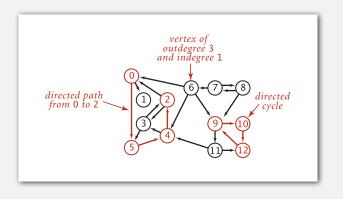
4.2 Directed Graphs

- **▶** digraph API
- ▶ digraph search
- ▶ topological sort
- strong components

Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002−2010 · February 6, 2011 4:39:59 PM

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

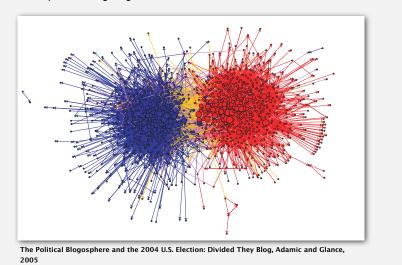


Road network

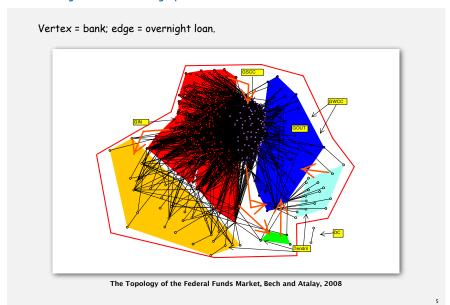
Vertex = intersection; edge = one-way street.

Political blogosphere graph

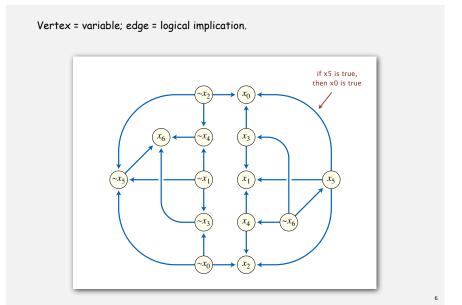
Vertex = political blog; edge = link.



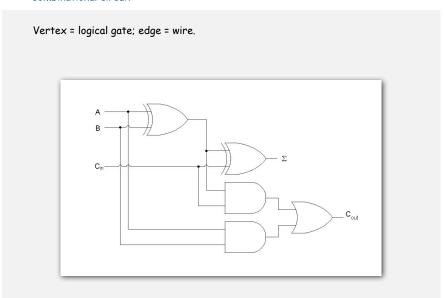
Overnight interbank loan graph



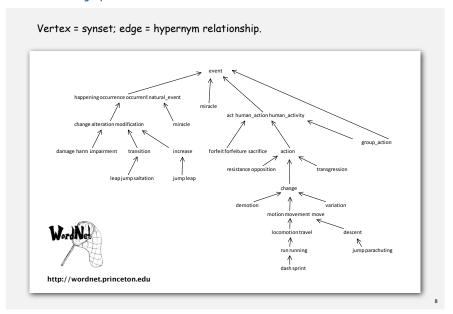
Implication graph



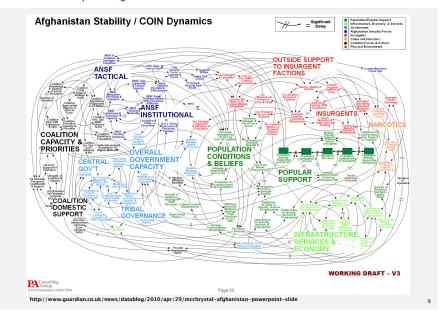
Combinational circuit



WordNet graph



The McChrystal Afghanistan PowerPoint slide



Digraph applications

digraph	vertex	directed edge	
transportation	street intersection	one-way street	
web	web page	hyperlink	
food web	species	predator-prey relationship	
WordNet	synset	hypernym	
scheduling	task	precedence constraint	
financial	bank	transaction	
cell phone	person	placed call	
infectious disease	person	infection	
game	board position	legal move	
citation	journal article	citation	
object graph	object	pointer	
inheritance hierarchy	class	inherits from	
control flow	code block	jump	

. .

Some digraph problems

Path. Is there a directed path from s to t?

Shortest path. What is the shortest directed path from s to t?

Topological sort. Can you draw the digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

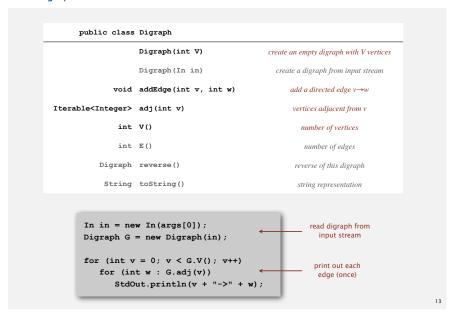
Transitive closure. For which vertices v and w is there a path from v to w?

PageRank. What is the importance of a web page?

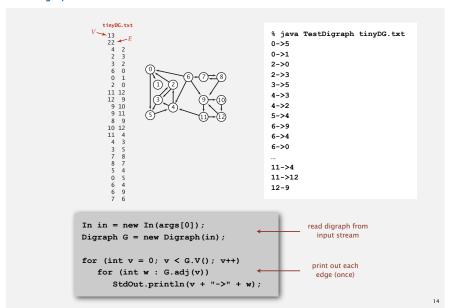
▶ digraph API

- digraph search
- > topological sort
- strong components

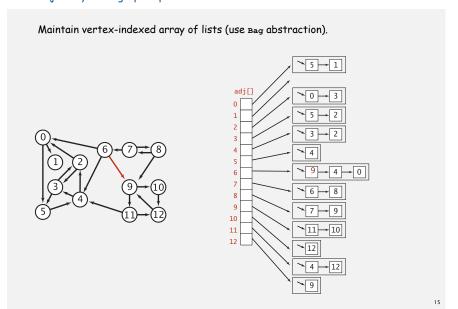
Digraph API



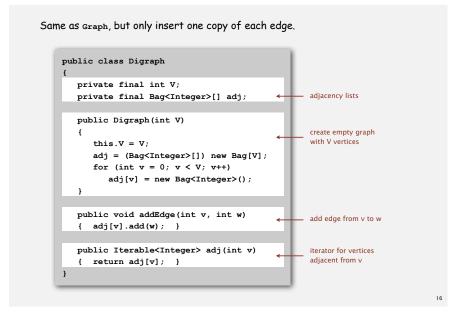
Digraph API



Adjacency-list digraph representation



Adjacency-lists digraph representation: Java implementation



Digraph representations

In practice. Use adjacency-list representation.

- Algorithms based on iterating over vertices adjacent from v.
- Real-world digraphs tend to be sparse.

huge number of vertices, small average vertex degree

representation	space	insert edge from v to w	edge from v to w?	iterate over vertices adjacent from v?
list of edges	E	1	E	E
adjacency matrix	V 2	1 †	1	V
adjacency list	E + V	1	outdegree(v)	outdegree(v)

† disallows parallel edges

17

digraph API

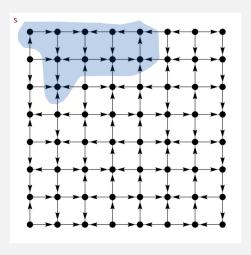
→ digraph search

- topological sort
- > strong components

- 1

Reachability

Problem. Find all vertices reachable from s along a directed path.



Depth-first search in digraphs

Same method as for undirected graphs.

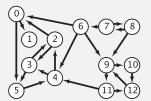
- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked

vertices w adjacent from v.



Depth-first search (in undirected graphs)

Recall code for undirected graphs. public class DepthFirstSearch true if path to s private boolean[] marked; public DepthFirstSearch(Graph G, int s) constructor marks marked = new boolean[G.V()]; vertices connected to s dfs(G, s); private void dfs(Graph G, int v) recursive DFS does the work marked[v] = true; for (int w : G.adj(v)) if (!marked[w]) dfs(G, w); public boolean marked(int v) client can ask whether any { return marked[v]; } vertex is connected to s

Depth-first search (in directed graphs)

```
Digraph version identical to undirected one (substitute Digraph for Graph).
      public class DirectedDFS
                                                              true if path from s
         private boolean[] marked;
         public DirectedDFS(Digraph G, int s)
                                                               constructor marks
             marked = new boolean[G.V()];
                                                               vertices reachable from s
             dfs(G, s);
         private void dfs(Digraph G, int v)
                                                               recursive DFS does the work
            marked[v] = true;
             for (int w : G.adj(v))
                if (!marked[w]) dfs(G, w);
         public boolean marked(int v)
                                                               client can ask whether any
                                                               vertex is reachable from s
          { return marked[v]; }
```

Reachability application: program control-flow analysis

Every program is a digraph.

• Vertex = basic block of instructions (straight-line program).

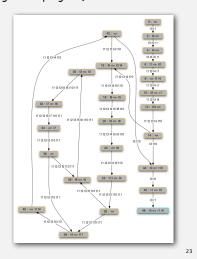
• Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.



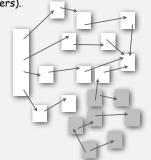
Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).



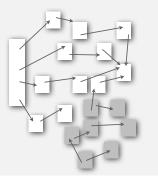
Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

· Mark: mark all reachable objects.

• Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.



Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- ✓ Reachability.
 - · Path finding.
 - Topological sort.
 - Directed cycle detection.
 - · Transitive closure.

Basis for solving difficult digraph problems.

- Directed Euler path.
- Strongly-connected components.

26

Breadth-first search in digraphs

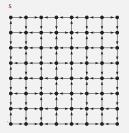
Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited. Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex adjacent from v: add to gueue and mark as visited..



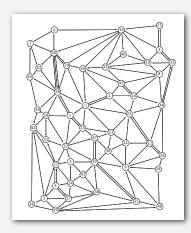
Proposition. BFS computes shortest paths (fewest number of edges).

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu. Solution. BFS with implicit graph.

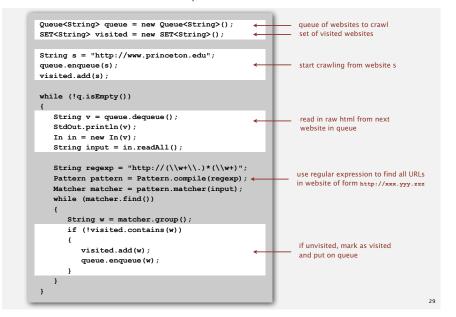
BFS.

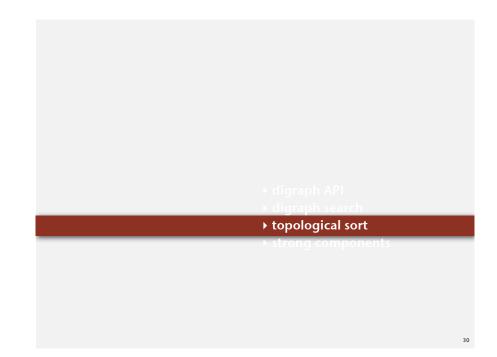
- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).



Q. Why not use DFS?

Bare-bones web crawler: Java implementation





Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Graph model. vertex = task; edge = precedence constraint.

O. Algorithms
1. Complexity Theory
2. Artificial Intelligence
3. Intro to CS
4. Cryptography
5. Scientific Computing
6. Advanced Programming

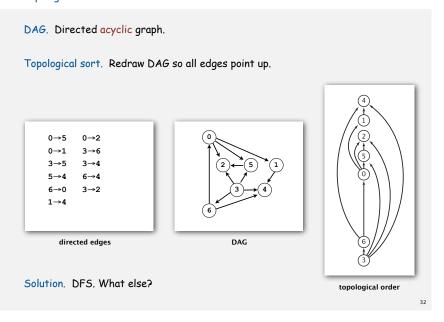
precedence constraint graph

tasks

feasible schedule

(read up!)

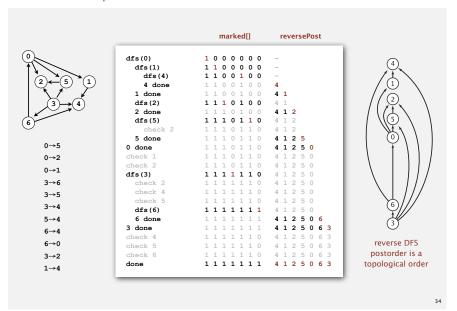
Topological sort



Depth-first search order

```
public class DepthFirstOrder
   private boolean[] marked;
   private Stack<Integer> reversePost;
   public DepthFirstOrder (Digraph G)
      reversePost = new Stack<Integer>();
      marked = new boolean[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v]) dfs(G, v);
   private void dfs(Digraph G, int v)
      marked[v] = true;
      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
      reversePost.push(v);
                                                      returns all vertices in
   public Iterable<Integer> reversePost()
                                                      "reverse DFS postorder"
   { return reversePost: }
```

Reverse DFS postorder in a DAG



Topological sort in a DAG: correctness proof

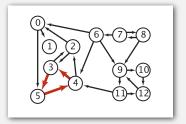
Proposition. Reverse DFS postorder of a DAG is a topological order. Pf. Consider any edge $v \rightarrow w$. When dfs (G, v) is called: dfs(0) dfs(1) dfs(4) • Case 1: afs (G, w) has already been called and returned. 4 done 1 done Thus, w was done before v. dfs(2) 2 done dfs(5) • Case 2: dfs(G, w) has not yet been called. 5 done It will get called directly or indirectly 0 done by dfs(G, v) and will finish before dfs(G, v). dfs(3) Thus, w will be done before v. check 5 dfs(6) • Case 3: dfs(G, w) has already been called, 6 done 3 done but has not returned. check 4 check 5 Can't happen in a DAG: function call stack contains check 6 done path from w to v, so $v \rightarrow w$ would complete a cycle. all vertices adjacent from 3 are done before 3 is done, so they appear after 3 in topological order

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.



Solution. DFS. (What else?) See textbook.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

PAGE 3			
DEPARTMENT	COURSE	DESCRIPTION	PREREQS
COMPUTER SCIENCE		INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432
		- multi-ran colonisto projett	

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

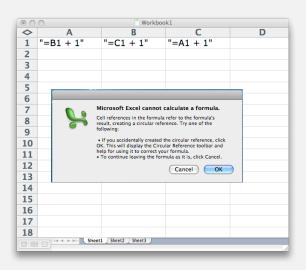
```
public class C extends A
{
    ...
}
```

```
% javac A.java
A.java:1: cyclic inheritance
involving A
public class A extends B { }
1 error
```

38

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)



Directed cycle detection application: symbolic links

The Linux file system does not do cycle detection.

```
% ln -s a.txt b.txt
% ln -s b.txt c.txt
% ln -s c.txt a.txt
% more a.txt
a.txt: Too many levels of symbolic links
```

39

Directed cycle detection application: WordNet

```
The WordNet database (occasionally) has cycles.
 WordNet Search - 3.0 - WordNet home page - Glossary - Help
Word to search for danpen Search WordNet

Display Options: (Select option to change) 
Change
 Key: "S." = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
          . S: (v) stifle, dampen (smother or suppress) "Stifle your curiosity"
                              direct troponym ( full troponym

    direct hypernym I inherited hypernym I sister term

                                        • S. (v) suppress, stamp down, inhibit, subdue, conquer, curb (to put down by force or authority) "suppress a nascent uprising"; "stamp down on littering"; "conquer one's desires"

    direct troponym I full troponym

                                                     ** direct housement | inherited hope-grown | instant term

** (V) control, hold in hold, contam, thenk, curb, moderate (lessen the intensity of, temper, hold in restraint, hold or keep within limits) "moderate your alcohol intake";
"hold your temper," "hold your temper," control your anger."
                                                                                     o direct troponym | full troponym
                                                                                  o direct hypernym l'inherited hypernym l'sister term

• S. (v) restrain, keep, keep back, hold back (keep under control, keep in check) "suppress a smile"; "Keep your temper"; "keep your cool"

direct troposym full troposym

o direct troposym

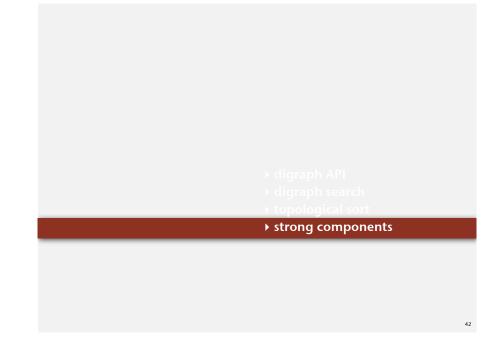
o direct
                                                                                                                                             o direct troponym I full troponym

    direct hypernym I whereted hypernym I sister term
    S. (v) reurain, keep, keep back, hold back (keep under control, keep in check) "suppress a omile", "Keep your temper"; "keep your cool"

    direct trapanym | full trapanym

    sentence frame

                                                                                                                                             o derivationally related form
```



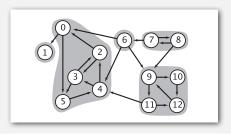
Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path from v to w and a directed path from w to v.

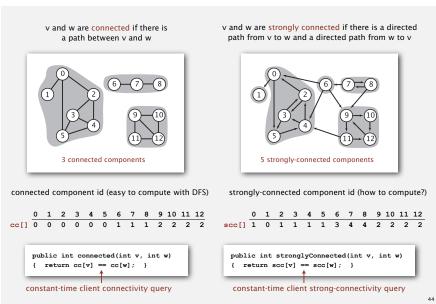
Key property. Strong connectivity is an equivalence relation:

- v is strongly connected to v.
- If v is strongly connected to w, then w is strongly connected to v.
- If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

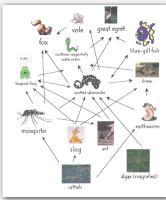


${\it Connected \ components \ vs. \ strongly-connected \ components}$



Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.



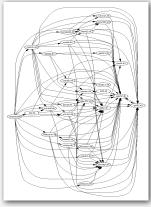
http://www.twingroves.district 96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giter and the salamander of the

Strong component. Subset of species with common energy flow.

Strong component application: software modules

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.



Internet Explorer

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- · Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- · Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju's algorithm: intuition

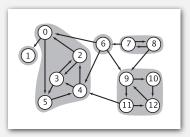
Reverse graph. Strong components in G are same as in G^R .

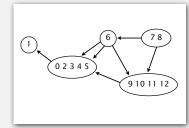
Kernel DAG. Contract each strong component into a single vertex.

Idea.

how to compute?

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.





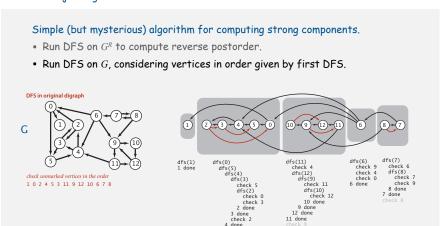
digraph G and its strong components

kernel DAG of G

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components. • Run DFS on G^R to compute reverse postorder. \bullet Run DFS on G, considering vertices in order given by first DFS. DFS in reverse digraph (ReversePost) GR 1 0 2 4 5 3 11 9 12 10 6 7 8 check unmarked vertices in the order reverse postorder 0 1 2 3 4 5 6 7 8 9 10 11 12 dfs(7) dfs(8) check 7 8 done 7 done 6 done dfs(2) dfs(4) dfs(11) dfs(9) dfs(12) check 11

Kosaraju's algorithm



Proposition. Second DFS gives strong components. (!!)

Kosaraju proof of correctness

Proposition. Kosaraju's algorithm computes strong components.

Pf. We show that the vertices marked during the constructor call afs(G, s) are the vertices strongly connected to s.

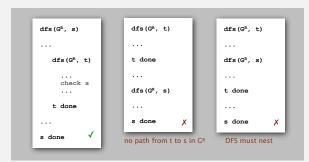
 \leftarrow [If t is strongly connected to s, then t is marked during the call dfs(G, s).]

- There is a path from s to t, so t will be marked during afs(G, s) unless t was previously marked.
- There is a path from t to s, so if t were previously marked, then s would be marked before t finishes
 (so afs (G, s) would not have been called in constructor).

Kosaraju proof of correctness (continued)

Proposition. Kosaraju's algorithm computes strong components.

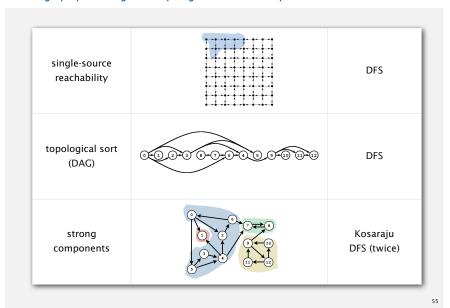
- \Rightarrow [If t is marked during the call dfs(G, s), then t is strongly connected to s.]
- Since t is marked during the call afs(G, s), there is a path from s to t in G (or, equivalently, a path from t to s in G^R).
- Reverse postorder construction implies that t is done before s in dfs of G^R .
- The only possibility for dfs in G^R implies there is a path from s to t in G^R . (or, equivalently, a path from t to s in G).



Connected components in an undirected graph (with DFS)

```
public class CC
  private boolean marked[];
   private int[] id;
  private int count;
   public CC(Graph G)
      marked = new boolean[G.V()];
      id = new int[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v])
            dfs(G, v);
            count++;
   private void dfs(Graph G, int v)
      marked[v] = true;
     id[v] = count;
for (int w : G.adj(v))
        if (!marked[w])
            dfs(G, w);
   public boolean connected(int v, int w)
   { return id[v] == id[w]; }
```

Digraph-processing summary: algorithms of the day



Strong components in a digraph (with two DFSs)

```
public class KosarajuSCC
  private boolean marked[];
  private int[] id;
  private int count;
  public KosarajuSCC(Digraph G)
      marked = new boolean[G.V()];
      id = new int[G.V()];
      DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
for (int v : dfs.reversePost())
         if (!marked[v])
            dfs(G, v);
            count++;
  private void dfs(Digraph G, int v)
      marked[v] = true;
      id[v] = count;
for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
  public boolean stronglyConnected(int v, int w)
   { return id[v] == id[w]; }
```

,-