4.3 Minimum Spanning Trees

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

Brute force. Try all spanning trees?

Applications

MST is fundamental problem with diverse applications.

- Cluster analysis.
- Max bottleneck paths.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Find road networks in satellite and aerial imagery.
- Reducing data storage in sequencing amino acids in a protein.
- Model locality of particle interactions in turbulent fluid flows.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
- Network design (communication, electrical, hydraulic, cable, computer, road).

Network design

MST of bicycle routes in North Seattle

http://www.flickr.com/photos/ewedistrict/21980840

Medical image processing

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html
Genetic research

MST of tissue relationships measured by gene expression correlation coefficient

http://riodb.ibase.aist.go.jp/CELLPEDIA

Weighted edge API

Edge abstraction needed for weighted edges.

```java
public class Edge implements Comparable<Edge> {
    private final int v, w;
    private final double weight;

    public Edge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int either() {
        return v;
    }

    public int other(int v) {
        if (vertex == v) return w;
        else return v;
    }

    public int compareTo(Edge that) {
        if (this.weight < that.weight) return -1;
        else if (this.weight > that.weight) return +1;
        else return 0;
    }

    public double weight() {
        return weight;
    }

    public String toString() {
        return String.valueOf(weight);
    }
}
```

Weighted edge: Java implementation

Idiom for processing an edge e: int v = e.either(), w = e.other(v);
Conventions. Allow self-loops and parallel edges.

Edge-weighted graph API

```java
public class EdgeWeightedGraph
{
    private final int V;
    private final Bag<Edge>[] adj;

    public EdgeWeightedGraph(int V)
    {
        this.V = V;
        adj = (Bag<Edge>[])(new Bag[V]);
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Edge>();
    }

    public void addEdge(Edge e)
    {
        int v = e.either(), w = e.other(v);
        adj[v].add(e);
        adj[w].add(e);
    }

    public Iterable<Edge> adj(int v)
    { return adj[v]; }

    public Iterable<Edge> edges()
    { return all of this graph's edges.
    }

    public int V()
    { return number of vertices }

    public int E()
    { return number of edges }

    public String toString()
    { return string representation }
}
```

Edge-weighted graph: adjacency-lists implementation

```java
public class EdgeWeightedGraph
{
    private final int V;
    private final Bag<Edge>[] adj;

    public EdgeWeightedGraph(int V)
    {
        this.V = V;
        adj = (Bag<Edge>[])(new Bag[V]);
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Edge>();
    }

    public void addEdge(Edge e)
    {
        int v = e.either(), w = e.other(v);
        adj[v].add(e);
        adj[w].add(e);
    }

    public Iterable<Edge> adj(int v)
    { return adj[v]; }

    public Iterable<Edge> edges()
    { return all of this graph's edges.
    }

    public int V()
    { return number of vertices }

    public int E()
    { return number of edges }

    public String toString()
    { return string representation }
}
```

Minimum spanning tree API

```java
public class MST
{
    public MST(EdgeWeightedGraph G)
    { constructor
    }

    public Iterable<Edge> edges()
    { edges in MST
    }

    public double weight()
    { weight of MST
    }
}
```

Q. How to represent the MST?

```
% java MST tinyEWG.txt
0-7 0.16 1-7 0.19 0-2 0.26 2-3 0.27 5-7 0.28 4-5 0.35 6-2 0.40 1.81
```
Minimum spanning tree API

Q. How to represent the MST?

```java
public class MST
{
    MST(EdgeWeightedGraph G)
    constructor
    Iterable<Edge> edges()
    edges in MST
    double weight()
    weight of MST
}
```

```java
public static void main(String[] args) {
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    MST mst = new MST(G);
    for (Edge e : mst.edges())
        StdOut.println(e);
    StdOut.println(mst.weight());
}
```

% java MST tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81

Cut property

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.
A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Cut property: correctness proof

Simplifying assumptions. Edge weights are distinct; graph is connected.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.
A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

Pf. Let \(e \) be the min-weight crossing edge in cut.
- Suppose \(e \) is not in the MST.
- Adding \(e \) to the MST creates a cycle.
- Some other edge \(f \) in cycle must be a crossing edge.
- Removing \(f \) and adding \(e \) is also a spanning tree.
- Since weight of \(e \) is less than the weight of \(f \), that spanning tree is lower weight.
- Contradiction. ♦
Proposition. The following algorithm computes the MST:

- Start with all edges colored gray.
- Find a cut with no black crossing edges, and color its min-weight edge black.
- Continue until \(V - 1 \) edges are colored black.

Efficient implementations. How to choose cut? How to find min-weight edge?

- Ex 1. Kruskal’s algorithm. [stay tuned]
- Ex 2. Prim’s algorithm. [stay tuned]
- Ex 3. Borůvka’s algorithm.

Q. What if edge weights are not all distinct?

A. Greedy MST algorithm still correct if equal weights are present!

(our correctness proof fails, but that can be fixed)

Q. What if graph is not connected?

A. Compute minimum spanning forest = MST of each component.
Kruskal’s algorithm

Kruskal’s algorithm. [Kruskal 1956] Consider edges in ascending order of weight. Add the next edge to the tree \(T \) unless doing so would create a cycle.
Kruskal’s algorithm: proof of correctness

Proposition. Kruskal’s algorithm computes the MST.

Pf.

Kruskal’s algorithm is a special case of the greedy MST algorithm.

- Suppose Kruskal’s algorithm colors edge $e = v \rightarrow w$ black.
- Cut = set of vertices connected to v (or to w) in tree T.
- No crossing edge is black.
- No crossing edge has lower weight. Why?

Kruskal’s algorithm: implementation challenge

Challenge. Would adding edge $v \rightarrow w$ to tree T create a cycle? If not, add it.

How difficult?

- $O(E + V)$ time.
- $O(V)$ time.
- $O(E)$ time.
- $O(V)$ time.
- $O(\log V)$ time.
- $O(\log^* V)$ time.
- Constant time.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding $v \rightarrow w$ would create a cycle.
- To add $v \rightarrow w$ to T, merge sets containing v and w.

Case 1: adding $v \rightarrow w$ creates a cycle

Case 2: add $v \rightarrow w$ to T and merge sets containing v and w
Kruskal’s algorithm: Java implementation

```java
public class KruskalMST {
    private Queue<Edge> mst;
    private MinPQ<Edge> pq;
    public KruskalMST(EdgeWeightedGraph G) {
        mst = new Queue<Edge>();
        pq = new MinPQ<Edge>(G.edges());
        UnionFind uf = new UnionFind(G.V());
        while (!pq.isEmpty() && mst.size() < G.V()-1) {
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
            if (!uf.find(v, w)) {
                uf.union(v, w);
                mst.enqueue(e);
            }
        }
    }
    public Iterable<Edge> edges() {
        return mst;
    }
}
```

Kruskal’s algorithm running time

Proposition. Kruskal’s algorithm computes MST in $O(E \log E)$ time.

Pf.

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>time per op</th>
</tr>
</thead>
<tbody>
<tr>
<td>build pq</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>del min</td>
<td>E</td>
<td>$\log E$</td>
</tr>
<tr>
<td>union</td>
<td>V</td>
<td>$\log^* V$ †</td>
</tr>
<tr>
<td>find</td>
<td>E</td>
<td>$\log^* V$ †</td>
</tr>
</tbody>
</table>

† amortized bound using weighted quick union with path compression

Remark. If edges are already sorted, order of growth is $E \log^* V$.

Prim’s algorithm example

Prim’s algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959] Start with vertex 0 and greedily grow tree T. At each step, add to T the min weight edge with exactly one endpoint in T.
Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?
- $O(E)$ time. try all edges
- $O(V)$ time.
- $O(\log E)$ time. use a priority queue!
- $O(\log^* E)$ time.
- Constant time.

Proposition. Prim’s algorithm computes the MST.

Pf. Prim’s algorithm is a special case of the greedy MST algorithm.
- Suppose edge $e = \min$ weight edge connecting a vertex on the tree to a vertex not on the tree.
- Cut = set of vertices connected on tree.
- No crossing edge is black.
- No crossing edge has lower weight.
Prim's algorithm: lazy implementation

Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
- Delete min to determine next edge $e = v \xrightarrow{} w$ to add to T.
- Disregard if both endpoints v and w are in T.
- Otherwise, let v be vertex not in T:
 - add to PQ any edge incident to v (assuming other endpoint not in T)
 - add v to T

Prim's algorithm: lazy implementation

For each edge $e = v \xrightarrow{} w$ from PQ if w not already in T:

add v to T.

assumed G is connected

repeatedly delete the min weight edge $e = v \xrightarrow{} w$ from PQ

ignore if both endpoints in T

add edge to tree

add v or w to tree

```java
public class LazyPrimMST
{
private boolean[] marked; // MST vertices
private Queue<Edge> mat; // MST edges
private MinPQ<Edge> pq; // PQ of edges

public LazyPrimMST(WeightedGraph G)
{
    pq = new MinPQ<Edge>();
    mat = new Queue<Edge>();
    marked = new boolean[G.V()];
    visit(G, 0);
    while (!pq.isEmpty())
    {
        Edge e = pq.delMin();
        int v = e.either(), w = e.other(v);
        if (marked[v] && marked[w]) continue;
        mat.enqueue(e);
        if (!marked[v]) visit(G, v);
        if (!marked[w]) visit(G, w);
    }
}

public Iterable<Edge> mst()
{
    return mat;
}
}
```

Use $\text{MinPQ}:$ key $= \text{edge}$, prioritized by weight.
(lazy version leaves some obsolete edges on the PQ)

Prim's algorithm example: lazy implementation
Proposition. Lazy Prim’s algorithm computes the MST in time proportional to \(E \log E \) in the worst case.

Pf.

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete min</td>
<td>(E)</td>
<td>(\log E)</td>
</tr>
<tr>
<td>insert</td>
<td>(E)</td>
<td>(\log E)</td>
</tr>
</tbody>
</table>

Indexed priority queue

Associate an index between 0 and \(N - 1 \) with each key in a priority queue.

- Client can insert and delete-the-minimum.
- Client can change the key by specifying the index.

Implementation.

- Start with same code as `MinPQ`.
- Maintain parallel arrays `keys[]`, `pq[]`, and `qp[]` so that:
 - `keys[i]` is the priority of \(i \)
 - `pq[i]` is the index of the key in heap position \(i \)
 - `qp[i]` is the heap position of the key with index \(i \)
- Use `swim(qp[k])` implement `decreaseKey(k, key)`.

Indexed priority queue implementation

```java
public class IndexMinPQ<Key extends Comparable<Key>>
{
    public IndexMinPQ(int N)
    {
        // create indexed priority queue with indices 0, 1, ..., N-1
    }

    void insert(int k, Key key)
    {
        // associate key with index k
    }

    void decreaseKey(int k, Key key)
    {
        // decrease the key associated with index k
    }

    boolean contains()
    {
        // is k an index on the priority queue?
    }

    int delMin()
    {
        // remove a minimal key and return its associated index
    }

    boolean isEmpty()
    {
        // is the priority queue empty?
    }

    int size()
    {
        // number of entries in the priority queue
    }
}
```

Eager solution. Maintain a PQ of vertices connected by an edge to \(T \), where priority of vertex \(v = \) weight of shortest edge connecting \(v \) to \(T \).

- Delete min vertex \(v \) and add its associated edge \(e = v \rightarrow w \) to \(T \).
- Update PQ by considering all edges \(e = v \rightarrow x \) incident to \(v \)
 - ignore if \(x \) is already in \(T \)
 - add \(x \) to PQ if not already on it
 - decrease priority of \(x \) if \(v \rightarrow x \) becomes shortest edge connecting \(x \) to \(T \)

Challenge. Find min weight edge with exactly one endpoint in \(T \).
Prim's algorithm example: eager implementation

Use **IndexMinPQ**: key = edge weight, index = vertex.
(eager version has at most one PQ entry per vertex)

Prim's algorithm: running time

Depends on PQ implementation: \(V \) insert, \(V \) delete-min, \(E \) decrease-key.

<table>
<thead>
<tr>
<th>PQ implementation</th>
<th>insert</th>
<th>delete-min</th>
<th>decrease-key</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>1</td>
<td>(V)</td>
<td>1</td>
<td>(V^2)</td>
</tr>
<tr>
<td>binary heap</td>
<td>(\log V)</td>
<td>(\log V)</td>
<td>(\log V)</td>
<td>(E \log V)</td>
</tr>
<tr>
<td>d-way heap (Johnson 1975)</td>
<td>(d \log_2 V)</td>
<td>(d \log_2 V)</td>
<td>(\log_2 V)</td>
<td>(E \log_2 V)</td>
</tr>
<tr>
<td>Fibonacci heap</td>
<td>(1) (^*)</td>
<td>(\log V) (^*)</td>
<td>(1) (^*)</td>
<td>(E + V \log V)</td>
</tr>
</tbody>
</table>

\(^* \) amortized

Bottom line.
- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

Does a linear-time MST algorithm exist?

<table>
<thead>
<tr>
<th>year</th>
<th>worst case</th>
<th>discovered by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>(E \log \log V)</td>
<td>Yao</td>
</tr>
<tr>
<td>1976</td>
<td>(E \log \log V)</td>
<td>Cheriton-Tarjan</td>
</tr>
<tr>
<td>1984</td>
<td>(E \log^* V), (E + V \log V)</td>
<td>Fredman-Tarjan</td>
</tr>
<tr>
<td>1986</td>
<td>(E \log (\log^* V))</td>
<td>Gabow-Galil-Spencer-Tarjan</td>
</tr>
<tr>
<td>1997</td>
<td>(E \alpha(V) \log \alpha(V))</td>
<td>Chazelle</td>
</tr>
<tr>
<td>2000</td>
<td>(E \alpha(V))</td>
<td>Chazelle</td>
</tr>
<tr>
<td>2002</td>
<td>optimal</td>
<td>Pettie-Ramachandran</td>
</tr>
</tbody>
</table>
| 20xx | \(E \) | ???

Remark. Linear-time randomized MST algorithm (Karger-Klein-Tarjan 1995).
Euclidean MST

Given \(N \) points in the plane, find MST connecting them, where the distances between point pairs are their Euclidean distances.

Brute force. Compute \(\sim N^2 / 2 \) distances and run Prim’s algorithm.

Ingenuity. Exploit geometry and do it in \(\sim c \cdot N \log N \).

Scientific application: clustering

k-clustering. Divide a set of objects into \(k \) coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Goal. Divide into clusters so that objects in different clusters are far apart.

Applications.
- Routing in mobile ad hoc networks.
- Document categorization for web search.
- Similarity searching in medical image databases.
- Skycat: cluster 10^9 sky objects into stars, quasars, galaxies.

Single-link clustering

k-clustering. Divide a set of objects classify into \(k \) coherent groups.
Distance function. Numeric value specifying "closeness" of two objects.

Single link. Distance between two clusters equals the distance between the two closest objects (one in each cluster).

Single-link clustering. Given an integer \(k \), find a k-clustering that maximizes the distance between two closest clusters.
Single-link clustering algorithm

"Well-known" algorithm for single-link clustering:
- Form V clusters of one object each.
- Find the closest pair of objects such that each object is in a different cluster, and merge the two clusters.
- Repeat until there are exactly k clusters.

Observation. This is Kruskal’s algorithm (stop when k connected components).

Alternate solution. Run Prim’s algorithm and delete $k-1$ max weight edges.
Dendrogram. Tree diagram that illustrates arrangement of clusters.

http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/hierarchical.html

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group