4.1 Undirected Graphs

- graph API
- depth-first search
- breadth-first search
- connected components
- challenges
Graph. Set of **vertices** connected pairwise by **edges**.

Undirected graphs

Why study graph algorithms?

- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.
Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics
The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet
Map of science clickstreams

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803
Kevin's Facebook friends (Princeton network)
10 million Facebook friends

"Visualizing Friendships" by Paul Butler
One week of Enron emails

The analysis detected an anomaly: a new e-mail address for this person, who had been “phillip.allen” for 131 previous weeks.

Company leaders e-mail less frequently, leaving some communication to subordinates.

Finding Patterns In Corporate Chatter
The evolution of FCC lobbying coalitions

"The Evolution of FCC Lobbying Coalitions" by Pierre de Vries in JoSS Visualization Symposium 2010
Graph applications

<table>
<thead>
<tr>
<th>graph</th>
<th>vertex</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>telephone, computer</td>
<td>fiber optic cable</td>
</tr>
<tr>
<td>circuit</td>
<td>gate, register, processor</td>
<td>wire</td>
</tr>
<tr>
<td>mechanical</td>
<td>joint</td>
<td>rod, beam, spring</td>
</tr>
<tr>
<td>financial</td>
<td>stock, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>street intersection, airport</td>
<td>highway, airway route</td>
</tr>
<tr>
<td>internet</td>
<td>class C network</td>
<td>connection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>social relationship</td>
<td>person, actor</td>
<td>friendship, movie cast</td>
</tr>
<tr>
<td>neural network</td>
<td>neuron</td>
<td>synapse</td>
</tr>
<tr>
<td>protein network</td>
<td>protein</td>
<td>protein-protein interaction</td>
</tr>
<tr>
<td>chemical compound</td>
<td>molecule</td>
<td>bond</td>
</tr>
</tbody>
</table>
Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.
Some graph-processing problems

Path. Is there a path between s and t?
Shortest path. What is the shortest path between s and t?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges
Graph representation

Graph drawing. Provides intuition about the structure of the graph.

Caveat. Intuition can be misleading.

![Two drawings of the same graph](image)
Graph representation

Vertex representation.

- This lecture: use integers between 0 and $v-1$.
- Applications: convert between names and integers with symbol table.

Anomalies.

- Parallel edges
- Self-loop
- Parallel edges
Graph API

public class Graph

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph(int V)</td>
<td>create an empty graph with V vertices</td>
</tr>
<tr>
<td>Graph(In in)</td>
<td>create a graph from input stream</td>
</tr>
<tr>
<td>void addEdge(int v, int w)</td>
<td>add an edge v-w</td>
</tr>
<tr>
<td>Iterable<Integer> adj(int v)</td>
<td>vertices adjacent to v</td>
</tr>
<tr>
<td>int V()</td>
<td>number of vertices</td>
</tr>
<tr>
<td>int E()</td>
<td>number of edges</td>
</tr>
<tr>
<td>String toString()</td>
<td>string representation</td>
</tr>
</tbody>
</table>

```java
In in = new In(args[0]);
Graph G = new Graph(in);
for (int v = 0; v < G.V(); v++)
   for (int w : G.adj(w))
      StdOut.println(v + "-" + w);
```
Graph API: sample client

Graph input format.

```
In in = new In(args[0]);
Graph G = new Graph(in);
for (int v = 0; v < G.V(); v++)
   for (int w : G.adj(w))
      StdOut.println(v + "-" + w);
```

`tinyG.txt`

```
% java Test tinyG.txt
0-6
0-2
0-1
0-5
1-0
2-0
3-5
3-4
...
12-11
12-9
```

`mediumG.txt`

```
V
E
% java Test tinyG.txt
```

read graph from input stream

print out each edge (twice)
Typical graph-processing code

compute the degree of v

```java
public static int degree(Graph G, int v) {
    int degree = 0;
    for (int w : G.adj(v)) degree++;
    return degree;
}
```

compute maximum degree

```java
public static int maxDegree(Graph G) {
    int max = 0;
    for (int v = 0; v < G.V(); v++)
        if (degree(G, v) > max)
            max = degree(G, v);
    return max;
}
```

compute average degree

```java
public static int avgDegree(Graph G) {
    return 2 * G.E() / G.V();
}
```

count self-loops

```java
public static int numberOfSelfLoops(Graph G) {
    int count = 0;
    for (int v = 0; v < G.V(); v++)
        for (int w : G.adj(v))
            if (v == w) count++;
    return count/2;
}
```
Maintain a list of the edges (linked list or array).
Adjacency-matrix graph representation

Maintain a two-dimensional V-by-V boolean array; for each edge v-w in graph: $\text{adj}[v][w] = \text{adj}[w][v] = \text{true}$.
Adjacency-list graph representation

Maintain vertex-indexed array of lists.
(use \texttt{Bag} abstraction)

Adjacency-lists representation (undirected graph)
Adjacency-list graph representation: Java implementation

```java
public class Graph {
    private final int V;
    private Bag<Integer>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

- Adjacency lists
 - (use Bag data type)
- Create empty graph with V vertices
- Add edge v-w (parallel edges allowed)
- Iterator for vertices adjacent to v
Graph representations

In practice. Use adjacency-lists representation.
• Algorithms based on iterating over vertices adjacent to v.
• Real-world graphs tend to be “sparse.”

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>add edge</th>
<th>edge between v and w?</th>
<th>iterate over vertices adjacent to v?</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>E</td>
<td>1</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>V²</td>
<td>1 *</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>E + V</td>
<td>1</td>
<td>degree(v)</td>
<td>degree(v)</td>
</tr>
</tbody>
</table>

* disallows parallel edges
Graph representations

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices adjacent to \(v \).
- Real-world graphs tend to be “sparse.”

Two graphs (\(V = 50 \))

- Sparse (\(E = 200 \))
- Dense (\(E = 1000 \))

Huge number of vertices, small average vertex degree
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges
Maze exploration

Maze graphs.
- Vertex = intersection.
- Edge = passage.

Goal. Explore every intersection in the maze.
Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.
Trémaux maze exploration

Algorithm.
• Unroll a ball of string behind you.
• Mark each visited intersection and each visited passage.
• Retrace steps when no unvisited options.

First use? Theseus entered labyrinth to kill the monstrous Minotaur; Ariadne held ball of string.

Claude Shannon (with Theseus mouse)
Maze exploration
Maze exploration
Depth-first search

Goal. Systematically search through a graph.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked vertices w adjacent to v.

Typical applications. [ahead]
• Find all vertices connected to a given source vertex.
• Find a path between two vertices.
Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

```java
public class Search
{
    Search(Graph G, int s) find vertices connected to s
    boolean marked(int v) is vertex v connected to s?
    int count() how many vertices connected to s?
}
```

Typical client program.

- Create a Graph.
- Pass the Graph to a graph-processing routine, e.g., Search.
- Query the graph-processing routine for information.

```java
Search search = new Search(G, s);
for (int v = 0; v < G.V(); v++)
    if (search.marked(v))
       StdOut.println(v);

print all vertices connected to s
```
Depth-first search (warmup)

Goal. Find all vertices connected to s.
Idea. Mimic maze exploration.

Algorithm.
- Use recursion (ball of string).
- Mark each visited vertex.
- Return (retrace steps) when no unvisited options.

Data structure.
- `boolean[] marked` to mark visited vertices.
Depth-first search (warmup)

```java
public class DepthFirstSearch {
    private boolean[] marked;

    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G, w);
    }

    public boolean marked(int v) {  return marked[v];  }
}
```

- Constructor marks vertices connected to s.
- Recursive DFS does the work.
- Client can ask whether vertex v is connected to s.
Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to the sum of their degrees.

Pf.
- **Correctness:**
 - if w marked, then w connected to s (why?)
 - if w connected to s, then w marked
 (if w unmarked, then consider last edge on a path from s to w that goes from a marked vertex to an unmarked one)

- **Running time:** each vertex connected to s is visited once.
Depth-first search application: preparing for a date
Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).

Assumptions. Picture has millions to billions of pixels.

Q. How difficult?
Depth-first search application: flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.
• Vertex: pixel.
• Edge: between two adjacent red pixels.
• Blob: all pixels connected to given pixel.
Depth-first search application: flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.
- Vertex: pixel.
- Edge: between two adjacent red pixels.
- Blob: all pixels connected to given pixel.
Goal. Does there exist a path from s to t?
Paths in graphs: union-find vs. DFS

Goal. Does there exist a path from s to t?

<table>
<thead>
<tr>
<th>method</th>
<th>preprocessing time</th>
<th>query time</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>union-find</td>
<td>$V + E \log^* V$</td>
<td>$\log^* V$ †</td>
<td>V</td>
</tr>
<tr>
<td>DFS</td>
<td>$E + V$</td>
<td>1</td>
<td>$E + V$</td>
</tr>
</tbody>
</table>

Union-find. Can intermix queries and edge insertions.

Depth-first search. Constant time per query.
Pathfinding in graphs

Goal. Does there exist a path from \(s \) to \(t \)? If yes, find any such path.
Pathfinding in graphs

Goal. Does there exist a path from s to t? If yes, find any such path.

<table>
<thead>
<tr>
<th>public class Paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paths(Graph G, int s)</td>
</tr>
<tr>
<td>boolean hasPathTo(int v)</td>
</tr>
<tr>
<td>Iterable<Integer> pathTo(int v)</td>
</tr>
</tbody>
</table>

Union-find. Not much help.

Depth-first search. After linear-time preprocessing, can recover path itself in time proportional to its length.

3 easy modification (stay tuned)
Goal. Find paths to all vertices connected to a given source s.

Idea. Mimic maze exploration.

Algorithm.
- Use recursion (ball of string).
- Mark each visited vertex by keeping track of edge taken to visit it.
- Return (retrace steps) when no unvisited options.

Data structures.
- boolean[] marked to mark visited vertices.
- int[] edgeTo to keep tree of paths.
- (edgeTo[w] == v) means that edge v-w was taken to visit w the first time.
Depth-first search (pathfinding)

```java
public class DepthFirstPaths {
    private boolean[] marked;
    private int[] edgeTo;
    private final int s;

    public DepthFirstPaths(Graph G, int s) {
        marked = new boolean[G.V()];
        edgeTo = new int[G.V()];
        this.s = s;
        dfs(G, s);
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) {
                edgeTo[w] = v;
                dfs(G, w);
            }
    }

    public boolean hasPathTo(int v) {
    }

    public Iterable<Integer> pathTo(int v) {
    }
}
```
Depth-first search (pathfinding trace)

tinyCG.txt

V -> 6
8
0 5
2 4
2 3
1 2
0 1
3 4
3 5
0 2

standard drawing

drawing with both edges

adjacency lists

adj

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

dfs(0)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(2)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(1)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(3)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(5)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

edgeTo[]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

standard drawing

drawing with both edges

tinyCG.txt

V -> 6
8
0 5
2 4
2 3
1 2
0 1
3 4
3 5
0 2

adjacency lists

adj

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

dfs(0)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(2)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(1)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(3)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(5)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

edgeTo[]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

standard drawing

drawing with both edges

tinyCG.txt

V -> 6
8
0 5
2 4
2 3
1 2
0 1
3 4
3 5
0 2

adjacency lists

adj

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

dfs(0)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(2)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(1)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(3)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(5)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

edgeTo[]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

standard drawing

drawing with both edges

tinyCG.txt

V -> 6
8
0 5
2 4
2 3
1 2
0 1
3 4
3 5
0 2

adjacency lists

adj

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

dfs(0)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(2)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(1)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(3)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

dfs(5)

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

edgeTo[]

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Depth-first search (pathfinding iterator)

to[] is a parent-link representation of a tree rooted at s.

```
public boolean hasPathTo(int v)
{  return marked[v];  }

public Iterable<Integer> pathTo(int v)
{
    if (!hasPathTo(v)) return null;
    Stack<Integer> path = new Stack<Integer>();
    for (int x = v; x != s; x = edgeTo[x])
       path.push(x);
    path.push(s);
    return path;
}
```
Depth-first search summary

Enables direct solution of simple graph problems.

✓ • Does there exists a path between \(s \) and \(t \) ?
✓ • Find path between \(s \) and \(t \).
 • Connected components (stay tuned).
 • Euler tour (see book).
 • Cycle detection (see book).
 • Bipartiteness checking (see book).

Basis for solving more difficult graph problems.
• Biconnected components (beyond scope).
• Planarity testing (beyond scope).
- graph API
- depth-first search
- breadth-first search
- connected components
- challenges
Breadth-first search

Depth-first search. Put unvisited vertices on a stack.

Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from \(s \) to \(t \) that uses fewest number of edges.

BFS (from source vertex \(s \))

Put \(s \) onto a FIFO queue, and mark \(s \) as visited.

Repeat until the queue is empty:

- remove the least recently added vertex \(v \)
- add each of \(v \)'s unvisited neighbors to the queue,
 and mark them as visited.

Intuition. BFS examines vertices in increasing distance from \(s \).
Breadth-first search (pathfinding)

```java
private void bfs(Graph G, int s) {
    Queue<Integer> q = new Queue<Integer>();
    q.enqueue(s);
    marked[s] = true;
    while (!q.isEmpty()) {
        int v = q.dequeue();
        for (int w : G.adj(v))
            if (!marked[w]) {
                q.enqueue(w);
                marked[w] = true;
                edgeTo[w] = v;
            }
    }
}
```
Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from \(s \) in a connected graph in time proportional to \(E + V \).

Pf.
- **Correctness:** queue always consists of zero or more vertices of distance \(k \) from \(s \), followed by zero or more vertices of distance \(k + 1 \).
- **Running time:** each vertex connected to \(s \) is visited once.
Breadth-first search application: routing

Fewest number of hops in a communication network.

ARPANET, July 1977
Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

http://oracleofbacon.org
Kevin Bacon graph

- Include a vertex for each performer and for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from $s = $ Kevin Bacon.
Breadth-first search application: Erdös numbers

hand-drawing of part of the Erdös graph by Ron Graham
graph API
depth-first search
breadth-first search
connected components
challenges
Connectivity queries

Def. Vertices \(v \) and \(w \) are **connected** if there is a path between them.

Goal. Preprocess graph to answer queries: is \(v \) connected to \(w \)? in **constant** time.

<table>
<thead>
<tr>
<th>public class CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC(Graph G)</td>
</tr>
<tr>
<td>boolean connected(int v, int w)</td>
</tr>
<tr>
<td>int count()</td>
</tr>
<tr>
<td>int id(int v)</td>
</tr>
</tbody>
</table>

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]
Connected components

The relation "is connected to" is an **equivalence relation**:

- Reflexive: \(v \) is connected to \(v \).
- Symmetric: if \(v \) is connected to \(w \), then \(w \) is connected to \(v \).
- Transitive: if \(v \) connected to \(w \) and \(w \) connected to \(x \), then \(v \) connected to \(x \).

Def. A **connected component** is a maximal set of connected vertices.

<table>
<thead>
<tr>
<th>(v)</th>
<th>id[(v)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
</tr>
</tbody>
</table>

3 connected components

Remark. Given connected components, can answer queries in constant time.
Def. A connected component is a maximal set of connected vertices.
Goal. Partition vertices into connected components.

Connected components

Initialize all vertices \(v \) as unmarked.

For each unmarked vertex \(v \), run DFS to identify all vertices discovered as part of the same component.

Graph data (tinyG.txt)

```
V: 13
E: 13
0 5
4 3
0 1
9 12
6 4
5 4
0 2
11 12
9 10
0 6
7 8
9 11
5 3
```
Finding connected components with DFS

```java
public class CC {
    private boolean marked[];
    private int[] id;
    private int count;
    public CC(Graph G) {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        for (int v = 0; v < G.V(); v++) {
            if (!marked[v]) {
                dfs(G, v);
                count++;
            }
        }
    }
    public int count() {
        return count;
    }
    public int id(int v) {
        return id[v];
    }
    private void dfs(Graph G, int v) {
        marked[v] = true;
        id[v] = count;
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                dfs(G, w);
            }
        }
    }
}
```

- `id[v] = id of component containing v`
- `count = number of connected components`
- run DFS from one vertex in each component
- see next slide
Finding connected components with DFS (continued)

```java
public int count()
{  return count;  }

public int id(int v)
{  return id[v];  }

private void dfs(Graph G, int v)
{  
    marked[v] = true;
    id[v] = count;
    for (int w : G.adj(v))
        if (!marked[w])
            dfs(G, w);
}
```

- Number of connected components
- Id of component containing v
- All vertices discovered in same call of dfs have same id
Finding connected components with DFS (trace)

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td></td>
</tr>
<tr>
<td>marked[]</td>
<td></td>
</tr>
<tr>
<td>id[]</td>
<td></td>
</tr>
</tbody>
</table>

dfs(0) 0 T 0
dfs(6) 0 T 0
check 0 0 0

dfs(4) 0 T T T T 0 0 0
dfs(5) 0 T T T T 0 0 0
dfs(3) 0 T T T T T 0 0 0 0
check 5 0 0 0 0
check 4 0 0 0 0
3 done 0 0 0 0
check 4 0 0 0 0
check 0 0 0 0
5 done 0 0 0 0
check 6 0 0 0 0
check 3 0 0 0 0
4 done 0 0 0 0
6 done 0 0 0 0

dfs(2) 0 T T T T T T T T T T 0 0 0 0 0 0
check 0 0 0 0 0 0 0 0 0 0
2 done 0 0 0 0 0 0 0 0 0 0

dfs(1) 0 T T T T T T T T T T 0 0 0 0 0 0
check 0 0 0 0 0 0 0 0 0 0
1 done 0 0 0 0 0 0 0 0 0 0
check 5 0 0 0 0 0 0 0 0 0 0
0 done 0 0 0 0 0 0 0 0 0 0
```

Trace of depth-first search to find connected components:
Finding connected components with DFS (trace)

Trace of depth-first search to find connected components

```
  count  marked[]  id[]
0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 3 4 5 6 7 8 9 10 11 12

0 done
dfs(7)
  dfs(8)
    check 7
    8 done
  7 done
dfs(9)
  dfs(11)
    check 9
    dfs(12)
      check 11
      check 9
      12 done
    11 done
dfs(10)
  check 9
  10 done
cHECK 12
  9 done
```

Attached Graph:

```
  0 -- 6
     |   |
  1   2
     |   |
  3 -- 4
     |
  5
```

```
  count  marked[]  id[]
0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 3 4 5 6 7 8 9 10 11 12

0 done
dfs(6)
  check 0
dfs(4)
  check 0
dfs(5)
  check 5
dfs(3)
  3 done
dfs(4)
  check 4
  4 done
dfs(6)
  check 6
  6 done
dfs(2)
  check 0
dfs(1)
  check 0
  1 done
dfs(7)
  check 7
  7 done
dfs(8)
  check 7
  8 done
dfs(9)
  check 9
  9 done
dfs(10)
  check 9
  10 done
dfs(11)
  check 9
  11 done
dfs(12)
  check 9
  12 done
```

```
  count  marked[]  id[]
0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 3 4 5 6 7 8 9 10 11 12

0 done
dfs(6)
  check 0
dfs(4)
  check 0
dfs(5)
  check 5
dfs(3)
  3 done
dfs(4)
  check 4
  4 done
dfs(6)
  check 6
  6 done
dfs(2)
  check 0
dfs(1)
  check 0
  1 done
dfs(7)
  check 7
  7 done
dfs(8)
  check 7
  8 done
dfs(9)
  check 9
  9 done
dfs(10)
  check 9
  10 done
dfs(11)
  check 9
  11 done
dfs(12)
  check 9
  12 done
```

```
  count  marked[]  id[]
0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 3 4 5 6 7 8 9 10 11 12

0 done
dfs(6)
  check 0
dfs(4)
  check 0
dfs(5)
  check 5
dfs(3)
  3 done
dfs(4)
  check 4
  4 done
dfs(6)
  check 6
  6 done
dfs(2)
  check 0
dfs(1)
  check 0
  1 done
dfs(7)
  check 7
  7 done
dfs(8)
  check 7
  8 done
dfs(9)
  check 9
  9 done
dfs(10)
  check 9
  10 done
dfs(11)
  check 9
  11 done
dfs(12)
  check 9
  12 done
```

```
  count  marked[]  id[]
0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 3 4 5 6 7 8 9 10 11 12

0 done
dfs(6)
  check 0
dfs(4)
  check 0
dfs(5)
  check 5
dfs(3)
  3 done
dfs(4)
  check 4
  4 done
dfs(6)
  check 6
  6 done
dfs(2)
  check 0
dfs(1)
  check 0
  1 done
dfs(7)
  check 7
  7 done
dfs(8)
  check 7
  8 done
dfs(9)
  check 9
  9 done
dfs(10)
  check 9
  10 done
dfs(11)
  check 9
  11 done
dfs(12)
  check 9
  12 done
```
Connected components application: study spread of STDs

Relationship graph at "Jefferson High"

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
• Vertex: pixel.
• Edge: between two adjacent pixels with grayscale value \(\geq 70 \).
• Blob: connected component of 20-30 pixels.

Particle tracking. Track moving particles over time.
› graph API
› depth-first search
› breadth-first search
› connected components
› challenges
Graph-processing challenge 1

Problem. Is a graph bipartite?

How difficult?
• Any COS 126 student could do it.
• Need to be a typical diligent COS 226 student.
• Hire an expert.
• Intractable.
• No one knows.
• Impossible.
Bipartiteness application

Relationship graph at "Jefferson High"

Graph-processing challenge 2

Problem. Find a cycle.

How difficult?
• Any COS 126 student could do it.
• Need to be a typical diligent COS 226 student.
• Hire an expert.
• Intractable.
• No one knows.
• Impossible.
Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?
• Any COS 126 student could do it.
• Need to be a typical diligent COS 226 student.
• Hire an expert.
• Intractable.
• No one knows.
• Impossible.
The Seven Bridges of Königsberg. [Leonhard Euler 1736]

“The … in Königsberg in Prussia, there is an island A, called the Kneiphof; the river which surrounds it is divided into two branches … and these branches are crossed by seven bridges. Concerning these bridges, it was asked whether anyone could arrange a route in such a way that he could cross each bridge once and only once.”

Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see textbook).
Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

How difficult?
• Any COS 126 student could do it.
• Need to be a typical diligent COS 226 student.
• Hire an expert.
• Intractable.
• No one knows.
• Impossible.
Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?
- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.
- Hire an expert.
- Intractable.
- No one knows.
- Impossible.
Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?
• Any COS 126 student could do it.
• Need to be a typical diligent COS 226 student.
• Hire an expert.
• Intractable.
• No one knows.
• Impossible.