
Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · April 18, 2011 11:02:27 AM

6.4  Maximum Flow

‣ overview
‣ Ford-Fulkerson 
‣ implementations
‣ applications

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.



edges from Cs to Ct

Mincut problem 

Given. A weighted digraph with identified source s and target t. 

Def. A cut is a partition of the vertices into two disjoint sets. 
Def. An st-cut is a cut that places s in one of its sets (Cs) and t in the other (Ct). 
Def. An st-cut’s   weight   is the sum of the   weights   of its st-crossing edges. 

Minimum st-cut (mincut) problem. Find an st-cut of minimal weight. 

2

23

22

Note: don’t count edges from Ct to Cs

29



Typical mincut application

Find cheapest way to cut connection between s and t.

3

www.blog.spoongraphics.co.uk/tutorials/creating-road-maps-in-adobe-illustrator

t

s



Mincut application (1950s)

4

Rail network connecting Soviet Union with Eastern European countries

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.

“Free world” goal: Know how to cut supplies if cold war turns into real war
                             (map declassified by Pentagon in 1999).



Potential mincut application (2010s)

Facebook graph

5

Government-in-power’s goal: Cut off communication to specified set of people.



6

Maxflow problem

Flow network.

• Weighted digraph with a source s (indegree 0) and sink t (outdegree 0)

• An edge’s weight is its capacity (positive)

• Add additional flow variable to each edge(no greater than its capacity)

Maximum st-flow (maxflow) problem: Assign flows to edges that

• Maintain local equilibrium:  inflow = outflow at every vertex (except s and t).

• Maximize total flow into t. 



A physical model

Oil flowing in pipes

7Shortest augmenting paths in a larger !ow network

4 in

2
 out

2 out

local equilibrium
at each vertex

all flow goes down
(just to simplify diagrams)

room for 
improvement?

t

s



Typical maxflow application

Find best way to distribute goods from s to t.

8

www.blog.spoongraphics.co.uk/tutorials/creating-road-maps-in-adobe-illustrator

t

s



Maxflow application (1950s)

9

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.

Rail network connecting Soviet Union with Eastern European countries

Soviet Union goal: Know how to maximize flow of supplies to Eastern Europe.

flow

capacity



Potential mincut application (2010s)

Facebook graph

10

“Free world” goal: Maximize flow of information to specified set of people.



Overview (summary)

Given. A weighted digraph, 
           source s and target t. 

Minimum st-cut (mincut) problem. Find an st-cut of minimal weight. 

Maximum st-flow (maxflow) problem: Assign flows to edges that

• Maintain local equilibrium:  inflow = outflow at every vertex (except s and t).

• Maximize total flow into t.

Remarkable fact.  These two problems are equivalent!

• Two very rich algorithmic problems

• Cornerstone problems in combintorial optimixation

• Beautiful mathematical duality

11



Maxflow / mincut applications

Maxflow/mincut is a widely applicable problem-solving model

• Data mining. 

• Open-pit mining.  

• Project selection. 

• Image processing. 

• Airline scheduling. 

• Bipartite matching. 

• Baseball elimination.

• Distributed computing. 

• Egalitarian stable matching. 

• Security of statistical data. 

• Many many more . . .

12

• Network connectivity/reliability. 



13

‣ overview
‣ APIs
‣ Ford Fulkerson
‣ implementations
‣ applications



14

APIs (cf. EdgeWeightedDigraph, DirectedEdge)

manipulate flow values 
(stay tuned)



15

Flow edge: implementation in Java (cf. DirectedEdge)

public class FlowEdge
{
    private final int v;             // from
    private final int w;             // to 
    private final double capacity;   // capacity
    private double flow;             // flow

    public FlowEdge(int v, int w, double capacity, double flow)
    {
        this.v         = v;
        this.w         = w;  
        this.capacity  = capacity;
        this.flow      = flow;
    }

    public int from()         { return v;        }  
    public int to()           { return w;        }  
    public double capacity()  { return capacity; }
    public double flow()      { return flow;     }

    public int other(int vertex)
    {
        if      (vertex == v) return w;
        else if (vertex == w) return v;
        else throw new RuntimeException("Illegal endpoint");
    }

    public double residualCapacityTo(int vertex)             {...}
    public void addResidualFlowTo(int vertex, double delta)  {...}
}  

stay tuned

flow variable



Flow network representation

16

Flow network representation

adj[]
0

1

2

3

4

5

0 2 1.03.0 0 1 2.0 2.0

Bag
objects

4 5 1.03.0 3 5 2.0 2.0

4 5 1.03.0 2 4 1.0 1.0 1 4 1.0 0.0

3 5 2.02.0 2 3 1.0 0.0 1 3 3.0 2.0

2 4 1.01.0 2 3 1.0 0.0 0 2 3.0 1.0

1 4 0.01.0 1 3 3.0 2.0 0 1 2.0 2.0

references to the 
same Edge object

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

tinyFN.txt

V

E

A flow network is an array of bags of flow edges.



Flow network: implementation in Java (cf. EdgeWeightedDigraph)

17

public class FlowNetwork
{
    private final int V;
    private int E;
    private Bag<FlowEdge>[] adj;
    
    public FlowNetwork(int V)
    {
        this.V = V;
        this.E = 0;
        adj = (Bag<FlowEdge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<FlowEdge>();
    }

    public int V() { return V; }
    public int E() { return E; }

    public void addEdge(FlowEdge e)
    {
        E++;
        int v = e.from();
        int w = e.to();
        adj[v].add(e);
        adj[w].add(e);
    }

    public Iterable<FlowEdge> adj(int v)
    {  return adj[v]; }

}  

array of bags of flow edges

constructor

add edge (to both adj lists)

iterator for adjacent edges



18

Typical client code: check that a flow is feasible

private boolean localEq(FlowNetwork G, int v)
{  // Check local equilibrium at v.
   double EPSILON = 1E-11;
   double netflow = 0.0;
   for (FlowEdge e : G.adj(v))
      if (v == e.from()) netflow -= e.flow();
      else               netflow += e.flow();
   return Math.abs(netflow) < EPSILON;
}
private boolean isFeasible(FlowNetwork G)
{
   for (int v = 0; v < G.V(); v++)
     for (FlowEdge e : G.adj(v))
        if (e.flow() < 0 || e.flow() > e.capacity())
            return false;

   for (int v = 0; v < G.V(); v++)
      if (v !=s && v != t && !localEq(G, v))
         return false;

   return true;
}

check local equilibrium 
at each vertex

check that each flow 
is nonnegative
and no greater than capacity



19

‣ APIs
‣ Ford Fulkerson
‣ implementations
‣ applications



Idea: increase flow along augmenting paths

20

s t

10

10

10

15

5

10 4 15 15

4 6 15

9

8

16



Idea: increase flow along augmenting paths

21

s t



Idea: increase flow along augmenting paths

22

s t 0 + 10 = 10



Idea: increase flow along augmenting paths

23

s t 10 +10 = 20



Idea: increase flow along augmenting paths

24

s t+5

Problem: Can get stuck with no way to add more flow to t.



Idea: increase flow along augmenting paths

25

s t

+5

Problem: Can get stuck with no way to add more flow to t.
Solution: Go backwards along an edge with flow (removing some flow).



Idea: increase flow along augmenting paths

26

s t 20 + 5 = 25

Augmenting paths in general

• increase flow on forward edge (if not full)

• decrease flow on backward edge (if not empty)



Idea: increase flow along augmenting paths

27

s t 25 + 3 = 28



Idea: increase flow along augmenting paths

28

s t maxflow value = 28

Eventually all paths from s to t are blocked by either a

• full forward edge

• empty backward edge



Ford-Fulkerson algorithm

Generic method for solving maxflow problem.

• Start with 0 flow everywhere.

• Find an augmenting path.

• Increase the flow on that path, by as much as possible.

• Repeat until no augmenting paths are left.

Questions.
Q. Does this process give a maximum flow? 

Q. How do we find an augmenting path?

Q. How many augmenting paths (does the process even terminate)?

29

A. Yes! It also finds a mincut (!!). [Classic result]

A. Easy. Adapt standard graph-searching methods.

A. Difficult to know: depends on graph model, search method.



Mincut problem (revisited)

Given. A weighted digraph with identified source s and target t. 

Def. A cut is a partition of the vertices into two disjoint sets. 
Def. An st-cut is a cut that places s in one of its sets (Cs) and t in the other (Ct). 
Def. An st-cut’s   weight   is the sum of the   weights   of its st-crossing edges. 

Mincut problem. Find an st-cut of minimal weight. 

30

edges from Cs to Ct

23

22

29

s

t

s

t

s

t

Note: don’t count edges from Ct to Cs



Mincut problem (revisited with slight change in terminology)

Given. A weighted digraph with identified source s and target t. 

Def. A cut is a partition of the vertices into two disjoint sets. 
Def. An st-cut is a cut that places s in one of its sets (Cs) and t in the other (Ct). 
Def. An st-cut’s   weight   is the sum of the   weights   of its st-crossing edges. 

Mincut problem. Find an st-cut of minimal weight. 

31

Shortest augmenting paths in a larger !ow network

s

t

23

5

3
2

2
4

2
3 2

Shortest augmenting paths in a larger !ow network

s

t

7 7
4 4

22

Shortest augmenting paths in a larger !ow network

s

t

22

4

2

7

6

22

2

Amazing fact. Mincut and maxflow problems are equivalent.

edges from Cs to Ct

capacity capacities

   flow network

capacity.

29



Relationship between flows and cuts

Def. The flow across an st-cut is the sum of the flows on its st-crossing 
edges minus the sum of the flows of its ts-crossing edges. 

Thm. For any st-flow, the flow across every st-cut
         equals the value of the flow.

Pf. By induction on the size of Ct.

• true when Ct = {t}.

• true by local equilibrium when moving
a vertex from Cs to Ct

Corollary 1. Outflow from s = inflow to t = value.
Corollary 2. No st-flow’s value can exceed the capacity
                   of any st-cut.

32

Cs

Ct

inflow to t is
value of the flow

difference between
inflow and outflow
is flow across cut

s

t



Shortest augmenting paths in a larger !ow network

19

Relationship between flows and cuts (example)

For any st-flow, the flow across every st-cut equals the value of the flow.

33

Shortest augmenting paths in a larger !ow network

Shortest augmenting paths in a larger !ow network

2
2

5 6

2
2

19

4

3
2

2
2

2
3 1 4 4

19

5

3

2 2

-1



Maxflow-mincut theorem

Thm. The following three conditions are equivalent for any st-flow f:
  i. There exists an st-cut whose capacity equals the value of the flow f.
 ii. f is a maxflow.
iii. There is no augmenting path with respect to f.

Pf.

34

i. implies ii. [no flow’s value can exceed any cut’s capacity]

ii. implies iii. by contradiction [aug path would give higher-value flow, so f 
could not be maximal].

iii. implies i. 
        Cs: set of all vertices connected to s by an undirected path with no full           
             forward or empty backward edges. 
        Ct: all other vertices.
        capacity = flow across [st-crossing edges full, ts-crossing edges empty] .
                      = value of f [capacity of any cut = value of f].



FF termination

35

s t maxflow value = 28

mincut capacity = 28

Eventually all paths from s to t are blocked by either a

• full forward edge

• empty backward edge

Mincut: 
Consider only paths with no full forward or empty backward edges.
Cs is the set of vertices reachable from s;  Ct is the set of remaining vertices.  



Maxflow/mincut application (1950s)

36

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.

“bottleneck” is mincut (all forward edges full) 
value of flow = 30+17+36+16+24+6+10+5+19 = 163,000 tons

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.



Integrality property

Corollary to maxflow-mincut theorem. When capacities are integers, there 
exists an integer-valued maxflow, and the Ford Fulkerson algorithm finds it.

Pf. Flow increases by augmenting path value, which is either unused capacity in 
a forward edge or flow in a backwards edge [and always an integer].

Bottom line: Ford-Fulkerson always works when weights are integers.

Note: When weights are not integers, it could converge to the wrong value!

37

s t 20 + 5 = 25



Possible strategies for augmenting paths

FF algorithm: any strategy for choosing augmenting paths will give a maxflow.
[Caveat: Can have convergence problems when weights are not integers.]

Shortest path?

DFS path?

Random path?

Fattest path?

All easy to implement

• Define residual graph

• Find paths in residual graph.

Performance depends on network properties (stay tuned)
38

aug path with 
fewest number 

of edges

max capacity 
aug path

This lecture
(guaranteed to converge)



Shortest augmenting path 

39

Shortest augmenting paths in a larger !ow network



Fattest augmenting path

40



Random augmenting path

41



Bad case for Ford-Fulkerson

Bad news: Even when weights are integers, number of augmenting paths
                 could be equal to the value of the maxflow.

Good news: This case is easily avoided [use shortest augmenting path].

42

U

s

t

U

U

U

1



s

t



first iteration

0 + 1 = 1

s

t



second iteration

1 + 2 = 2

t

s
backwards edge



third iteration

2 + 1 = 3

s

t



fourth iteration

3 + 4 = 4

t

s
backwards edge



.  .  .



(2i-1)st iteration

2i − 2 + 1 = 2i − 1

s

t



(2i)th iteration

t

s
backwards edge

2i − 1 + 1 = 2i



Bad case for Ford-Fulkerson

Bad news: Even when weights are integers, number of augmenting paths
                 could be equal to the value of the maxflow.

Good news: This case is easily avoided [use shortest augmenting path].

51

U

s

t

U

U

U

1



Flow network representation (revisited)

52

Anatomy of a network-!ow problem (revisited)

flow
forward edge

(remaining capacity)

capacity

backward edge
(flow)

0 1  2.0  2.0
0 2  3.0  1.0
1 3  3.0  2.0
1 4  1.0  0.0
2 3  1.0  0.0
2 4  1.0  1.0
3 5  2.0  2.0
4 5  3.0  1.0

residual networkdrawing with !ow !ow representation

2.0

1.0

2.0

1.0

1.0
2.0

1.0
2.0

2.0 1.0

1.0

Finding an augmenting path is equivalent to finding a path in residual digraph.

Residual digraph. Another view of a flow network



53

Residual network implementation

public class FlowEdge
{
    private final int v;             // from
    private final int w;             // to 
    private final double capacity;   // capacity
    private double flow;             // flow

    public double residualCapacityTo(int vertex)
    {
        if      (vertex == v) return flow;
        else if (vertex == w) return capacity - flow;
        else throw new RuntimeException("Illegal endpoint");
    }

    public void addResidualFlowTo(int vertex, double delta)
    {
        if      (vertex == v) flow -= delta;
        else if (vertex == w) flow += delta;
        else throw new RuntimeException("Illegal endpoint");
    }

}  

v
w

v
w

flow

capacity - flow



54

Ford-Fulkerson: Java implementation

public class FordFulkerson
{
   private boolean[] marked;  // true if s->v path in residual digraph   
   private FlowEdge[] edgeTo; // last edge on s->v path
   private double value;  

   public FordFulkerson(FlowNetwork G, int s, int t)
   {
      value = 0;
      while (hasAugmentingPath(G, s, t))
      {

         double bottle = Double.POSITIVE_INFINITY;
         for (int v = t; v != s; v = edgeTo[v].other(v))
             bottle = Math.min(bottle, edgeTo[v].residualCapacityTo(v));

         for (int v = t; v != s; v = edgeTo[v].other(v))
             edgeTo[v].addResidualFlowTo(v, bottle); 

         value += bottle;
      }
   }

   public double hasAugmentingPath(FlowNetwork G, int s, int t)
   {  /* See next slide. */  }

   public double value()
   {  return value;  }

   public boolean inCut(int v)
   {  return marked[v];  }

compute 
bottleneck 
capacity

augment 
flow



55

Finding a shortest augmenting path (cf. breadth-first search)

private boolean hasAugmentingPath(FlowNetwork G, int s, int t)
{
    edgeTo = new FlowEdge[G.V()];
    marked = new boolean[G.V()];

    Queue<Integer> q = new Queue<Integer>();
    q.enqueue(s);
    marked[s] = true;
    while (!q.isEmpty())
    {
        int v = q.dequeue();

        for (FlowEdge e : G.adj(v))
        {
            int w = e.other(v);
            if (e.residualCapacityTo(w) > 0 && !marked[w])
            {
               edgeTo[w] = e;
               marked[w] = true;
               q.enqueue(w);
            }
        }
    }

    return marked[t];

}

save last edge on path,
mark w,

and add w to the queue

is there a path from s to w
in the residual graph?



Analysis of Ford-Fulkerson (shortest augmenting path)

Thm. Ford-Fulkerson (shortest augmenting path) uses at most EV/2 
augmenting paths.

Pf. [see text]

56

Cor. Ford-Fulkerson (shortest augmenting path) examines at most E2V/2 edges.

Pf. Each BFS examines at most E edges.

Shortest augmenting paths in a larger !ow network



Summary: possible strategies for augmenting paths

All easy to implement

• Define residual graph

• Find paths in residual graph.

Shortest path: Use BFS.
DFS path: Use DFS.
Fattest path: Use a PQ, ala shortest paths.
Random path: Use a randomized queue.

Performance depends on network properties

• how many augmenting paths?

• how many edges examined to find each augmenting path?

57



Analysis of maxflow algorithms

(Yet another) holy grail for mathematicians/theoretical computer scientists.

Warning: Worst-case order-of-growth analysis is generally not useful 
               for predicting or comparing algorithm performance in practice.

58

year method worst case
order of growth discovered by

1951 simplex O ( E3 U ) Dantzig

1955 augmenting paths O ( E2 U ) Ford-Fulkerson

1970 shortest aug path O ( E3 ) Edmunds-Karp

1970 fattest aug path O ( E2 log E log U ) Edmunds-Karp

1973 capacity scaling O ( E2 log U ) Dinitz-Gabow

1983 preflow-push O ( E2 log E ) Sleator-Tarjan

1997 length function O ( E3/2 ) Goldberg-Rao

2011 electrical flow O ( E4/3 ) *
Christiano-Kelner-Madry-

Spielman-Teng

? O ( E )
~ ignore log factors
* approximation

~

~

For sparse graphs with E edges, integer capacities (max U).



O-notation considered harmful (Lecture 2 revisited)

Facebook and Google: Huge sparse graphs are of interest (1010 – 1011 edges).

Time to solve maxflow:
      Algorithm A: O(E3/2).
      Algorithm B: O(E4/3).

Q. Which algorithm should Facebook and Google be interested in?

59

A. Who knows? These mathematical results are not relevant!

• Upper bound on worst case [may never take stated time].

• Unknown constants [most published maxflow algs never are implemented].

• E1/6 savings likely offset by ignored log factors [40-50 vs. 30-40+].

• Performance for practical graph models likely unknown [and not studied].

• Approximation algorithm [cost of accuracy may be too high].

~

~ *

~ ignore log factors
* approximation algorithm



60

O-notation considered harmful 

Source? Schrijver’s 
authoritative survey 
attributes T. E. Harris 
(author of the Soviet 
rail network report) as 
the first to formulate 
the problem in 1954.



61

The algorithm also computes an 
approximation to the maxflow, not the 
actual maxflow, and slows down as the 
approximation improves.

O-notation considered harmful 

Moreover,  these mathematical results are 
approximate, ignoring factors that could run 
into the hundreds for the internet graph. 

if the constant-factor costs were the same for 
both algorithms and if the internet were the 
worst case for both algorithms, which there is 
no reason to believe.

The algorithm has not been implemented or 
tested on graphs the size of the internet (or 
at all, for that matter). The algorithm would 
have to be implemented and tested before 
any claim to immediate practicality could be 
assessed. 

It is likely that simpler approaches involving 
parallelism will be used in practice.

up to 100



Summary

Minimum st-cut (mincut) problem. Find an st-cut of minimal weight. 

Maximum st-flow (maxflow) problem: Assign flows to edges that

• Maintain local equilibrium:  inflow = outflow at every vertex (except s and t).

• Maximize total flow into t.

Proven successful approaches.

• Ford-Fulkerson (various augmenting-path strategies).

• Preflow-push (various versions).

Open research challenges.  

• Practice: Solve maxflow/mincut problems for real networks in linear time.

• Theory: Prove it for worst-case networks.

62



63

‣ APIs
‣ Ford Fulkerson
‣ implementations
‣ applications



Maxflow / mincut applications

Maxflow/mincut is a widely applicable problem-solving model

• Data mining. 

• Open-pit mining.  

• Project selection. 

• Image processing. 

• Airline scheduling. 

• Distributed computing. 

• Egalitarian stable matching. 

• Security of statistical data. 

• Many many more . . .

64

• Network connectivity/reliability. 

• Bipartite matching. 

• Baseball elimination.



Bipartite matching problem

65

Alice
     Adobe
     Amazon
     Facebook
Bob
     Adobe
     Amazon
     Yahoo
Carol
     Facebook
     Google
     IBM
Dave
     Adobe
     Amazon
Eliza
     Google
     IBM
     Yahoo
Frank
     IBM
     Yahoo

Adobe
     Alice
     Bob
     Dave
Amazon
     Alice
     Bob
     Dave
Facebook
     Alice
     Carol
Google
     Carol
     Eliza
IBM
     Carol
     Eliza
     Frank
Yahoo
     Bob
     Eliza
     Frank

1

2

3

4

5

6

7

8

9

10

11

12

N students apply for N jobs

                                    Each get several offers

Is there a way to match all student to jobs?



Network flow formulation of bipartite matching

To formulate a bipartite matching problem as a network flow problem

• create s, t, one vertex for each student, and one vertex for each job

• add edge from s to each student

• add edge from each job to t

• add edge from student to each job offered

• give all edges capacity 1

66

77 88 99 1010 1111 1212

11

ss

ss

22 33 44 55 66



Bipartite matching problem formulated as a network flow problem

67

77 88 99 1010 1111 1212

11

ss

ss

22 33 44 55 66

Alice
     Adobe
     Amazon
     Facebook
Bob
     Adobe
     Amazon
     Yahoo
Carol
     Facebook
     Google
     IBM
Dave
     Adobe
     Amazon
Eliza
     Google
     IBM
     Yahoo
Frank
     IBM
     Yahoo

Adobe
     Alice
     Bob
     Dave
Amazon
     Alice
     Bob
     Dave
Facebook
     Alice
     Carol
Google
     Carol
     Eliza
IBM
     Carol
     Eliza
     Frank
Yahoo
     Bob
     Eliza
     Frank

1

2

3

4

5

6

7

8

9

10

11

12

1-1 correspondence between maxflow solution and bipartite matching solution



Maxflow solution (FF shortest augmenting path)

68



Maxflow solution (FF shortest augmenting path)

69



Maxflow solution (FF shortest augmenting path)

70



Maxflow solution (FF shortest augmenting path)

71



Maxflow solution (FF shortest augmenting path)

72

path with 
back edges



Maxflow solution (FF shortest augmenting path)

73

path with 
back edges



Maxflow solution 

74

ss

tt

77 88 99 1010 1111 1212

11

ss

ss

22 33 44 55 66



Maxflow solution corresponds directly to matching solution

75

Alice
Bob
Carol
Dave
Eliza
Frank

Amazon
Yahoo
Facebook
Adobe
Google
IBM

ss

tt

77 88 99 1010 1111 1212

11

ss

ss

22 33 44 55 66

Alice
     Adobe
     Amazon
     Facebook
Bob
     Adobe
     Amazon
     Yahoo
Carol
     Facebook
     Google
     IBM
Dave
     Adobe
     Amazon
Eliza
     Google
     IBM
     Yahoo
Frank
     IBM
     Yahoo

Adobe
     Alice
     Bob
     Dave
Amazon
     Alice
     Bob
     Dave
Facebook
     Alice
     Carol
Google
     Carol
     Eliza
IBM
     Carol
     Eliza
     Frank
Yahoo
     Bob
     Eliza
     Frank

1

2

3

4

5

6

7

8

9

10

11

12



Overview (summary)

Given. A weighted digraph, 
           source s and target t. 

Minimum st-cut (mincut) problem. Find an st-cut of minimal weight. 

Maximum st-flow (maxflow) problem: Assign flows to edges that

• Maintain local equilibrium:  inflow = outflow at every vertex (except s and t).

• Maximize total flow into t.

Remarkable fact.  These two problems are equivalent!

• Two very rich algorithmic problems

• Cornerstone problems in combinatorial optimisation

• Beautiful mathematical duality

• Still much to be learned!
76


