must work out the details and write up his or her own
solution to each problem independently.

Some problems have been used in previous offerings of COS 435. You are NOT allowed
to use any solutions posted for previous offerings of COS 435 or any solutions produced
by anyone else for the assigned problems. You may use other reference materials; you
must give citations to all reference materials that you use.

Lateness Policy

A late penalty will be applied, unless there are extraordinary circumstances and/or prior
arrangements:

• No penalty if in Prof. LaPaugh's office or inbox by 5pm Wednesday (3/2/11).
• Penalized 10% of the earned score if submitted by 11:59 pm Wed (3/2/11).
• Penalized 25% of the earned score if submitted by 5pm Friday (3/4/11).
• Penalized 50% if submitted later than 5pm Friday (3/4/11).

Problem 1 (2010 exam problem):
PageRank is usually applied to the graph of an entire collection of documents. However,
we can also apply it to the subset of documents that satisfy a given query, just as HITS
was used by its designers. Once we are focused on the links between documents that
satisfy a query, we can also use the anchor text for those links. Assume we have a
directed graph of nodes representing documents satisfying a query and edges indicating
links between the documents. Furthermore, assume each edge is annotated to indicate
whether the anchor text of the link contains at least one query term – a simple “yes”
indicating the anchor text of the link contains at least one query term, or “no” indicating
it does not.

The goal of this problem is to devise a method to more highly value the edges annotated
“yes” in the computation of PageRank for the graph.

Part A
Propose a modification to the PageRank formulation that treats edges labeled “yes” and
edges labeled “no” differently. Edges labeled “yes” should be favored as distributors of

 2

PageRank. You may choose how to favor “yes” edges, but your modification must retain
the random walk model. Be precise in your description. If you are changing the equation
defining the PageRank of a node, you must give the new equation (or equations). Do
you think your method converges in all cases? Why? (You do not need to show
mathematically that your modified PageRank calculation converges.)

Part B
Apply your new PageRank to the small graph shown in Figure 1. Do only two iterations
of an iterative computation of your new PageRank, and show the results of each iteration.
Use α = 0.2. Do you think it is converging? (Note: you may write a self-contained
program in Java to do this calculation, but it is probably easier to do the calculation by
hand. If you write a program, turn in the source code. You may not use code written by
someone else.)

Part C
What is the PageRank of the graph shown in Figure 1 under the original definition of
PageRank?

Illustration of graph for Problem 1:

where

1
2

4
3

Figure 1

indicates anchor text containing at least one
query term

 3

Problem 2
Consider an inverted index containing, for each term, the posting list (i.e. the list of
documents and occurrences within documents) for that term. The posting lists are
accessed through a B+ tree with the terms serving as search keys. Each leaf of the B+
tree holds a sublist of alphabetically consecutive terms, and, with each term, a pointer to
the posting list for that term. (See the “blow-up of B+ tree example” posted on the
Schedule and Assignments page under Feb. 21.)

Part a. Suppose there are 9 billion terms for a collection of 10 trillion documents of total
size 100 petabytes. We would like each internal node of the B+ tree and each leaf of the
B+ tree to fit in one 32 kilobyte page of the file system. Recall that a B+ tree has a
parameter m called the order of the tree, and each internal node of a B+ tree has between
m+1 and 2m+1 children (except the root, which has between 2 and 2m+1). Assume that
each term is represented using 16 bytes, and each pointer to a child in the tree or to a
posting list is represented using 8 bytes. Find a value for the order m of the B+ tree so
that one 32 kilobyte page can be assigned to each internal node and leaf, and so that an
internal node will fill, but not overflow, its page when it has 2m+1 children. If you need
to make additional assumptions, state what assumptions you are making.

Part b. For your m of Part a, estimate the height of the B+ tree for the inverted index of
the collection described in Part a. (Giving a range of heights is fine.) Also estimate the
amount of memory needed to store the tree, including leaves but not including the posting
lists themselves.

Part c. Estimate the aggregate size of the posting lists.

Problem 3
Consider a collection of technical reports. Each report has a title (including authors) and
body of the report. For each report, each occurrence of each term and the position of that
occurrence are recorded. It is also noted whether each occurrence is in the title or in the
body of the report. Other attributes of term occurrences are also recorded.

Queries on this collection are sequences of terms. A report satisfies a query if it contains
all the query terms (AND model). The ranking of reports that satisfy a query uses many
attributes of the occurrences of the query terms, but is designed to guarantee that reports
whose titles contain all the terms of the query score higher that reports whose titles
contain only some or none of the query terms. Rankings of those satisfying reports
whose titles contain all the terms of the query also are affected by occurrences of the
query terms in the bodies of the reports so that the ranking can better distinguish between
these reports.

 4

Part a. Suppose the inverted index for this collection is organized in two parts: one
inverted index recording only occurrences of terms in titles and a second inverted index
recording only occurrences of terms in bodies of the reports. The postings for each term
in each index are sorted by report ID. The occurrences of a term in the title of one report
are sorted by position in the title of the report; the occurrences of a term in the body of
one report are sorted by position in the body of the report.

For this index organization, describe in detail how the two-term query computer
architecture would be processed. Describe exactly what information is used and how it
is accessed. Assume you have pointers to the two postings lists for computer and the
two postings lists for architecture; assume the postings lists reside on disk. If you need
to make an assumption about how information is stored, state your assumption.

Part b. Does this index organization speed up query processing compared to a standard
inverted index containing one postings list per term? Justify your answer.

