Overview

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (include intractable ones).

Caveat. Search space is typically exponential in size ⇒ effectiveness may be limited to relatively small instances.

Backtracking. Systematic method for examining feasible solutions to a problem, by systematically pruning infeasible ones.

Warmup: enumerate N-bit strings

- Maintain array $a[]$ where $a[i]$ represents bit i.
- Simple recursive method does the job.

[Invariant: enumerates all possibilities in $a[k..N-1]$, beginning and ending with all Os]

```java
// enumerate bits in a[] to a[N-1]
private void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
```

Remark. Equivalent to counting in binary from 0 to $2^N - 1$.

Remark. Equivalent to counting in binary from 0 to $2^N - 1$.
Warmup: enumerate N-bit strings

```java
public class BinaryCounter {
    private int N; // number of bits
    private int[] a; // a[i] = ith bit
    public BinaryCounter(int N) {
        this.N = N;
        this.a = new int[N];
        enumerate(0);
    }
    private void enumerate(int k) {
        if (k == N) {
            process(); return;
        }
        enumerate(k + 1);
        a[k] = 1;
        enumerate(k + 1);
        a[k] = 0;
    }
}
```

```java
public class BinaryCounter {
    private int N; // number of bits
    private int[] a; // a[i] = ith bit
    public BinaryCounter(int N) {
        this.N = N;
        this.a = new int[N];
        enumerate(0);
    }
    private void enumerate(int k) {
        if (k == N) {
            process(); return;
        }
        enumerate(k + 1);
        a[k] = 1;
        enumerate(k + 1);
        a[k] = 0;
    }
}
```

all programs in this lecture are variations on this theme

N-rooks problem

Q. How many ways are there to place N rooks on an N-by-N board so that no rook can attack any other?

```java
int[] a = { 2, 0, 1, 3, 6, 7, 4, 5 };```

**Representation.** No two rooks in the same row or column $\Rightarrow$ permutation.

**Challenge.** Enumerate all $N!$ permutations of 0 to $N-1$.

```java
public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 new BinaryCounter(N);
}
```

```java
da[4] = 6 means the rook from row 4 is in column 6
```

Enumerating permutations

**Recursive algorithm to enumerate all $N!$ permutations of $N$ elements.**

- Start with permutation $a[0]$ to $a[N-1]$.
- For each value of $i$:
  - swap $a[i]$ into position 0
  - enumerate all $(N-1)!$ permutations of $a[1]$ to $a[N-1]$
  - clean up (swap $a[i]$ back to original position)

```java
```
Recursive algorithm to enumerate all $N!$ permutations of $N$ elements.

- **Start with permutation** $a[0]$ to $a[N-1]$.
- **For each value of** $i$:
  - swap $a[i]$ into position 0
  - enumerate all $(N-1)!$ permutations of $a[1]$ to $a[N-1]$
  - clean up (swap $a[i]$ back to original position)

---

```java
public class Rooks {
 private int N;
 private int[] a; // bits (0 or 1)
 public Rooks(int N) {
 this.N = N;
 a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = i;
 enumerate(0);
 }
 private void enumerate(int k) {
 // see previous slide
 }
 private void exch(int i, int j) {
 int t = a[i]; a[i] = a[j]; a[j] = t;
 }
 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 new Rooks(N);
 }
}
```

---

**Hypothesis.** Running time is about $2 \cdot (N! / 8!)$ seconds.
N-queens problem

Q. How many ways are there to place $N$ queens on an $N$-by-$N$ board so that no queen can attack any other?

Representation. No two queens in the same row or column $\Rightarrow$ permutation.

Additional constraint. No diagonal attack is possible.

Challenge. Enumerate (or even count) the solutions.

Unlike the N-rooks problem, nobody knows the answer for $N > 10$.

```java
int[] a = { 2, 7, 3, 6, 0, 5, 1, 4 };
```

4-queens search tree

4-queens search tree (pruned)
N-queens problem: backtracking solution

Backtracking paradigm. Iterate through elements of search space.
• When there are several possible choices, make one choice and recur.
• If the choice is a dead end, backtrack to previous choice, and make next available choice.

Benefit. Identifying dead ends allows us to prune the search tree.

Ex. [backtracking for N-queens problem]
• Dead end: a diagonal conflict.
• Pruning: backtrack and try next column when diagonal conflict found.

N-queens problem: effectiveness of backtracking

Pruning the search tree leads to enormous time savings.

<table>
<thead>
<tr>
<th>N</th>
<th>Q(N)</th>
<th>N!</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>720</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>5,040</td>
</tr>
<tr>
<td>8</td>
<td>92</td>
<td>40,320</td>
</tr>
<tr>
<td>9</td>
<td>352</td>
<td>362,880</td>
</tr>
<tr>
<td>10</td>
<td>724</td>
<td>3,628,800</td>
</tr>
<tr>
<td>11</td>
<td>2,680</td>
<td>39,916,800</td>
</tr>
<tr>
<td>12</td>
<td>14,200</td>
<td>479,001,600</td>
</tr>
<tr>
<td>13</td>
<td>73,712</td>
<td>6,227,020,800</td>
</tr>
<tr>
<td>14</td>
<td>365,596</td>
<td>87,178,291,200</td>
</tr>
</tbody>
</table>

N-queens problem: How many solutions?

Hypothesis. Running time is about \((N! / 2.5^N) / 43,000\) seconds.

Conjecture. \(Q(N) \sim N! / c^N\), where \(c\) is about 2.54.
Counting: Java implementation

**Goal.** Enumerate all $N$-digit base-$R$ numbers.

**Solution.** Generalize binary counter in lecture warmup.

```java
private static void enumerate(int k) {
 if (k == N) {
 process(); return;
 }
 for (int r = 0; r < R; r++) {
 a[k] = r;
 enumerate(k+1);
 }
 a[k] = 0; // cleanup not needed; why?
}
```

Counting application: Sudoku

**Goal.** Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

```
7 8 3
5 2 1
9 6 4
4 1 5
2 9 8
3 4 7
8 5 3
1 7 9
6 2 4
```

**Remark.** Natural generalization is NP-complete.

Counting application: Sudoku

**Goal.** Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

```
7 1 9 8 4 6 2 5 1
3 5 4 2 7 3 6 8 7
8 7 6 1 5 4 2 3 9
4 9 1 7 5 2 8 3 6
2 3 8 6 9 1 5 7 4
2 9 7 3 1 5 6 2 8
5 4 2 6 7 1 3 8 9
3 6 5 4 2 8 7 9 1
4 8 1 3 7 9 5 6 2
```

**Solution.** Enumerate all 81-digit base-9 numbers (with backtracking).
Iterate through elements of search space.

- For each empty cell, there are 9 possible choices.
- Make one choice and recur.
- If you find a conflict in row, column, or box, then backtrack.

Sudoku: backtracking solution

```
private void enumerate(int k) {
 if (k == 81) { process(); return; }
 if (a[k] != 0) { enumerate(k+1); return; }
 for (int r = 1; r <= 9; r++) {
 a[k] = r;
 if (!backtrack(k)) enumerate(k+1);
 }
 a[k] = 0;
}
```

Sudoku: Java implementation

```
private void enumerate(int k) {
 if (k == 81) { process(); return; }
 if (a[k] != 0) { enumerate(k+1); return; }
 for (int r = 1; r <= 9; r++) {
 a[k] = r;
 if (!backtrack(k)) enumerate(k+1);
 }
 a[k] = 0;
}
```

Enumerating subsets: natural binary encoding

Given $N$ elements, enumerate all $2^N$ subsets.

- Count in binary from 0 to $2^N - 1$.
- Bit $i$ represents element $i$.
- If 1, in subset; if 0, not in subset.

<table>
<thead>
<tr>
<th>i</th>
<th>binary</th>
<th>subset</th>
<th>complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
<td>empty</td>
<td>4 3 2 1</td>
</tr>
<tr>
<td>1</td>
<td>1 0 0 0</td>
<td>1</td>
<td>4 3 2</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
<td>2</td>
<td>4 3 1</td>
</tr>
<tr>
<td>3</td>
<td>0 1 1 0</td>
<td>3</td>
<td>4 2 1</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 0</td>
<td>3</td>
<td>4 2 1</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
<td>3 1</td>
<td>4 2</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0</td>
<td>3 2</td>
<td>4 1</td>
</tr>
<tr>
<td>7</td>
<td>1 1 1 1</td>
<td>3 2 1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0</td>
<td>4</td>
<td>3 2 1</td>
</tr>
<tr>
<td>9</td>
<td>1 0 1 0</td>
<td>4 1</td>
<td>3 2</td>
</tr>
<tr>
<td>10</td>
<td>1 0 1 0</td>
<td>4 1</td>
<td>3 2</td>
</tr>
<tr>
<td>11</td>
<td>1 0 1 1</td>
<td>4 1</td>
<td>3 2</td>
</tr>
<tr>
<td>12</td>
<td>1 1 0 0</td>
<td>4 3</td>
<td>2 1</td>
</tr>
<tr>
<td>13</td>
<td>1 1 0 1</td>
<td>4 3</td>
<td>2 1</td>
</tr>
<tr>
<td>14</td>
<td>1 1 1 0</td>
<td>4 3 2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1 1 1 1</td>
<td>4 3 2 1</td>
<td>empty</td>
</tr>
</tbody>
</table>
Enumerating subsets: natural binary encoding

Given \( N \) elements, enumerate all \( 2^N \) subsets.

- Count in binary from 0 to \( 2^N - 1 \).
- Maintain array \( a[] \) where \( a[i] \) represents element \( i \).
- If 1, \( a[i] \) in subset; if 0, \( a[i] \) not in subset.

Binary counter from warmup does the job.

```java
private void enumerate(int k) {
 if (k == N) {
 process(); return;
 }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[n] = 0;
}
```

Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

```
<table>
<thead>
<tr>
<th>code</th>
<th>subset</th>
<th>move</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>empty</td>
<td>enter 1</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td></td>
<td>exit 1</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>1</td>
<td>enter 2</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td></td>
<td>exit 2</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>2</td>
<td>enter 3</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td></td>
<td>exit 3</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>3</td>
<td>enter 4</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>4</td>
<td>enter 1</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>1</td>
<td>exit 1</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>2</td>
<td>exit 2</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>3</td>
<td>exit 3</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>4</td>
<td>exit 1</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td></td>
<td>enter 4</td>
</tr>
</tbody>
</table>
```

"faceless, emotionless one of the far future, a world where people are born, go through prescribed movements, fear non-being even though their lives are meaningless, and then they disappear or die." — Sidney Homan

Binary reflected gray code

Def. The \( k \)-bit binary reflected Gray code is:

- The \((k - 1)\)-bit code with a 0 prepended to each word, followed by
- The \((k - 1)\)-bit code in reverse order, with a 1 prepended to each word.
Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:
- Flip $a[k]$ instead of setting it to 1.
- Eliminate cleanup.

**Advantage.** Only one item in subset changes at a time.

```
private void enumerate(int k) {
 if (k == N) {
 process(); return;
 }
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}
```

Gray code binary counter

```
private void enumerate(int k) {
 if (k == N) {
 process(); return;
 }
 a[k] = 1 - a[k];
 enumerate(k+1);
 a[k] = 0;
 enumerate(k+1);
}
```

Standard binary counter (from warmup)

```
private void enumerate(int k) {
 if (k == N) {
 process(); return;
 }
 a[k] = 1 - a[k];
 enumerate(k+1);
 a[k] = 0;
 enumerate(k+1);
}
```

More applications of Gray codes

3-bit rotary encoder

8-bit rotary encoder

Towers of Hanoi

Chinese ring puzzle

Scheduling (set partitioning). Given $N$ jobs of varying length, divide among two machines to minimize the makespan (time the last job finishes).

<table>
<thead>
<tr>
<th>job</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.41</td>
</tr>
<tr>
<td>1</td>
<td>1.73</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>2.23</td>
</tr>
</tbody>
</table>

Machine 0

```
0 2
0 2
0 2
```

Machine 1

```
1 3
2 3
1 3
```

Remark. This scheduling problem is NP-complete.
Scheduling: improvements

Many opportunities (details omitted).
• Fix last job to be on machine 0 (quick factor-of-two improvement).
• Maintain difference in finish times (instead of recomputing from scratch).
• Backtrack when partial schedule cannot beat best known.
  (check total against goal: half of total job times)

• Process all \(2^k\) subsets of last \(k\) jobs, keep results in memory,
  (reduces time to \(2^{N-k}\) when \(2^k\) memory available).

```java
private void enumerate(int k) {
 if (k == N-1) {
 process(); return;
 }
 if (backtrack(k)) return;
 enumerate(k+1);
 a[k] = 1 - a[k];
 enumerate(k+1);
}
```

Enumerating all paths on a grid

**Goal.** Enumerate all simple paths on a grid of adjacent sites.

![Grid with paths](image)

**Application.** Self-avoiding lattice walk to model polymer chains.

Enumerating all paths on a grid: Boggle

**Boggle.** Find all words that can be formed by tracing a simple path of adjacent cubes (left, right, up, down, diagonal).

**Pruning.** Stop as soon as no word in dictionary contains string of letters on current path as a prefix ⇒ use a trie.

![Boggle board](image)
**Boggle: Java implementation**

```java
private void dfs(String prefix, int i, int j)
{
 if ((i < 0 || i >= N) ||
 (j < 0 || j >= N) ||
 (visited[i][j]) ||
 !dictionary.containsAsPrefix(prefix))
 return;
 visited[i][j] = true;
 prefix = prefix + board[i][j];
 if (dictionary.contains(prefix))
 found.add(prefix);
 for (int ii = -1; ii <= 1; ii++)
 for (int jj = -1; jj <= 1; jj++)
 dfs(prefix, i + ii, j + jj);
 visited[i][j] = false;
}
```

**Goal.** Find a simple path that visits every vertex exactly once.

**Remark.** Euler path easy, but Hamilton path is NP-complete.

**Hamilton path: backtracking solution**

**Backtracking solution.** To find Hamilton path starting at \( v \):
- Add \( v \) to current path.
- For each vertex \( w \) adjacent to \( v \)
  - find a simple path starting at \( w \) using all remaining vertices
- Clean up: remove \( v \) from current path.

**Q.** How to implement?
**A.** Add cleanup to DFS (!!)

**Knight’s tour**

**Goal.** Find a sequence of moves for a knight so that (starting from any desired square) it visits every square on a chessboard exactly once.

**Solution.** Find a Hamilton path in knight’s graph.
Hamilton path: Java implementation

```java
public class HamiltonPath {
 private boolean[] marked; // vertices on current path
 private int count = 0; // number of Hamiltonian paths

 public HamiltonPath(Graph G) {
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 dfs(G, v, 1);
 }

 private void dfs(Graph G, int v, int depth) {
 marked[v] = true;
 if (depth == G.V()) count++;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w, depth+1);
 marked[v] = false; // clean up
 }
}
```

Exhaustive search: summary

<table>
<thead>
<tr>
<th>problem</th>
<th>enumeration</th>
<th>backtracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-rooks</td>
<td>permutations</td>
<td>no</td>
</tr>
<tr>
<td>N-queens</td>
<td>permutations</td>
<td>yes</td>
</tr>
<tr>
<td>Sudoku</td>
<td>base-9 numbers</td>
<td>yes</td>
</tr>
<tr>
<td>Scheduling</td>
<td>subsets</td>
<td>yes</td>
</tr>
<tr>
<td>Boggle</td>
<td>paths in a grid</td>
<td>yes</td>
</tr>
<tr>
<td>Hamilton path</td>
<td>paths in a graph</td>
<td>yes</td>
</tr>
</tbody>
</table>

The longest path

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I’m addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it’s elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

That’s all, folks: keep searching!

The world’s longest path (Sendero de Chile): 9,700 km.
(originally scheduled for completion in 2010; now delayed until 2038)