Combinatorial Search

¬ permutations
¬ backtracking
¬ counting
¬ subsets
¬ paths in a graph
Overview

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (include intractable ones).

Caveat. Search space is typically exponential in size ⇒ effectiveness may be limited to relatively small instances.

Backtracking. Systematic method for examining feasible solutions to a problem, by systematically pruning infeasible ones.
Warmup: enumerate N-bit strings

Goal. Process all \(2^N\) bit strings of length \(N\).

- Maintain array \(a[]\) where \(a[i]\) represents bit \(i\).
- Simple recursive method does the job.

[Invariant: enumerates all possibilities in \(a[k..N-1]\), beginning and ending with all Os]

```java
// enumerate bits in a[k] to a[N-1]
private void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
```

Remark. Equivalent to counting in binary from 0 to \(2^N - 1\).
Warmup: enumerate N-bit strings

Goal. Process all 2^N bit strings of length N.
- Maintain array $a[]$ where $a[i]$ represents bit i.
- Simple recursive method does the job.

```java
// enumerate bits in a[k] to a[N-1]
private void enumerate(int k) {
    if (k == N) {
        process();
        return;
    }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
```

Remark. Equivalent to counting in binary from 0 to $2^N - 1$.

N = 3

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

N = 4

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Warmup: enumerate N-bit strings

```java
public class BinaryCounter
{
    private int N;  // number of bits
    private int[] a; // a[i] = ith bit

    public BinaryCounter(int N)
    {
        this.N = N;
        this.a = new int[N];
        enumerate(0);
    }

    private void process()
    {
        for (int i = 0; i < N; i++)
            StdOut.print(a[i]) + " ";
        StdOut.println();
    }

    private void enumerate(int k)
    {
        if (k == N)
            {  process(); return;  }
        enumerate(k+1);
        a[k] = 1;
        enumerate(k+1);
        a[k] = 0;
    }
}
```

```java
public static void main(String[] args)
{
    int N = Integer.parseInt(args[0]);
    new BinaryCounter(N);
}
```

```java
% java BinaryCounter 4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
```
permutations
backtracking
counting
subsets
paths in a graph
N-rooks problem

Q. How many ways are there to place N rooks on an N-by-N board so that no rook can attack any other?

Representation. No two rooks in the same row or column \Rightarrow permutation.

Challenge. Enumerate all $N!$ permutations of 0 to $N - 1$.

```java
int[] a = { 2, 0, 1, 3, 6, 7, 4, 5 };
```
Enumerating permutations

Recursive algorithm to enumerate all $N!$ permutations of N elements.

- Start with permutation $a[0]$ to $a[N-1]$.
- For each value of i:
 - swap $a[i]$ into position 0
 - enumerate all $(N-1)!$ permutations of $a[1]$ to $a[N-1]$
 - clean up (swap $a[i]$ back to original position)
Enumerating permutations

Recursive algorithm to enumerate all $N!$ permutations of N elements.

- Start with permutation $a[0]$ to $a[N-1]$.
- For each value of i:
 - swap $a[i]$ into position 0
 - enumerate all $(N - 1)!$ permutations of $a[1]$ to $a[N-1]
 - clean up (swap $a[i]$ back to original position)

```java
private void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }

    for (int i = k; i < N; i++)
    {
        exch(k, i);
        enumerate(k+1);
        exch(i, k);
    }
}
```

// place N-k rooks in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }

 for (int i = k; i < N; i++)
 {
 exch(k, i);
 enumerate(k+1);
 exch(i, k);
 }
}
public class Rooks
{
 private int N;
 private int[] a; // bits (0 or 1)

 public Rooks(int N)
 {
 this.N = N;
 a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = i;
 enumerate(0);
 }

 private void enumerate(int k)
 {
 /* see previous slide */
 }

 private void exch(int i, int j)
 {
 int t = a[i];
 a[i] = a[j];
 a[j] = t;
 }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 new Rooks(N);
 }
}
4-rooks search tree
N-rooks problem: back-of-envelope running time estimate

Slow way to compute $N!$.

% java Rooks 7 | wc -l
5040

% java Rooks 8 | wc -l
40320

% java Rooks 9 | wc -l
362880

% java Rooks 10 | wc -l
3628800

% java Rooks 25 | wc -l
...

Hypothesis. Running time is about $2 \left(\frac{N!}{8!} \right)$ seconds.
- permutations
- backtracking
- counting
- subsets
- paths in a graph
N-queens problem

Q. How many ways are there to place \(N\) queens on an \(N\)-by-\(N\) board so that no queen can attack any other?

![Diagram of a 8-by-8 chessboard with queens placed in positions determined by the array a.]

```
int[] a = { 2, 7, 3, 6, 0, 5, 1, 4 };  
```

Representation. No two queens in the same row or column \(\Rightarrow\) permutation.

Additional constraint. No diagonal attack is possible.

Challenge. Enumerate (or even count) the solutions. Unlike N-rooks problem, nobody knows answer for \(N > 30\).
4-queens search tree

diagonal conflict on partial solution: no point going deeper

solutions
4-queens search tree (pruned)

"backtrack" on diagonal conflicts

solutions
N-queens problem: backtracking solution

Backtracking paradigm. Iterate through elements of search space.
• When there are several possible choices, make one choice and recur.
• If the choice is a **dead end**, backtrack to previous choice, and make next available choice.

Benefit. Identifying dead ends allows us to **prune** the search tree.

Ex. [backtracking for N-queens problem]
• Dead end: a diagonal conflict.
• Pruning: backtrack and try next column when diagonal conflict found.
private boolean backtrack(int k)
{
 for (int i = 0; i < k; i++)
 {
 if ((a[i] - a[k]) == (k - i)) return true;
 if ((a[k] - a[i]) == (k - i)) return true;
 }
 return false;
}

// place N-k queens in a[k] to a[N-1]
private void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 for (int i = k; i < N; i++)
 {
 exch(k, i);
 if (!backtrack(k)) enumerate(k+1);
 exch(i, k);
 }
}
N-queens problem: effectiveness of backtracking

Pruning the search tree leads to enormous time savings.

<table>
<thead>
<tr>
<th>N</th>
<th>Q(N)</th>
<th>N!</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>720</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>5,040</td>
</tr>
<tr>
<td>8</td>
<td>92</td>
<td>40,320</td>
</tr>
<tr>
<td>9</td>
<td>352</td>
<td>362,880</td>
</tr>
<tr>
<td>10</td>
<td>724</td>
<td>3,628,800</td>
</tr>
<tr>
<td>11</td>
<td>2,680</td>
<td>39,916,800</td>
</tr>
<tr>
<td>12</td>
<td>14,200</td>
<td>479,001,600</td>
</tr>
<tr>
<td>13</td>
<td>73,712</td>
<td>6,227,020,800</td>
</tr>
<tr>
<td>14</td>
<td>365,596</td>
<td>87,178,291,200</td>
</tr>
</tbody>
</table>
Hypothesis. Running time is about \((N! / 2.5^N) / 43,000\) seconds.

Conjecture. \(Q(N) \sim N! / c^N\), where \(c\) is about 2.54.
• permutations
• backtracking
• counting
• subsets
• paths in a graph
Goal. Enumerate all N-digit base-R numbers.

Solution. Generalize binary counter in lecture warmup.

```java
private static void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }
    for (int r = 0; r < R; r++)
    {
        a[k] = r;
        enumerate(k+1);
    }
    a[k] = 0;  // cleanup not needed; why?
}
```
Goal. Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

Remark. Natural generalization is NP-complete.
Counting application: Sudoku

Goal. Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

```
7 2 8
9 3 4
5 1 6
1 4 7
3 6 9
8 5 2
2 9 3
4 8 1
6 7 5
```

```
9 4 6
2 5 1
7 3 8
5 9 3
4 8 2
1 6 7
6 1 5
3 7 9
8 2 4
```

```
3 1 5
6 7 8
2 4 9
8 2 6
1 5 7
4 9 3
7 8 4
5 6 2
9 3 1
```

Solution. Enumerate all 81-digit base-9 numbers (with backtracking).

```
7 8 ...
0 1 2 3 4 5 6 7 8 80
```
Sudoku: backtracking solution

Iterate through elements of search space.
• For each empty cell, there are 9 possible choices.
• Make one choice and recur.
• If you find a conflict in row, column, or box, then backtrack.

backtrack on 3, 4, 5, 7, 8, 9
private void enumerate(int k)
{
 if (k == 81)
 { process(); return; }
 if (a[k] != 0)
 { enumerate(k+1); return; }
 for (int r = 1; r <= 9; r++)
 {
 a[k] = r;
 if (!backtrack(k))
 enumerate(k+1);
 }
 a[k] = 0;
}
permutations
backtracking
counting
subsets
paths in a graph
Given N elements, enumerate all 2^N subsets.

- **Count in binary from** 0 **to** $2^N - 1$.
- **Bit** i **represents element** i.
- **If 1**, in subset; **if 0**, not in subset.

<table>
<thead>
<tr>
<th>i</th>
<th>binary</th>
<th>subset</th>
<th>complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
<td>empty</td>
<td>4 3 2 1</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 1</td>
<td>1</td>
<td>4 3 2</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
<td>2</td>
<td>4 3 1</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 1</td>
<td>2 1</td>
<td>4 3</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 0</td>
<td>3</td>
<td>4 2 1</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
<td>3 1</td>
<td>4 2</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0</td>
<td>3 2</td>
<td>4 1</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1</td>
<td>3 2 1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0</td>
<td>4</td>
<td>3 2 1</td>
</tr>
<tr>
<td>9</td>
<td>1 0 0 1</td>
<td>4 1</td>
<td>3 2</td>
</tr>
<tr>
<td>10</td>
<td>1 0 1 0</td>
<td>4 2</td>
<td>3 1</td>
</tr>
<tr>
<td>11</td>
<td>1 0 1 1</td>
<td>4 2 1</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1 1 0 0</td>
<td>4 3</td>
<td>2 1</td>
</tr>
<tr>
<td>13</td>
<td>1 1 0 1</td>
<td>4 3 1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1 1 1 0</td>
<td>4 3 2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1 1 1 1</td>
<td>4 3 2 1</td>
<td>empty</td>
</tr>
</tbody>
</table>
Enumerating subsets: natural binary encoding

Given \(N \) elements, enumerate all \(2^N \) subsets.

- Count in binary from 0 to \(2^N - 1 \).
- Maintain array \(a[] \) where \(a[i] \) represents element \(i \).
- If 1, \(a[i] \) in subset; if 0, \(a[i] \) not in subset.

Binary counter from warmup does the job.

```java
private void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[n] = 0;
}
```
Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

<table>
<thead>
<tr>
<th>code</th>
<th>subset</th>
<th>move</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>empty</td>
<td>enter 1</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>1</td>
<td>enter 2</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>2 1</td>
<td>exit 1</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>2</td>
<td>enter 3</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>3 2</td>
<td>enter 1</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>3 2 1</td>
<td>enter 1</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>3 1</td>
<td>exit 2</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>3</td>
<td>exit 1</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>4 3</td>
<td>enter 4</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>4 3 1</td>
<td>enter 1</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>4 3 2 1</td>
<td>enter 2</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>4 3 2</td>
<td>exit 1</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>4 2</td>
<td>exit 3</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>4 2 1</td>
<td>enter 1</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>4 1</td>
<td>exit 2</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>4</td>
<td>exit 1</td>
</tr>
</tbody>
</table>
Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

“faceless, emotionless one of the far future, a world where people are born, go through prescribed movements, fear non-being even though their lives are meaningless, and then they disappear or die.” — Sidney Homan
Binary reflected gray code

Def. The k-bit binary reflected Gray code is:

- The $(k - 1)$ bit code with a 0 prepended to each word, followed by
- The $(k - 1)$ bit code in reverse order, with a 1 prepended to each word.
Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:
- Flip $a[k]$ instead of setting it to 1.
- Eliminate cleanup.

Gray code binary counter

```java
private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  enumerate(k+1);
  a[k] = 1 - a[k];
  enumerate(k+1);
}
```

Standard binary counter (from warmup)

```java
private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  enumerate(k+1);
  a[k] = 1 - a[k];
  enumerate(k+1);
  a[k] = 0;
}
```

Advantage. Only one item in subset changes at a time.
More applications of Gray codes

- 3-bit rotary encoder
- 8-bit rotary encoder
- Towers of Hanoi
- Chinese ring puzzle
Scheduling

Scheduling (set partitioning). Given \(N \) jobs of varying length, divide among two machines to minimize the makespan (time the last job finishes).

or, equivalently, difference between finish times

<table>
<thead>
<tr>
<th>job</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.41</td>
</tr>
<tr>
<td>1</td>
<td>1.73</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>2.23</td>
</tr>
</tbody>
</table>

Remark. This scheduling problem is NP-complete.
Scheduling (full implementation)

```java
public class Scheduler {
    private int N;          // Number of jobs.
    private int[] a;        // Subset assignments.
    private int[] b;        // Best assignment.
    private double[] jobs;  // Job lengths.

    public Scheduler(double[] jobs) {
        this.N = jobs.length;
        this.jobs = jobs;
        a = new int[N];
        b = new int[N];
        enumerate(N);
    }

    public int[] best() {
        return b;
    }

    private void enumerate(int k) {
        /* Gray code enumeration. */
    }

    private void process() {
        if (cost(a) < cost(b)) {
            for (int i = 0; i < N; i++)
                b[i] = a[i];
        }
    }

    public static void main(String[] args) {
        /* create Scheduler, print results */
    }
}
```

trace of

```bash
% java Scheduler 4 < jobs.txt
```

<table>
<thead>
<tr>
<th>a[]</th>
<th>finish times</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>7.38 0.00</td>
<td>7.38</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>5.15 2.24</td>
<td>2.91</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>3.15 4.24</td>
<td>1.09</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>5.38 2.00</td>
<td></td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>3.65 3.73</td>
<td>0.08</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>1.41 5.97</td>
<td></td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>3.41 3.97</td>
<td></td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>5.65 1.73</td>
<td></td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>4.24 3.15</td>
<td></td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>2.00 5.38</td>
<td></td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>0.00 7.38</td>
<td></td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>2.24 5.15</td>
<td></td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>3.97 3.41</td>
<td></td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>1.73 5.65</td>
<td></td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>3.73 3.65</td>
<td></td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>5.97 1.41</td>
<td></td>
</tr>
</tbody>
</table>

MACHINE 0 MACHINE 1
1.4142135624 1.7320508076
1.236079775 2.0000000000

3.6502815399 3.7320508076
```
Scheduling: improvements

Many opportunities (details omitted).

- Fix last job to be on machine 0 (quick factor-of-two improvement).
- Maintain difference in finish times (instead of recomputing from scratch).
- Backtrack when partial schedule cannot beat best known.
  (check total against goal: half of total job times)

```java
private void enumerate(int k) {
 if (k == N-1) {
 process(); return;
 }
 if (backtrack(k)) return;
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}
```

- Process all $2^k$ subsets of last $k$ jobs, keep results in memory,
  (reduces time to $2^{N-k}$ when $2^k$ memory available).
permutations
backtracking
counting
subsets
paths in a graph
Enumerating all paths on a grid

**Goal.** Enumerate all simple paths on a grid of adjacent sites.

**Application.** Self-avoiding lattice walk to model polymer chains.
Enumerating all paths on a grid: Boggle

**Boggle.** Find all words that can be formed by tracing a simple path of adjacent cubes (left, right, up, down, diagonal).

**Pruning.** Stop as soon as no word in dictionary contains string of letters on current path as a prefix ⇒ use a trie.

- B
- BA
- BAX
private void dfs(String prefix, int i, int j) {
    if ((i < 0 || i >= N) ||
        (j < 0 || j >= N) ||
        (visited[i][j]) ||
        !dictionary.containsAsPrefix(prefix))
        return;
    visited[i][j] = true;
    prefix = prefix + board[i][j];
    if (dictionary.contains(prefix))
        found.add(prefix);
    for (int ii = -1; ii <= 1; ii++)
        for (int jj = -1; jj <= 1; jj++)
            dfs(prefix, i + ii, j + jj);
    visited[i][j] = false;
}
**Hamilton path**

**Goal.** Find a simple path that visits every vertex exactly once.

**Remark.** Euler path easy, but Hamilton path is NP-complete.
Knight's tour

**Goal.** Find a sequence of moves for a knight so that (starting from any desired square) it visits every square on a chessboard exactly once.

**Solution.** Find a Hamilton path in knight's graph.
Hamilton path: backtracking solution

**Backtracking solution.** To find Hamilton path starting at $v$:

- Add $v$ to current path.
- For each vertex $w$ adjacent to $v$
  - find a simple path starting at $w$ using all remaining vertices
- Clean up: remove $v$ from current path.

**Q.** How to implement?

**A.** Add cleanup to DFS (!!)
Hamilton path: Java implementation

```java
public class HamiltonPath {
 private boolean[] marked; // vertices on current path
 private int count = 0; // number of Hamiltonian paths

 public HamiltonPath(Graph G) {
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 dfs(G, v, 1);
 }

 private void dfs(Graph G, int v, int depth) {
 marked[v] = true;
 if (depth == G.V()) count++;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w, depth+1);
 marked[v] = false;
 }
}
```
## Exhaustive search: summary

<table>
<thead>
<tr>
<th>problem</th>
<th>enumeration</th>
<th>backtracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-rooks</td>
<td>permutations</td>
<td>no</td>
</tr>
<tr>
<td>N-queens</td>
<td>permutations</td>
<td>yes</td>
</tr>
<tr>
<td>Sudoku</td>
<td>base-9 numbers</td>
<td>yes</td>
</tr>
<tr>
<td>scheduling</td>
<td>subsets</td>
<td>yes</td>
</tr>
<tr>
<td>Boggle</td>
<td>paths in a grid</td>
<td>yes</td>
</tr>
<tr>
<td>Hamilton path</td>
<td>paths in a graph</td>
<td>yes</td>
</tr>
</tbody>
</table>
The longest path

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done: GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

Recorded by Dan Barrett in 1988 while a student
at Johns Hopkins during a difficult algorithms final
That's all, folks: keep searching!

The world’s longest path (Sendero de Chile): 9,700 km. (originally scheduled for completion in 2010; now delayed until 2038)