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6.5  Intractability

R O B E R T  S E D G E W I C K  |  K E V I N  W A Y N E

F O U R T H  E D I T I O N

Algorithms

‣ reduction (for algorithm design)
‣ reduction (for  lower  bounds)
‣ P and NP
‣ intractability
‣ NP-completness
‣ coping with intractability
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Q.  Which algorithms are useful in practice?
A.  [von Neumann 1953, Gödel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

• Model of computation = deterministic Turing machine.

• Measure running time as a function of input size N.

• Useful in practice (“efficient”) = polynomial time for all inputs
                         [worst-case running time is O(Nb) for some b.]

Ex 1. Sorting N elements. 
        Takes N2 compares with insertion sort [Useful.]

Ex 2. Finding best TSP tour on N points. 
         Takes N! steps with exhaustive search [NOT useful.]

Theory.  Definition is broad and robust.
Practice.  Poly-time algorithms scale to large problems.

A Reasonable Question about Algorithms

quicksort is even more useful
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Exponential Growth

Exponential growth dwarfs technological change.

• Suppose you have a giant parallel computing device…

• With as many processors as electrons in the universe…

• And each processor has power of today's supercomputers…

• And each processor works for the life of the universe…

Will not help solve 1,000 city TSP problem via brute force.

quantity

electrons in universe †

supercomputer instructions per second

value

1079

1013

age of universe in seconds † 1017

†  estimated

1000!  >>  101000  >>  1079 × 1013 × 1017
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Q.  Which problems can we solve in practice?
A.  Those with easy-to-find answers or 
      with guaranteed poly-time algorithms.

Q.  Which problems have guaranteed poly-time algorithms?
A.  Not so easy to know.  Focus of today's lecture.

Reasonable Questions about Problems

no known poly-time algorithm for TSPmany known poly-time algorithms for sorting



5

‣ reduction (for algorithm design)
‣ reduction (for  lower  bounds)
‣ P and NP
‣ intractability
‣ NP-completness
‣ coping with intractability



6

“ Give me a lever long enough and a fulcrum on    
   which to place it, and I shall move the world. ”     
                                                        — Archimedes
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Reduction to design an algorithm

Def.  YOUR PROBLEM reduces to problem B
         if you can use an algorithm that solves B to help solve YOUR PROBLEM.

Cost of solving YOUR PROBLEM: 
                      total cost of solving B  +  total cost of reduction.

We refer to B as a model for solving YOUR PROBLEM.

input to 
YOUR PROBLEM

Algorithm for YOUR PROBLEM

solution to 
YOUR PROBLEM
for given input

Algorithm

for B

perhaps many calls to B
on problems of different sizes

preprocessing
and postprocessing



DUPEXIST reduces to SORTING

DUPEXIST (Duplicates existence). 
Given a set of N elements, determine whether any two are equal. 

Cost model: compares

Reduction. To solve DUPEXIST on N elements:

• Sort N elements (~N log N compares)

• Scan to check adjacent pairs for equality (N-1 compares)
Cost of solving DUPEXIST. ~N log N + N-1 = ~N log N compares
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input to 
DUPEXIST

DUPEXIST algorithm

solution to DUPEXIST
for given input

SORT
algorithm

equality
check



3-COLLINEAR reduces to SORTING

3-COLLINEAR (cf. programming assignment 3). 
Given a set of N points, determine whether any three are collinear. 

Cost model: compares and collinearity checks

Reduction. To solve 3-COLLINEAR on N elements:
For each point

• Sort other N -1 points by polar angle (~N2 log N compares)

• Scan to check adjacent pairs for equality (N2 checks)
Cost of solving 3-COLLINEAR. ~N2 log N compares + N2 checks
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input to 
3-COLLINEAR

3-COLLINEAR algorithm

solution to 
3-COLLINEAR

for given input

SORT
algorithm

collinear
check... ...



CONVEX HULL reduces to SORTING

CONVEX HULL (cf. lecture 6 slides 53-58). 
Given N points in the plane, identify the extreme points of the convex hull. 

Cost model: compares and CCW checks

Reduction. To solve CONVEX HULL on N elements:

• Sort points by polar angle from point with min y-coord.

• Scan to eliminate CW turns (Graham scan).
Cost of solving CONVEX HULL. ~N log N compares + N checks

10

p

SORTING SCAN



Some reductions in this course
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problem model reference

duplicate 
existence

sorting page 344

3-collinear sorting assignment 3

convex hull sorting lecture 6

parallel 
scheduling

shortest paths page 663

arbitrage shortest paths page 679

bipartite 
matching

max"ow
page 906
lecture 21

max"ow
linear 

programming
page 908
lecture 22

baseball
elimination

max"ow assignment 8

DUP-EXIST 3-COLLINEAR CONVEX
HULL

SORTING

PARALLEL
 SCHEDULING

SHORTEST PATHS

ARBITRAGE

LINEAR PROGRAMMING

MAXFLOW

BIPARTITE
MATCHING

BASEBALL
ELIMINATION



Summary: a practical implication of reduction

Design an algorithm.  
Show that YOUR PROBLEM reduces to problem B
       [you can use an algorithm that solves B to help solve YOUR PROBLEM]
Mentality. You have code for B. 
                 Can you use it to solve YOUR PROBLEM?
Result. Algorithm for YOUR PROBLEM.
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Problem-solving models

Important problem-solving models 

• We know how to reduce numerous important problems to them.

• We know how to efficiently solve them.

Profound question. Is there a universal problem solving model?

• UNIVERSAL would be a model for every problem  that scientists, 
engineers, and applications programmers aspire to compute feasibly.

Requirements.

• We know how to reduce important problems to it.

• We can efficiently solve all problems in the model.
13

YES (!)
No one knows (!!)

Could be (!).

Ex 1. SORTING 

Ex 2. SHORTEST PATHS 

Ex 3. LP 
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‣ reduction (for algorithm design)
‣ reduction (for  lower  bounds)
‣ P and NP
‣ intractability
‣ NP-completeness
‣ coping with intractability
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Lower bounds

Goal.  Prove that a problem requires a certain number of steps.
Ex.  Ω(N log N) lower bound for sorting.

Bad news.  Very difficult to establish lower bounds from scratch.

• Complicated mathematical argument needed.

• Must apply to all conceivable algorithms.

Good news.  Often easy to spread Ω(N log N) lower bound to YOUR PROBLEM.

• Reduce SORTING to solve YOUR PROBLEM.

• [Only need a simple algorithmic argument.]

1251432
2861534
3988818
4190745
13546464
89885444
43434213



16

Reduction to prove lower bounds

Def.  Problem A reduces to YOUR PROBLEM
         if you can use an algorithm that solves YOUR PROBLEM to help solve A.

A lower bound for A gives a lower bound for YOUR PROBLEM.

Lower bound mentality. 

• If you could easily solve YOUR PROBLEM, you could easily solve A.

• You can’t easily solve A.

• Therefore, you can’t easily solve YOUR PROBLEM.

input to A

Algorithm for A

solution to A
for given input

Algorithm for

YOUR PROBEM
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Linear-time reductions

Def.  Problem A linear-time reduces to problem B if A can be solved with:

• Linear number of standard computational steps.

• Constant number of calls to B.

Ex.  Almost all of the reductions we've seen so far.  
                 Q. Which one wasn't linear-time?

When a problem A linear-time reduces to a problem B that requires more
than linear time, a lower bound is implied.

• Ex 1: If B takes Ω(N log N) steps, then so does A.

• Ex 2: If B takes Ω(N 2) steps, then so does A

 A. 3-COLLINEAR used N calls to SORTING



SORTING reduces to DUPEXIST

DUPEXIST (Duplicates existence). 
Given a set of N elements, determine whether any two are equal. 

Cost model: compares

Reduction (sketch). To solve SORTING on N elements:

• Instrument DUPEXIST to output add edge i->j when it compares ai and aj.

• Topologically sort the digraph (linear time)
Cost of solving SORTING = cost of solving DUPEXIST (+ topological sort)

Implication. DUPEXIST requires  Ω(N log N) compares
18

input to 
SORT

SORT algorithm

solution to SORT
for given input

DUPEXIST
algorithm

topological
sort

lower-bound mentality:

if I could solve DUP-EXIST with fewer,

 I could solve SORT with fewer.

must have i->(i+1) for all i<N-1
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Lower bound for convex hull

Proposition.  In quadratic decision tree model, any algorithm for sorting
N integers requires Ω(N log N) steps.

Proposition.  Sorting linear-time reduces to convex hull.
Pf.  [see next slide]

Implication.  Any ccw-based convex hull algorithm requires Ω(N log N) ops. 

allows linear or quadratic tests of the form:
 xi < xj or (xj - xi) (xk - xi) - (xj ) (xj - xi) < 0

linear or 
quadratic tests

convex hullsorting

1251432
2861534
3988818
4190745
13546464
89885444
43434213

lower-bound mentality:
if I can solve convex hull

efficiently, I can sort efficiently



Proposition.  SORTING linear-time reduces to CONVEX HULL.

• Sorting instance:  x1, x2, ... , xN.

• Convex hull instance:  (x1 , x12 ), (x2, x22 ), ... , (xN , xN2 ).

Pf.

• Region { x :  x2  ≥  x } is convex  ⇒  all points are on hull.

• Starting at point with most negative x, counterclockwise order of hull points 
yields integers in ascending order.

20

SORTING linear-time reduces to CONVEX HULL

f (x) = x2

(xi , xi2 )

x

y

lower-bound mentality:
if I can solve convex hull

efficiently, I can sort efficiently
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Lower bound for 3-COLLINEAR

3-SUM.  Given N distinct integers, are there three that sum to 0?

3-COLLINEAR.  Given N distinct points in the plane,
are there 3 that all lie on the same line?

3-collinear

recall Assignment 3

3-sum

1251432
-2861534
3988818
-4190745
13546464
89885444
-43434213
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Lower bound for 3-COLLINEAR

3-SUM.  Given N distinct integers, are there three that sum to 0?

3-COLLINEAR.  Given N distinct points in the plane,
are there 3 that all lie on the same line?

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.
Pf.  [next two slides]

Conjecture.  Any algorithm for 3-SUM requires Ω(N 2) steps.
Implication.  No sub-quadratic algorithm for 3-COLLINEAR likely.

your N2 log N algorithm was pretty good
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3-SUM linear-time reduces to 3-COLLINEAR

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance:  x1, x2, ... , xN .

• 3-COLLINEAR instance:  (x1 , x13 ), (x2, x23 ), ... , (xN , xN3 ).

Lemma.  If a, b, and c are distinct, then a + b + c = 0
if and only if (a, a3), (b, b3), and (c, c3) are collinear.

(1, 1)

(2, 8)

(-3, -27) -3 + 2 + 1 = 0

f (x) = x3
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3-SUM linear-time reduces to 3-COLLINEAR

Proposition.  3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance:  x1, x2, ... , xN .

• 3-COLLINEAR instance:  (x1 , x13 ), (x2, x23 ), ... , (xN , xN3 ).

Lemma.  If a, b, and c are distinct, then a + b + c = 0
if and only if (a, a3), (b, b3), and (c, c3) are collinear.

Pf.  Three distinct points (a, a3), (b, b3), and (c, c3) are collinear iff:

0 =

������

a a3 1
b b3 1
c c3 1

������

= a(b3 − c3)− b(a3 − c3) + c(a3 − b3)

= (a− b)(b− c)(c− a)(a + b + c)

shortcut: setting 
slopes equal gives 

the same result



Establishing lower bounds through reduction is an important tool
in guiding algorithm design efforts.

Q.  How to convince yourself no linear-time CONVEX HULL algorithm exists?
A1.  [hard way]  Long futile search for a linear-time algorithm.
A2.  [easy way]  Linear-time reduction from sorting.

Q.  How to convince yourself no sub-quadratic 3-COLLINEAR algorithm is likely?
A1.  [hard way]  Long futile search for a sub-quadratic algorithm.
A2.  [easy way]  Linear-time reduction from 3-SUM.

Q. How to better understand the difficulty of a new problem?
A1.  [hard way]  Search in the dark for a fast algorithm.
A2.  [easier way]  Linear-time reduction from a known difficult problem
                            (then you know it’s not likely to be easier).

Establishing lower bounds:  summary

25



Summary: A second practical implication of reduction

Design an algorithm.  
Show that YOUR PROBLEM reduces to problem B
       [you can use an algorithm that solves B to help solve YOUR PROBLEM]
Mentality. You have code for B. 
                 Can you use it to solve YOUR PROBLEM?
Result. Algorithm for YOUR PROBLEM.

Prove a lower bound.
Show that A reduces to YOUR PROBLEM
      [you can use an algorithm that solves YOUR PROBLEM to help solve A]
Mentality. If you can solve YOUR PROBLEM, you can also solve A.
                 Would that be a better solution than possible (or known solutions)?
Result. Lower bound for YOUR PROBLEM.

26
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‣ reduction (for algorithm design)
‣ reduction (for  lower  bounds)
‣ P and NP
‣ intractability
‣ NP-completeness
‣ coping with intractability
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LSOLVE.  Given a system of linear equations, find a solution.

LP.   Given a system of linear inequalities, find a solution.

0/1 ILP.  Given a system of linear inequalities, find a binary solution.

SAT.  Given a system of boolean equations, find a solution.

Four Fundamental Problems

each xi is
 either 0 or 1

 x0 = -1
 x1 =  2 
 x2 =  2

 0x0 +  1x1 +   1x2 =   4
 2x0 +  4x1 -   2x2 =   2
 0x0 +  3x1 +  15x2 =  36

 x0 =  1
 x1 =  1  
 x2 = 1/5

48x0 + 16x1 + 119x2 ≤  88
 5x0 +  4x1 -  35x2 ≥  13
15x0 +  4x1 +  20x2 ≥  23
  x0, x1, x2 ≥ 0

 x0 = 0
 x1 = 1 
 x2 = 1

 0x0 +  1x1 +  1x2 ≥  1
 1x0 +  0x1 +  1x2 ≥  1
 1x0 +  1x1 +  1x2 ≤  2

each xi is
 either T or F

 x0 = T
 x1 = F 
 x2 = T

 x0 or x1 or ¬x2 =  T
 x0 or ¬x1 or x2 =  T
 ¬x0 or x1 or x2 =  T

standard form: use only or and ¬ (not)



29

LSOLVE.  Given a system of linear equations, find a solution.
LP.   Given a system of linear inequalities, find a solution.
ILP.  Given a system of linear inequalities, find a binary solution.
SAT.  Given a system of boolean equations, find a solution.

Q.  Which of these problems have guaranteed poly-time solutions?
A.  No easy answers.

    LSOLVE.  Yes.  Gaussian elimination solves n-by-n system in n3 time.
    LP.  Yes.  Ellipsoid algorithm is poly-time.
    ILP and SAT  No poly-time algorithm known or believed to exist!

Four Fundamental Problems

?

✓

✓ problem was open for decades
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Search Problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

guaranteed poly-time in size of instance I

or report none exists
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Search Problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

LSOLVE.  Given a system of linear equations, find a solution.

• To check solution S, plug in values and verify each equation. 

instance I solution S

 x0 = -1
 x1 =  2 
 x2 =  2

 0x0 +  1x1 +   1x2 =   4
 2x0 +  4x1 -   2x2 =   2
 0x0 +  3x1 +  15x2 =  36
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Search Problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

LP.  Given a system of linear inequalities, find a solution.

• To check solution S, plug in values and verify each inequality. 

instance I solution S

 x0 =  1
 x1 =  1  
 x2 = 1/5

48x0 + 16x1 + 119x2 ≤  88
 5x0 +  4x1 -  35x2 ≥  13
15x0 +  4x1 +  20x2 ≥  23
  x0, x1, x2 ≥ 0
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Search Problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

0/1 ILP.  Given a system of linear inequalities, find a binary solution.

• To check solution S, plug in values and verify each inequality
(and check that solution is 0/1). 

instance I solution S

 x0 = 0
 x1 = 1 
 x2 = 1

 0x0 +  1x1 +  1x2 ≥  1
 1x0 +  0x1 +  1x2 ≥  1
 1x0 +  1x1 +  1x2 ≤  2
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Search Problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

SAT.  Given a system of boolean equations, find a solution.

• To check solution S, plug in values and verify each equation

instance I solution S

 x0 = T
 x1 = F 
 x2 = T

 x0 or x1 or ¬x2 =  T
 x0 or ¬x1 or x2 =  T
 ¬x0 or x1 or x2 =  T
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Search Problems

Search problem.  Given an instance I of a problem, find a solution S. 
Requirement.  Must be able to efficiently check that S is a solution.

FACTOR.  Find a nontrivial factor of the integer x.

• To check solution S, long divide 193707721 into 147573952589676412927. 

147573952589676412927 193707721

instance I solution S
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Def.  NP is the class of all search problems 
        [ problems with poly-time checkable solutions ].

NP

Significance.  What scientists, engineers, and applications programmers
                      aspire to compute feasibly.

problem description poly-time alg

LSOLVE
solve simultaneous

linear equations Gaussian elimination

LP
solve simultaneous
linear inequalities ellipsoid

ILP
solve simultaneous
linear inequalities 
with 0-1 solution

??

SAT
solve simultaneous
boolean equations

(CNF formula)
??

FACTOR find nontrivial factor ??
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Def.  P is the class of all search problems that are solvable in poly-time.
         [Solved by some alg with worst-case running time O(Nc) for some c.]

P

Significance.  What scientists, engineers, and applications programmers
                      do compute feasibly. [The problems we’ve studied before this lecture.]

problem description poly-time alg

SORT
find a permutation that

puts array in order all algs in Chapter 2

st-CONNECTIVITY
find a path from s to t

in a digraph depth-first search

... ... ...

LSOLVE
solve simultaneous

linear equations Gaussian elimination

LP
solve simultaneous
linear inequalities ellipsoid



Search, decision, optimization

Three types of problems:

A search problem: Find a solution. [our focus]

A decision problem: Does a solution exist? [standard focus]

An optimization problem: Find the best solution. [another possibility]

We focus on search problems

• need to make a choice to avoid confusion

• main ideas carry through to other types of problems

• [some natural problems are not search problems]

• Interested in distinctions? See COS 487.
38



Nondeterminism

Nondeterministic machine can guess the desired solution

Ex 1. 0/1 ILP.  Given a system of linear inequalities, guess a binary solution.

Ex 2. Turing machines.

• deterministic: state, input determines next state

• nondeterministic: more than one possible next state

NP: Set of problems solvable in poly time on a nondeterministic machine.
       [Another way to define search problems.]

39

A

B

C

0:x

0:y

instance I solution S

 x0 = 0
 x1 = 1 
 x2 = 1

 0x0 +  1x1 +  1x2 ≥  1
 1x0 +  0x1 +  1x2 ≥  1
 1x0 +  1x1 +  1x2 ≤  2
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Extended Church-Turing Thesis

Extended Church-Turing thesis.

Evidence supporting thesis.  

• Seems to be true for all physical computers.

• Simulating one computer on another adds poly-time cost factor.

• Nondeterministic machine seems to be a fantasy.

Implication.  To make future computers more efficient,
suffices to focus on improving implementation of existing designs.

A new law of physics?  A constraint on what is possible.
Possible counterexample?  Quantum computer

P = search problems solvable in poly-time in this universe.
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P.  Class of search problems solvable in poly-time.
NP.  Class of all search problems.

Does P = NP?  

• can you always avoid brute-force search and do better??

• does nondeterminism make a computer more efficient??

• are there any intractable search problems??

Two possible universes.

If yes…  Poly-time algorithms for SAT, ILP, TSP, FACTOR, …
If no…  Would learn something fundamental about our universe.
Overwhelming consensus.  P ≠ NP.

The Central Question

P ≠ NP P = NP

EXP

P = NP

NP

P
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Q.  How to solve an instance of SAT with N variables?
A.  Exhaustive search:  try all 2N truth assignments.

Q.  Can we do anything substantially more clever?
A.  No one knows!

Conjecture (widely accepted).  SAT is not in P. [no poly time alg for SAT].

A search problem that is not in P is said to be intractable.

Not in P
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‣ reduction (for algorithm design)
‣ reduction (for  lower  bounds)
‣ P and NP
‣ intractability
‣ NP-completeness
‣ coping with intractability
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Classifying Problems

Suppose that we live in the P ≠ NP universe (the overwhelming consensus).

Q. Which search problems are in P?
A.  Those solved by algs we’ve studied: SORTING, MAXFLOW, LP, SP...

Q.  Which search problems are not in P (intractable)?
A.  No easy answers (we don't even know for sure that P ≠ NP).

Only tool available.  Use reduction to prove relationships among problems.

P ≠ NP

NP

P
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“Cook” reduction

Def.  Problem A poly-time reduces to problem B if A can be solved with:

• Number of computational steps for reduction bounded by a polynomial

• Number of calls to B bounded by a polynomial

Very general (but not the only) notion of reduction. 
Ex.  All of the reductions we've seen so far.

Two applications

• prove that a problem is in P

• prove that a problem is not in P (intractable)

input to A

Algorithm for A

solution to A
for given input

Algorithm

for B
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Reduction to prove that a problem is in P [design an algorithm]

Def.  YOUR PROBLEM poly-time reduces to problem B
         if you can use an algorithm that solves B to help solve YOUR PROBLEM.

A poly-time algorithm for B gives a poly-time algorithm for YOUR PROBLEM.

To prove that YOUR PROBLEM is in P:
       Poly-time reduce it to a problem known to be in P. 

input to 
YOUR PROBLEM

Algorithm for YOUR PROBLEM

solution to 
YOUR PROBLEM
for given input

Algorithm

for B
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Reduction to establish intractability [prove a lower bound]

Def.  Problem A poly-time reduces to YOUR PROBLEM
         if you can use an algorithm that solves YOUR PROBLEM to help solve A.

If A is intractable, then YOUR PROBLEM is intractable.

To prove that YOUR PROBLEM is intractable (not in P):
       Poly-time reduce an intractable problem to YOUR PROBLEM.

input to A

Algorithm for A

solution to A
for given input

Algorithm for

YOUR PROBLEM

Lower bound mentality. 

• If you could solve YOUR PROBLEM in poly time, you could solve A in poly time.

• You can’t solve A in poly time (it is intractable).

• Therefore, you can’t solve YOUR PROBLEM in poly time (it is intractable).



Using reduction to classify problems

To prove that YOUR PROBLEM is in P:

• Find a problem B known to be in P.
    [MAXFLOW, LP, SORTING, .....]

• Poly-time reduce YOUR PROBLEM to B.

To prove that YOUR PROBLEM is intractable (not in P):

• Find an intractable problem A.
    [Starting assumption: SAT is intractable.]

• Poly-time reduce A to YOUR PROBLEM.

Next: Several examples.
48



SAT reduces to 3-SAT

3-SAT. Given a system of boolean equations with three literals per equation, 
            find a solution.

Reduction. To solve SAT:

• Convert each M-literal equation to M 3-literal equations

• Solve 3-SAT instance.
Cost of solving N-equation SAT = Cost of solving NM-equation 3-SAT 

Ex. [M = 5]

Implication. 3-SAT is intractable (assuming that SAT is intractable).
[poly-time solution to 3-SAT would give poly-time solution to SAT]

49

 ...
 x0 or ¬x1 or x2 or ¬x3 or x4 =  T
 ...

 ...
  x0  or ¬x1 or yi0 = T
 ¬yi0 or x2 or yi1 =  T
 ¬yi1 or ¬x3 or yi2 = T
 ¬yi2 or x4 or yi3 =  T
 ¬yi3 or T  or T  =  T
  ...

ith equation

add extra
variables



An independent set in a graph is a set of vertices, no two of which are adjacent.

IND-SET.  Given a graph G and an integer k, find an independent set of size k.

Applications.  Scheduling, computer vision, clustering, ...
50

Independent set

k = 9



IND-SET.  Given a graph G and an integer k, find an independent set of size k.

Reduction.  To solve 3-SAT:

• Build a graph by creating 3 vertices in a triangle for each equation.

• Add edges between each literal and its negation.

• Solve IND-SET for that graph

• Set literals corresponding to independent set to T.

51

3-SAT reduces to IND-SET

x2x1 x3¬x1 x2¬x3 x3x2

¬x0 x0x0 ¬x0

Ex. (k = 4)

  x0 or x1 or  x2 =  T
 ¬x0 or ¬x1 or x3 =  T
 ¬x0 or x2 or ¬x3 =  T 
  x0 or x2 or x3  =  T

 x0 = T
 x1 = F
 x2 = T 
 x3 = T



Reduction 1.  SAT poly-time reduces to 3-SAT.

Reduction 2.  3-SAT poly-time reduces to IND-SET.

Transitivity.  If X poly-time reduces to Y 
                    and Y poly-time reduces to Z,
                    then X poly-time reduces to Z.

Therefore, SAT poly-time reduces to IND-SET.

Implication.   Assuming SAT is intractable, so is IND-SET. 

52

SAT reduces to IND-SET

lower-bound mentality:

if I could solve IND-SET efficiently,

 I could solve 3-SAT efficiently;

if I could solve 3-SAT efficiently,

I could solve SAT efficiently

SAT

3-SAT

IND-SET



Proposition.  IND-SET poly-time reduces to ILP.
Pf.  Given an instance G, k of IND-SET, create an instance of ILP as follows: 

Intuition.  xi = 1 if and only if vertex vi is in independent set.
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Independent set reduces to integer linear programming

x1 + x2 + x3 + x4 + x5  =  3

x1 + x2  ≤  1

x2 + x3  ≤  1

x1 + x3  ≤  1

 x1 + x4  ≤  1

 x3 + x5  ≤  1

all xi  =  { 0, 1 }

number of vertices
selected

at most one vertex
selected from each edge

v2 v3 v5

v4v1

binary variables

is there an independent set of size 3 ?

is there a feasible solution?



Reduction 1.  SAT poly-time reduces to 3-SAT.

Reduction 2.  3-SAT poly-time reduces to IND-SET.

Reduction 3.  IND-SET poly-time reduces to 0/1 ILP.

By transitivity, SAT poly-time reduces to 0/1 ILP.
                         [also 3-SAT poly-time reduces to 0/1 ILP]

Implication.   Assuming SAT is intractable, so is 0/1 ILP. 
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SAT reduces to 0/1 ILP

lower-bound mentality:

if I could solve 0/1 ILP efficiently,

 I could solve IND-SET efficiently; 

if I could solve IND-SET efficiently,

 I could solve 3-SAT efficiently;

if I could solve 3-SAT efficiently,

I could solve SAT efficiently

SAT

3-SAT

IND-SET

0/1 ILP
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More poly-time reductions from satisfiability

SAT

VERTEX COVER

HAM-CYCLECLIQUE

3-SAT
3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

IND-SET

KNAPSACK

Dick Karp
'85 Turing award

3
-SAT

 
red

uces to 
IN

D
-SET

TSP

BIN-PACKING

ILP
IN

D
-SET

 
red

uces to 
ILP

SAT
 

red
uces to 

3
-SAT

Widely accepted conjecture.  SAT is intractable.

Implication.  All of these problems are intractable.
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Still More Reductions from 3-SAT

Aerospace engineering.  Optimal mesh partitioning for finite elements.

Biology.  Phylogeny reconstruction.

Chemical engineering.  Heat exchanger network synthesis.

Chemistry.  Protein folding.

Civil engineering.  Equilibrium of urban traffic flow.

Economics.  Computation of arbitrage in financial markets with friction.

Electrical engineering.  VLSI layout. 

Environmental engineering.  Optimal placement of contaminant sensors.

Financial engineering.  Minimum risk portfolio of given return.

Game theory.  Nash equilibrium that maximizes social welfare.

Mathematics.  Given integer a1, …, an, compute

Mechanical engineering.  Structure of turbulence in sheared flows.

Medicine.  Reconstructing 3d shape from biplane angiocardiogram.

Operations research.  Traveling salesperson problem, integer programming.

Physics.  Partition function of 3d Ising model.

Politics.  Shapley-Shubik voting power.

Pop culture.  Versions of Sudoko, Checkers, Minesweeper, Tetris.

Statistics.  Optimal experimental design.

6,000+ scientific papers per year.

Widely accepted conjecture.  SAT is intractable.

Implication.  All of these problems are intractable.



Implications of poly-time reductions from SAT

Establishing intractability through poly-time reduction is an important tool
in guiding algorithm design efforts.

Q.  How to convince yourself that a new problem is (likely) intractable?
A1.  [hard way]  Long futile search for an efficient algorithm (as for SAT).
A2.  [easy way]  Reduction from some problem for which reduction from SAT
                          is known (tens of thousands to choose from!).

Caveat.  Intricate reductions are common.
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‣ reduction (for algorithm design)
‣ reduction (for  lower  bounds)
‣ P and NP
‣ intractability
‣ NP-completeness
‣ coping with intractability
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NP-Completeness

Q. Why do we believe SAT has no poly-time algorithm?
A.  Because Cook’s theorem tells us that would imply that P = NP

Def. An NP problem is NP-complete if all problems in NP reduce to it.

Cook’s Theorem.  [1971]  SAT is NP-complete.

Extremely brief proof sketch: 

• convert non-deterministic TM notation to SAT notation

• if you can solve SAT, you can solve any problem in NP

every NP problem is a SAT problem in disguise

SAT instancenondeterministic TM
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Cook’s theorem implications

[An NP problem is NP-complete if all problems in NP poly-time to reduce to it.]

Cook's theorem.  SAT is NP-complete.
Corollary 1.  SAT is tractable if and only if P = NP.
Pf (<-). If P = NP, all problems in NP are tractable (in P).
Pf (->). Suppose SAT is tractable. Since any problem A in NP poly-time reduces 
            to SAT, the reduction gives a poly-time algorithm for A.

Corollary 2.  Any NP-complete problem is tractable if and only if P = NP.

More detailed view of two universes:

NP

P NPC

P ≠ NP

P = NP

P = NP
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Implications of Cook’s theorem

3-SAT

IND-SET VERTEX COVER

HAM-CYCLECLIQUE

3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

ILP

KNAPSACK

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

Stephen Cook
'82 Turing award

All of these problems (and many, many more)
poly-time reduce to 3-SAT.
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Implications of Karp + Cook

3-SAT

VERTEX COVER

CLIQUE

3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

All of these problems are NP-complete; they are 
manifestations of the same really hard problem.

IND-SET

ILP

+

HAM-CYCLE
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Implications of NP-completeness
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Two possible universes

P ≠ NP .  

• Intractable search problems exist.

• Nondeterminism makes machines more efficient.

• Can prove that a problem is intractable by reduction 
from an NP-complete problem [no other way is known!]

• Some search problems are neither NP-complete or in P
[we don’t know any useful ones].

• Some search problems are still not classified
[ex. factoring, graph isomorphism].

P = NP. 

• No intractable search problems exist.

• Nondeterminism is no help.

• Poly-time solutions exist for NP-complete problems
[and all other problems in NP, such as factoring and graph isomorphism].

P ≠ NP

P = NP

P = NP

NP

P NPC
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A pitfall

FACTOR.  Given an n-bit integer x, find a nontrivial factor.

Q.  What is complexity of FACTOR?
A.  In NP, but not known (or believed) to be in P or NP-complete.

Q.  What if P = NP?
A.  Poly-time algorithm for factoring; modern e-conomy collapses.

Quantum.  [Shor 1994]
      Can factor an N-bit integer in N3 steps on a "quantum computer."

Pitfall. If the Extended Church-Turing thesis is not valid, P vs. NP is less relevant

740375634795617128280467960974295731425931888892312890849362

326389727650340282662768919964196251178439958943305021275853

701189680982867331732731089309005525051168770632990723963807

86710086096962537934650563796359

if there exists a physical machine that cannot be simulated in 
poly time on standard machines, we might prefer that one!
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‣ reduction (for algorithm design)
‣ reduction (for  lower  bounds)
‣ P and NP
‣ intractability
‣ NP-completeness
‣ coping with intractability
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Summary

P.  Class of search problems solvable in poly-time.
NP.  Class of all search problems, some of which seem wickedly hard.
NP-complete.  Hardest problems in NP.
Intractable.  Search problems not in P (if P ≠ NP).

Many fundamental problems are NP-complete

• TSP, 3-SAT, 3-COLOR, ILP, (and thousands of others)

• 3D-ISING.

Use theory as a guide.  

• An efficient algorithm for an NP-complete problem
would be a stunning scientific breakthrough (a proof that P = NP)

• You will confront NP-complete problems in your career.

• It is safe to assume that P ≠ NP and that such problems are intractable.

• Identify these situations and proceed accordingly.
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Coping With Intractability

You have an NP-complete problem.

• It’s safe to assume that it is intractable.

• What to do?

Relax one of desired features.

• Solve the problem in poly-time.

• Solve the problem to optimality.

• Solve arbitrary instances of the problem.

Complexity theory deals with worst case behavior.

• Instance(s) you want to solve may have easy-to-find answer.

• Ex: Chaff solves real-world SAT instances with ~ 10k variables.
[Matthew Moskewicz '00, Conor Madigan '00,  Sharad Malik]

PU senior independent work (!)
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Coping With Intractability

You have an NP-complete problem.

• It’s safe to assume that it is intractable.

• What to do?

Relax one of desired features.

• Solve the problem in poly-time.

• Solve the problem to optimality.

• Solve arbitrary instances of the problem.

Develop a heuristic, and hope it produces a good solution.

• No guarantees on quality of solution.

• Ex. TSP assignment heuristics.

• Ex.  Metropolis algorithm, simulating annealing, genetic algorithms.

Approximation algorithm.  Find solution of provably good quality.

• Ex.  MAX-3SAT:  provably satisfy 87.5% as many clauses as possible.
but if you can guarantee to satisfy 87.51% as many clauses as possible in poly-time, then P = NP !
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Coping With Intractability

You have an NP-complete problem.

• It’s safe to assume that it is intractable.

• What to do?

Relax one of desired features.

• Solve the problem in poly-time.

• Solve the problem to optimality.

• Solve arbitrary instances of the problem.

Special cases may be tractable.

• Ex:  Linear time algorithm for 2-SAT.

• Ex:  Linear time algorithm for Horn-SAT.
each clause has at most one un-negated literal
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Exploiting Intractability:  Cryptography

Modern cryptography.

• Ex.  Send your credit card to Amazon.

• Ex.  Digitally sign an e-document.

• Enables freedom of privacy, speech, press, political association. 

RSA cryptosystem.

• To use:  multiply two N-bit integers.  [poly-time]

• To break:  factor a 2N-bit integer.    [unlikely poly-time]

111111*2718281 302030920191

Multiply = EASY

Factor = HARD
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Exploiting Intractability:  Cryptography

FACTOR.  Given an n-bit integer x, find a nontrivial factor.

Q.  What is complexity of FACTOR?
A.  In NP, but not known (or believed) to be in P or NP-complete.

Q.  Is it safe to assume that FACTOR is intractable?
A.  Maybe, but not as safe an assumption as for an NP-complete problem.

740375634795617128280467960974295731425931888892312890849362

326389727650340282662768919964196251178439958943305021275853

701189680982867331732731089309005525051168770632990723963807

86710086096962537934650563796359



Fame and Fortune through CS (revisited)

Factor this number:

Can’t do it? Create a company based on the difficulty of factoring.
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740375634795617128280467960974295731425931888892312890849362

326389727650340282662768919964196251178439958943305021275853

701189680982867331732731089309005525051168770632990723963807

86710086096962537934650563796359

RSA-704     ($30,000 prize if you can factor)

RSA sold to EMC for
$2.1 billion

RSA algorithm

or, sell T-shirts



Fame and Fortune through CS (revisited)

Factor this number:

Too late? Try resolving P = NP? question (might need a few math courses)
                 or, try building a quantum computer.
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Clay Institute ($1 million prize)

plus untold riches for breaking e-commerce

740375634795617128280467960974295731425931888892312890849362

326389727650340282662768919964196251178439958943305021275853

701189680982867331732731089309005525051168770632990723963807

86710086096962537934650563796359


