4.4 Shortest Paths

- edge-weighted digraph API
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights

Continental U.S. routes (August 2010)

Shortest outgoing routes on the Internet from Lumeta headquarters

http://www.continental.com/web/en-US/content/travel/routes

map by Lumeta Corporation, March 8, 2006
Shortest paths in a weighted digraph

Given an edge-weighted digraph, find the shortest (directed) path from s to t.

edge-weighted digraph

Shortest path from 0 to 6

• Edge-weighted digraph API
• Shortest paths properties
• Dijkstra's algorithm
• Edge-weighted DAGs
• Negative weights

Shortest path variants

Which vertices?
- Source-sink: from one vertex to another.
- Single source: from one vertex to every other.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?
- Nonnegative weights.
- Arbitrary weights.
- Euclidean weights.

Cycles?
- No cycles.
- No "negative cycles."

Simplifying assumption. There exists a shortest path from s to each vertex v.

Shortest path applications

- Map routing.
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Subroutine in advanced algorithms.
- Routing of telecommunications messages.
- Approximating piecewise linear functions.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Weighted directed edge API

public class DirectedEdge

DirectedEdge(int v, int w, double weight)

int from() vertex v
int to() vertex w
double weight() weight of this edge
String toString() string representation

Idiom for processing an edge e: int v = e.from(), w = e.to();

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge

private final int v, w;
private final double weight;

public DirectedEdge(int v, int w, double weight)
{
 this.v = v;
 this.w = w;
 this.weight = weight;
}

d fish public int from()
{ return v; }

d fish public int to()
{ return w; }

d fish public double weight()
{ return weight; }

Edge-weighted digraph API

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V)

EdgeWeightedDigraph(In in)

void addEdge(DirectedEdge e)

Iterable<DirectedEdge> adj(int v)

int V()

int E()

Iterable<DirectedEdge> edges()

String toString()

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation
Edge-weighted digraph: adjacency-lists implementation in Java

Same as `EdgeWeightedGraph` except replace `Graph` with `Digraph`.

```java
public class EdgeWeightedDigraph {
    private final int V;
    private final Bag<Edge>[] adj;

    public EdgeWeightedDigraph(int V) {
        this.V = V;
        adj = (Bag<DirectedEdge>[])(new Bag[V]);
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e) {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v) {  return adj[v];  }
}
```

Single-source shortest paths API

Goal. Find the shortest path from `s` to every other vertex.

```java
public class SP {
    SP(EdgeWeightedDigraph G, int s) {
        shortest paths from `s` in graph `G`
        double distTo(int v) length of shortest path from `s` to `v`
        Iterable<DirectedEdge> pathTo(int v) shortest path from `s` to `v`
        boolean hasPathTo(int v) is there a path from `s` to `v`?
    }

    public static double[] sp(EdgeWeightedDigraph G, int s) {
        shortest paths from `s` in graph `G`
        double[] distTo = new double[G.V()];
        boolean[] hasPathTo = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0;
        for (int k = 0; k < G.V(); k++)
            for (DirectedEdge e : G.adj(k))
                if (distTo[e.from()] + e.weight() < distTo[e.to()])
                    distTo[e.to()] = distTo[e.from()] + e.weight();
        return distTo;
    }
}
```

```
% java SP tinyEWD.txt 0
0 to 0 (0.00): 0 to 1 (1.05): 0->4 0.38  4->5 0.35  5->1 0.32
0 to 2 (0.26): 0 to 3 (0.99): 2->7 0.34  7->3 0.39
0 to 4 (0.38): 0 to 5 (0.73): 4->5 0.35
0 to 6 (1.51): 0 to 7 (0.60): 2->7 0.34
```

Similar to edge-weighted undirected graph but only add edge to `v`'s adjacency list

This page contains code examples for implementing an edge-weighted digraph in Java, and a class `SP` for finding single-source shortest paths. The code shows how to add edges and retrieve adjacent edges, and the `SP` class demonstrates how to calculate shortest paths from a given source vertex to all other vertices in the graph.
Data structures for single-source shortest paths

Goal. Find the shortest path from \(s \) to every other vertex.

Observation. A shortest path tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:
- \(\text{distTo}[v] \) is length of shortest path from \(s \) to \(v \).
- \(\text{edgeTo}[v] \) is last edge on shortest path from \(s \) to \(v \).

<table>
<thead>
<tr>
<th>(v)</th>
<th>(\text{edgeTo}[v])</th>
<th>(\text{distTo}[v])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>null</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5-1</td>
<td>1.05</td>
</tr>
<tr>
<td>2</td>
<td>0-2</td>
<td>0.26</td>
</tr>
<tr>
<td>3</td>
<td>7-3</td>
<td>0.37</td>
</tr>
<tr>
<td>4</td>
<td>0-4</td>
<td>0.38</td>
</tr>
<tr>
<td>5</td>
<td>4-5</td>
<td>0.73</td>
</tr>
<tr>
<td>6</td>
<td>3-6</td>
<td>1.49</td>
</tr>
<tr>
<td>7</td>
<td>2-7</td>
<td>0.34</td>
</tr>
</tbody>
</table>

![Shortest path tree from 0](image)

Shortest-paths optimality conditions

Proposition. Let \(G \) be an edge-weighted digraph. Then \(\text{distTo}[v] \) are the shortest path distances from \(s \) iff:
- For each vertex \(v \), \(\text{distTo}[v] \) is the length of some path from \(s \) to \(v \).
- For each edge \(e = v \rightarrow w \), \(\text{distTo}[w] \leq \text{distTo}[v] + e \cdot \text{weight}() \).

Pf. (necessary)
- Suppose that \(\text{distTo}[w] > \text{distTo}[v] + e \cdot \text{weight}() \) for some edge \(e = v \rightarrow w \).
- Then, \(e \) gives a path from \(s \) to \(w \) through \(v \) of length less than \(\text{distTo}[w] \).
Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph. Then $\text{distTo}[v]$ are the shortest path distances from s iff:

- For each vertex v, $\text{distTo}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

Pf. [sufficient]

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_k = w$ is a shortest path from s to w.
- Then, $\text{distTo}[v_k] = \text{distTo}[v_{k-1}] + e_k.\text{weight}()$
- $\text{distTo}[v_{k-1}] = \text{distTo}[v_{k-2}] + e_{k-1}.\text{weight}()$
- \ldots
- $\text{distTo}[v_1] = \text{distTo}[v_0] + e_1.\text{weight}()$

- Collapsing these inequalities and eliminate $\text{distTo}[v_0] = \text{distTo}[s] = 0$:

 $\text{distTo}[w] = \text{distTo}[v_k] = e_k.\text{weight}() + e_{k-1}.\text{weight}() + \ldots + e_1.\text{weight}()$

- Thus, $\text{distTo}[w]$ is the weight of shortest path to w. $

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

- Initialize $\text{distTo}[s] = 0$ and $\text{distTo}[v] = \infty$ for all other vertices.
- Repeat until optimality conditions are satisfied:
 - Relax any edge.

Proposition. Generic algorithm computes SPT from s, assuming SPT exists.

Pf sketch.

- Throughout algorithm, $\text{distTo}[v]$ is the length of a simple path from s to v and $\text{edgeTo}[v]$ is last edge on path.
- Each successful relaxation decreases $\text{distTo}[v]$ for some v.
- The entry $\text{distTo}[v]$ can decrease at most a finite number of times. $

Efficient implementations. How to choose which edge to relax?

Ex 1. Dijkstra’s algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman-Ford algorithm (no negative cycles).
Edsger W. Dijkstra: select quotes

“Do only what only you can do.”

“In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind.”

“The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.”

“It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.”

“APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”

Dijkstra’s algorithm

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $distTo[v]$ value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra’s algorithm visualization

Object-oriented programming is an exceptionally bad idea which could only have originated in California.

-- Edsger Dijkstra
Dijkstra's algorithm visualization

Shortest path trees

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm: correctness proof

Proposition. Dijkstra’s algorithm computes SPT in any edge-weighted digraph with nonnegative weights.

Pf.

- Each edge \(e = v \rightarrow w \) is relaxed exactly once (when \(v \) is relaxed), leaving \(\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}() \).
- Inequality holds until algorithm terminates because:
 - \(\text{distTo}[w] \) cannot increase
 - \(\text{distTo}[v] \) will not change

- Thus, upon termination, shortest-paths optimality conditions hold.

Dijkstra's algorithm: Java implementation

```java
public class DijkstraSP {
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;

    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        pq.insert(s, 0.0);
        while (!pq.isEmpty()) {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
}
```
Dijkstra’s algorithm: Java implementation

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
        else pq.insert (w, distTo[w]);
    }
}
```

Dijkstra’s algorithm: which priority queue?

Depends on PQ implementation: \(I \) insert, \(V \) delete-min, \(E \) decrease-key.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>1</td>
<td>V</td>
<td>1</td>
<td>V^2</td>
</tr>
<tr>
<td>binary heap</td>
<td>(\log V)</td>
<td>(\log V)</td>
<td>(\log V)</td>
<td>(E \log V)</td>
</tr>
<tr>
<td>d-way heap</td>
<td>(d \log V)</td>
<td>(d \log V)</td>
<td>(d \log V)</td>
<td>(E \log d \log V)</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>1</td>
<td>(\log V)</td>
<td>1</td>
<td>(E + V \log V)</td>
</tr>
</tbody>
</table>

Bottom line:
- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- d-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Priority-first search

Insight. Four of our graph-search methods are the same algorithm!
- Maintain a set of explored vertices \(S \).
- Grow \(S \) by exploring edges with exactly one endpoint leaving \(S \).

DFS. Take edge from vertex which was discovered most recently.
BFS. Take edge from vertex which was discovered least recently.
Prim. Take edge of minimum weight.
Dijkstra. Take edge to vertex that is closest to \(S \).

Challenge. Express this insight in reusable Java code.
Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!

Shortest paths in edge-weighted DAGs

Topological sort algorithm.
• Consider vertices in topologically order.
• Relax all edges incident from vertex.

Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to $E + V$.

Pf.
• Each edge $e = v \rightarrow w$ is relaxed exactly once (when v is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e.weight()$.
• Inequality holds until algorithm terminates because:
 - $\text{distTo}[w]$ cannot increase
 - $\text{distTo}[v]$ will not change
• Thus, upon termination, shortest-paths optimality conditions hold.
Formulate as a shortest paths problem in edge-weighted DAGs.
• Negate all weights.
• Find shortest paths.
• Negate weights in result.

Key point. Topological sort algorithm works even with negative edge weights.

Critical path method

CPM. To solve a parallel job-scheduling problem, create acyclic edge-weighted digraph:
• Source and sink vertices.
• Two vertices (begin and end) for each job.
• Three edges for each job.
 - begin to end (weighted by duration)
 - source to begin (0 weight)
 - end to sink (0 weight)

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time while respecting the constraints.
Deadlines. Add extra constraints to the parallel job-scheduling problem. Ex. “Job 2 must start no later than 12 time units after job 4 starts.”

Consequences.
- Corresponding shortest-paths problem has cycles (and negative weights).
- Possibility of infeasible problem (negative cycles).

Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

Proposition. A SPT exists iff no negative cycles.

Assuming all vertices reachable from s
Proposition. Dynamic programming algorithm computes SPT in any edge-weighted digraph with no negative cycles in time proportional to \(E \cdot V \).

Pf idea. After phase \(i \), found shortest path containing at most \(i \) edges.

```java
for (int i = 1; i <= G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
            relax(e);
```

Bellman-Ford algorithm

Observation. If \(\text{distTo}[v] \) does not change during phase \(i \), no need to relax any edge incident from \(v \) in phase \(i + 1 \).

FIFO implementation. Maintain queue of vertices whose \(\text{distTo}[v] \) changed.

Overall effect.
- The running time is still proportional to \(E \cdot V \) in worst case.
- But much faster than that in practice.

Bellman-Ford algorithm trace

```java
public class BellmanFordSP
{
    private double[] distTo;
    private DirectedEdge[] edgeTo;
    private int[] onQ;
    private Queue<Integer> queue;

    public BellmanFordSP(EdgeWeightedDigraph G, int s)
    {
        distTo = new double[G.V()];
        edgeTo = new DirectedEdge[G.V()];
        onQ = new int[G.V()];
        queue = new Queue<Integer>();

        for (int v = 0; v < V; v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        queue.enqueue(s);

        while (!queue.isEmpty())
        {
            int v = queue.dequeue();
            onQ[v] = false;
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
}
```

Private void relax(DirectedEdge e)

```java
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
        if (!onQ[w])
        {
            queue.enqueue(w);
            onQ[w] = true;
        }
    }
}
```
Bellman-Ford algorithm visualization

Finding a negative cycle

Negative cycle. Add two method to the API for shortest-path:

- `boolean hasNegativeCycle()` — is there a negative cycle?
- `Iterable <DirectedEdge> negativeCycle()` — negative cycle reachable from `s`

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating `distTo[]` and `edgeTo[]` entries of vertices in the cycle.

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating `distTo[]` and `edgeTo[]` entries of vertices in the cycle.

Remark 1. Directed cycles make the problem harder.
Remark 2. Negative weights make the problem harder.
Remark 3. Negative cycles makes the problem intractable.

Single source shortest-paths implementation: cost summary

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Restriction</th>
<th>Typical Case</th>
<th>Worst Case</th>
<th>Extra Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topological sort</td>
<td>No directed cycles</td>
<td>$E + V$</td>
<td>$E + V$</td>
<td>V</td>
</tr>
<tr>
<td>Dijkstra (binary heap)</td>
<td>No negative weights</td>
<td>$E \log V$</td>
<td>$E \log V$</td>
<td>V</td>
</tr>
<tr>
<td>Dynamic programming</td>
<td>No negative cycles</td>
<td>$E V$</td>
<td>$E V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman-Ford</td>
<td></td>
<td>$E + V$</td>
<td>$E V$</td>
<td>V</td>
</tr>
</tbody>
</table>

In practice. Check for negative cycles more frequently.
Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

<table>
<thead>
<tr>
<th>Currency</th>
<th>USD</th>
<th>EUR</th>
<th>GBP</th>
<th>CHF</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>1.00</td>
<td>0.741</td>
<td>0.657</td>
<td>1.061</td>
<td>1.011</td>
</tr>
<tr>
<td>EUR</td>
<td>1.350</td>
<td>1.00</td>
<td>0.888</td>
<td>1.433</td>
<td>1.366</td>
</tr>
<tr>
<td>GBP</td>
<td>1.521</td>
<td>1.126</td>
<td>1.00</td>
<td>1.614</td>
<td>1.538</td>
</tr>
<tr>
<td>CHF</td>
<td>0.943</td>
<td>0.698</td>
<td>0.620</td>
<td>1.00</td>
<td>0.953</td>
</tr>
<tr>
<td>CAD</td>
<td>0.995</td>
<td>0.732</td>
<td>0.650</td>
<td>1.049</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Ex. $1,000 ⇒ 741 Euros ⇒ 1,012.206 Canadian dollars ⇒ $1,007.14497.

Challenge. Express as a negative cycle detection problem.

Model as a negative cycle detection problem by taking logs.
- Let weight of edge $v \rightarrow w$ be $-\ln$ (exchange rate from currency v to w).
- Multiplication turns to addition; >1 turns to <0.
- Find a directed cycle whose sum of edge weights is <0 (negative cycle).

Remark. Fastest algorithm is extraordinarily valuable!